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Energetics of large lattice strains: Application to silicon
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We discuss the mathematical formalism of physically allowed lattice-invariant strains. When
coupled with first-principles calculations of the energy as a function of strain, this approach becomes
a powerful tool for understanding large lattice strains in solids. We also present an application of
this tool to explore deformations of silicon, which predicts, to our knowledge, a previously unknown
metastable structure. The physical properties of this structure are described and a method for
obtaining it experimentally is explicitly provided.

I. INTRODUCTION

Structural transformations in solids play an important
role in understanding their mechanical stability, strength,
response to applied forces, resistance to heat, etc. In or-
der to describe structural transformations &om a theo-
retical point of view one must be able to calculate accu-
rately several aspects of a solid's behavior, all of them re-
lated to the energetics of distortions from an equilibrium
structure. There are many examples of 6rst-principles
quantum mechanical calculations of the energy of solids
as a function of small variations in crystal structure, &om
which phonon modes and elastic constants can be deter-
mined. First-principles calculations comparing the ener-
gies of elements and compounds in widely differing, but
locally stable structures are also common. On the other
hand, there are relatively few examples of total energy
calculations for crystal distortions large enough to trans-
form continuously between two widely different struc-
tures. Such transformations necessarily involve large lat-
tice strains (LLS), i.e., strains beyond the elastic limit.
In this paper, we address this class of deformations, 6rst
by developing the proper formalism and then by applying
it to a representative covalent solid, silicon.

The paper is organized as follows: Sec. II cites recent
work involving LLS. Section III describes the formalism
of LLS by de6ning physically-allowed lattice-invariant
(PALI-) strain matrices and provides an example on the
fcc lattice. Section IV discusses the application of PALI-
strain transformations to silicon, the identification of a
metastable phase and the structural and electronic prop-
erties of this phase. Section V provides an account of
how this phase might be formed experimentally. Section
VI concludes with some remarks on the usefulness of our
approach.

II. BACKGROUND TO LARGE LATTICE
STRAIN CALCULATIONS

Wills et al. have recently pointed out a correlation be-
tween the shear modulus cqq-eq2, in fcc metals, and the

difference between the energy in the bcc and fcc struc-
tures. The correlation can be understood by noticing
that the cqq-cq2 distortion begins along the path which
transforms fcc to bcc, the so-called Bain strain. There ex-
ists yet another correlation, which becomes evident when
one more dimension is added to the strain space explored
by Wills et al. Speci6cally, Mehl and Boyer showed that
the lowest energy path for PALI strains in aluminum and
iridium deviates from the Bain path in the region of the
bcc structure, and has a barrier that correlates roughly
with the melting temperature (T ). This correlation has
been noted in other materials as well, s and could be the
fundamental reason why trends in elastic constants gen-
erally correlate with trends in the melting temperature.
In a parallel and independent development, Wang, Yip,
Phillpot, and Wolf have recently proposed stability cri-
teria for crystals, based on stress-strain relations at 6nite
deformation.

Knowledge of the energetics associated with LLS may
provide a key to understanding many complicated phys-
ical processes, which involve the nucleation, disintegra-
tion, and transformation of crystal lattices. Examples
include solid-liquid transitions, martensitic transforma-
tions, amorphization (which can be induced by various
methods, including mechanical stress), and mechanical
properties outside the elastic region. In all these cases,
large deformations akin to LLS are involved, possibly at
various length scales. Developing a framework for cal-
culating accurately LLS is crucial to the theoretical de-
scription of these phenomena.

The basic concept of PALI strains, that is, symmetric
strain tensors which transform a lattice into itself, was
developed only recently. ' PALI strains are signi6cant
in at least two respects:

(i) they aid in identifying low energy domains in strain
space; and

(ii) they can, in principle, be produced experimentally.
Some applications of this concept actually preceded

the development of the formalism. One such application
was reported by Clapp and Rifkin in a study based on
molecular dynamics simulations related to a martensitic
transformation. In another example of LLS calculations,
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Gooding et ajt. calculated the energy along the path
of a well known martensitic transformation in sodium.
Work by Boyer et a/. has focused on Si, for which a
metastable phase was predicted &om a systematic study
of the energy associated with PALI strains. More re-
cently, Juan and Kaxiras have used LLS calculations
to explore structural deformations related to plastic be-
havior in Si under indentation.

