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We propose a model that describes the diffusion-controlled aggregation exhibited by particles
as they are deposited on a surface. The model, which incorporates deposition, particle and cluster
diffusion, and aggregation, is inspired by recent thin-film-