III. THEORY OF LARGE LATTICE STRAINS

The set of all LLS which map a lattice onto itself forms
an infinite group of so-called modular transformations.
Such transformations are normally defined by matrices
S = BA where A and B are formed &om two diH'erent

sets of primitive lattice vectors. For any lattice there is
an infinity of choices for the primitive lattice vectors. In
principle, group theory can be exploited in the analysis of
functionals, such as the energy, that are invariant under

S. However, this is a dificult problem which has only
been completely solved in two dimensions. ' %e note
that subgroups of the three dimensional modular trans-
formations which leave a lattice plane invariant have been
studied extensively in relation to twinning structures in
metallurgy.

The matrices S are nonsymmetric and, therefore, un-

physical in the sense that the associated displacements
can not be produced, even in principle, by a torque free
stress. However, the same distortions can be produced
by symmetric strain tensors. Following Van de Waal, e we

symmetrize S by multiplying it with its transpose (S )
and taking the square root of the product, which can only
be done for the diagonal matrix S+S. Taking the square
root of the diagonal matrix, U S SU (U is the matrix of
eigenvectors of S), and transforming back to the original
coordinates, we get the PALI-strain transformation,

S = U[U S SU]&U

TABLE I. Eight types of fcc PALI-strain transformations, given by primitive vector matrices A
and B together with the resultant eigenvectors (e, , i = 1,2, 3) and eigenvalues (e, , i = 1, 2, 3) of the
S S matrix (the eigenvalues are given below the corresponding eigenvectors, in parentheses). A/Ao
is the ratio of strained to unstrained surface area and X is the number of equivalent transformations
for each type.
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Gy
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1
0
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0
1
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0
1
1

1
-1
0

1
-1
0

1
-1
0

1
-1
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1
1
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1
0
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0
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1
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0
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1
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1
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0.628
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The transformed lattice SA is the same as B = SA,
up to a trivial rotation R = SS . Working with the
transformed matrix S offers the following advantages:

(i) It provides a practical, though approximate, sim-

plification to the functional analysis problem ' by re-

ducing the number of shear-strain parameters &om 5 to
2 (due to the symmetric nature of S).

(ii) It identifies orthogonal axes along which nonhy-

drostatic stress could be applied to achieve the desired
strain, making it possible, in principle, to produce such
strains experimentally.

As an example, consider a subset of S for the fcc lat-
tice where the primitive lattice vectors defining the A and
B matrices are confined to the shortest possible lengths.
With this restriction there are eight different types of
PALI-strain transformations. Representative transfor-
mations for each type are listed in Table I in increas-

ing magnitude of distortion. They are described by the
eigenvectors (e;) and corresponding eigenvalues (s;) of
S+S, with the square root of the eigenvalues giving the
&actional change in distance along the directions e;. The
maximum expansion (compression) directions are given

by the ei (e2) eigenvectors. A measure of the distortion

is given by the ratio of the surface area A of a PALI-
strained crystal to the area Ao of an unstrained cube-
shaped crystal with axes along the directions e;:

Ao

1 1 1 1= —[(sis2) ~ + (siss) ~ + (sgs3) ~ j.
3

(2)

N is the number of equivalent transformations of a given

type. For example, in type 1 transformations, the maxi-
mum compression direction (e3) can be along the (1,0,0),
(0,1,0), or (0,0,1) crystallographic axes. Given one of
these directions, say (0,0,1), the maximum expansion di-

rection (ei) can be either of two directions, (1,1,0) or

(1,—1,0), making a total of N = 6 equivalent type 1

transformations.
Next, consider the paths in strain space which result

in PALI-strain transformations. Physically interesting
paths are the ones that achieve the transformation with
a minimum energy cost. Consequently, we define a PALI-
strain path, for a given 8, to be the path (or paths) which
have the lowest maximum energy, i.e., the the lowest en-

ergy barrier. A number of issues arise concerning PALI-
strain paths

(a) Most PALI-strain paths will be a sequence of other
PALI transformations, presumably with smaller distor-
tions. This is a consequence of the fact that for any
given crystal a superlattice can, in principle, yield a sig-
nificantly lower PALI-strain barrier (for example, treat-
ing a monatomic bcc crystal lattice as the diatomic B2
structure). If a crystal structure were treated in terms of
larger and larger superlattices, successively lower PALI-
strain barriers might result, owing to the increased num-
ber of relaxation parameters. Alternatively, this might
lead to other distortions, such as twinning.

(b) It is likely that PALI-strain paths pass through,
or near, other high symmetry structures. Some of those
structures may be metastable, and may have never been
identified before. By studying the energetics associated

with LLS such new structures can be identified, classified
and characterized in detail.

(c) The concept of PALI strains can be effectively em-

ployed in the study of LLS in general. Orie aim of this

paper is to indicate how this can be achieved for a pro-
totypical covalent solid, silicon. The previous two issues
also deserve further detailed exploration.

To facilitate parametrization, of a PALI-strain path, we

write the diagonal elements of a general strain tensor, in
the coordinates which diagonalize S, as

sii ——(1+f) ~ (1+g) 3,

s» ——(1+g) 3 (1+f)
-=(1+f)- (1+g)-

(3)

(4)

(5)

IV. PHYSICALLY-ALLOWED
LATTICE-INVARIANT
STRAINS IN SILICON

We have used a first-principles method based
on density functional theory in the local density
approximationi4 and atomic pseudopotentials 3 (LDF
for short), to calculate the energy associated with type 1
and type 2 PALI-strains in silicon. The results obtained
for type 1 strains have been reported elsewhere. The
stepping procedure described above was applied to type
2 PALI strains in silicon. This study revealed a local min-
imum in energy, indicating- the presence of a metastable
structure. The structure at the minimum, with a suitable
coordinate transformation, is seen to be body centered
tetragonal (space group I4mmm) with atoms occupying
the e sites (Wyckoff notation). is This metastable struc-
ture is described by three parameters, as shown in the
inset of Fig. 1. The values of the structural parame-
ters are a = 6.258 a.u. , b = 4.366 a.u. , and c = 11.264
a.u. Each atom is at the approximate center of a pyra-
mid with corners occupied by the five near neighbors,

Let f (g) correspond to the direction of maximum com-
pression (expansion). When f and g have the special
values fp and gp (—0.4398 and 0.7850, respectively, for
the type 2 strains in Table I), then s;; are the eigenval-

ues of S. In order to determine the PALI-strain path,
assuming that (f, g) are the most significant parameters,
we increase f or g in small steps &om (0,0) to (fp, gp).
At every step we keep the pair of values which produces
the smallest increase of the energy, while allowing for re-
laxation of the remaining structural parameters. These
are the off-diagonal elements of s, the volume (V) and,
if the crystal structure has more than one atom per unit
cell, the basis vector translation (t). This procedure may
not yield identical initial and final structures in every ap-
plication, except for the case of a monatomic lattice with
the oK-diagonal elements of 8 constrained to zero. How-

ever, if our procedure is applied to the various types of
PALI strains in a given system, including several choices
for the unit cell, then it is likely that a low energy PALI-
strain path will be obtained. We demonstrate this below
with the example for silicon.



1538 EFTHIMIOS KAXIRAS AND L. L. BOYER 50

four of them almost coplanar at a distance of 4.603 a.u. ,
and a fifth one at a distance of b = 4.366 a.u. We call
this structure bct5, after the body centered tetragonal
lattice and the fivefold coordination. The relaxed energy
is 34 mRy/(unit cell) above the ground-state energy (see
Fig. 1). The calculated elastic constants satisfy all the
stability criteria indicating that the bct5 structure is
elastically stable.

A different measure of stability is the &equency of long-
wave optical modes: these &equencies are 520 and 340
cm . In Fig. 1 we show the &equencies of the optical
modes as they evolve during the transition from the di-
amond structure to the bct5 structure, obtained by our
LDF calculations. The path shown here is the one defined

by a physically-allowed strain connecting directly the di-

amond lattice to the optimized bct5 lattice. One of the
modes (ut) becomes rather soft near the barrier config-
uration. However, this mode becomes again stiffer once
the bct5 structure is reached, suggesting that it is stable
once formed. All three optical modes should be degener-
ate at 0% strain and the two lower optical modes should
be degenerate at 50% strain. The deviations from degen-
eracy are a measure of the uncertainty in our calculations,

~ (mRy/unit cell)

50

25

i.e. , 50 cm . A short-wave (zone boundary) instabil-
ity would lower the energy without disturbing, to lowest
order, the underlying lattice, aside &om cell doubling
along the direction of the unstable wave vector. Such
distortions would further stabilize the structure against
returning to the diamond lattice. This, however, requires
a large change which, if it were to happen spontaneously,
would point to a long-wave instability. A LDF molecular
dynamics simulation might be useful to determine what
temperature is needed to destabilize the bct5 structure.

The electronic properties of the bct5 phase were also
studied, using our LDF approach. This phase is metal-
lic. In Fig. 2 we show the calculated density of states
(DOS) of the bct5 structure, and compare it to that of
the diamond lattice (the semiconductor ground state of
Si) and the high-pressure metallic phase, the P-tin lat-
tice. In this figure, the LDF DOS was obtained from a
set of 1074 independent points in the Brillouin zone of
the bct lattice, and a corresponding set of equal density
in reciprocal space for the other lattices. For compar-
ison, the dashed line for the diamond lattice is &om a
tight-binding calculation with much denser sampling of
the Brillouin zone that reproduces first-principles results
and is fitted to give the correct band gap. The metallic
character of the bct5 structure arises &om the fact that
the coordination of atoms (5) is higher than the valence

(4). Thus, not all bonds can have covalent character.
Our detailed studies of bonding in bct5 Si (Ref. 18) re-
veal that the four equal nearly planar bonds have metal-
lic character, while the one shorter bond (along the c
axis) is closer in nature to a covalent bond: this bond
has a charge distribution very similar to that of regular
covalent bonds in the diamond lattice. The P-tin struc-
ture on the other hand, has sixfold coordination, and
all bonds have metallic character. Thus, we find that
the bct5 structure is an intermediate phase between the

(o(cm )
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Magic Strain (%):diamond-bct5-diamond

FIG. l. Energy (upper panel) and optical mode frequencies
(lower panel) during the transformation from the diamond to
the bets phase. The physically-allowed strain path is one that
leads directly from the diamond lattice to the optimal bct5
structure. The inset (upper panel) shows the bct5 structure,
with the structural parameters indicated.
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Energy (eV)

FIG. 2. Density of electronic states for three phases of Si,
diamond, P tin, and bct5, obtained from LDF calculations
[the dashed line is from a tight-binding calculation (Ref. 17)j.
The bct5 and P-tin phases are metallic. The zero of the en-

ergy scale is the Fermi level (middle of the band gap for the
semiconducting diamond crystal).
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lowest-energy diamond lattice (coordination 4, semicon-
ductor) and the high-pressure P-tin lattice (coordination
6, metal), both in terms of geometric features (bct5 has
coordination 5) and in terms of electronic behavior (bct5
is metallic, but with lower DOS at the Fermi level than
the P-tin phase, see Fig. 2).

V. POSSIBLE EXPERIMENTAL FORMATION
OF BCT5 SILICON

tion; then, to etch a checkerboard pattern of troughs and
islands in a manner such that a 2% and 23% expansion of
the islands in the (7, —3, 7) and (1,0, —1) directions just
fills the troughs. Contact of an island with its neighbors
should stop the strain in the bct5 structure. Making the
islands small ( 1 pm), will tend to minimize deforma-
tion due to defect mechanisms. Moreover, applying stress
to the whole wafer will, in efFect, carry out experiments
for many samples simultaneously.

A physical transformation path from the diamond lat-
tice to the bct5 lattice can be obtained by applying the
formalism of Sec. III with A corresponding to the fcc lat-
tice and B corresponding to the bct lattice. We choose

5.08 5.08 0.00 )
A = 5.08 0.00 5.08 (6)

( 0.00 5.08 5.08 )
and

( 6.26 3.13 0.00 )
B = 0.00 5.63 0.00 (7)

0.00 3.l3 6.26

using the lattice vectors determined by LDF calculations
(in a.u.). The eigenvalues and eigenvectors of the re-

sultant S matrix give the diagonal strain tensor corre-
sponding to the physical transformation. Specifically,
the requisite strain is approximately a 33% compres-
sion along the (3,14,3) direction, a 23% expansion along
the (1,0, —1) direction, and a 2%%uo expansion along the
(7, —3, 7) direction, in the usual (cubic) crystallographic
directions.

In principle, bct5 silicon can be formed by applying
a suitable uniaxial compressive stress along the (3,14,3)
direction. In practice, the main difFiculty will probably
be the ability to control stress relief by defect formation,
which results in cracking. One way around this prob-
lem is to apply the stress too quickly for such defects to
form. The cracking problem might also be reduced by
starting, as closely as possible, with defect free material;
selecting the sample shape to be thin in the compression
direction; and using small samples, to minimize defect
formation. Assuming these problems can be overcome,
another difBculty will be to stop the strain at the bct5
structure: If the system has too much kinetic energy as-
sociated with LLS at the top of the barrier, then the
strain could pass through the bct5 structure, and onto a
PALI-strained (cubic) structure. A possible procedure to
overcome both these di%culties might be: to prepare erst
thin silicon wafers cut perpendicular to the (3,14,3) direc-

VI. SUMMARY' AND CONCLUSIONS

We have discussed the implications of LLS deforma-
tions in solids and analyzed in detail the concept of PALI
strains, which constitutes a useful tool for calculating
such deformations. We applied that concept to the case
of a prototypical covalent solid, silicon, and demonstrated
how it can lead to the discovery of new metastable phases.
The new phase of Si we found from application of PALI
strains has interesting structural and electronic proper-
ties. The PALI-strain analysis also provides a definite
prescription, through the eigenvectors of the strain ma-
trix, of how this phase can be produced experimenta11y.
We have discussed in detail speciFic methods for obtain-
ing this phase, starting from a properly prepared sample
of cubic silicon.

As a 6nal note, we suggest that PALI-strain calcula-
tions may be very useful in developing better empirical
interatomic forces for Si as well as other materials. The
interatomic potentials currently used in simulations are
often constructed without much consideration of LLS en-
ergetics and energy barriers. As a result, the potentials
are likely to be unreliable for describing properties like
the structure of the liquid state, deformations under pres-
sure, etc. For example, the Stillinger-Weber interatomic
potential for silicon (SW) was constructed to give rea-
sonable properties for the liquid state. Even so, it gives
approximately 6ve near neighbors in the liquid when
in reality there are on average a little more than six.2i'

This discrepancy is also related to the fact that the SW
potential overstabilizes the bct5 structure, which has five-
fold coordination: a bct5 structure optimized with the
SW potential is 14 mRy/(unit cell) higher in energy than
the diamond structure. This is only 40'%%uo of the energy
difference between the bct5 and diamond structures ob-
tained by our LDF calculations. Our results on the de-
formations of Si that lead to the bct5 structure can be
used as a guide for developing an improved form of the
interatomic Si potential.
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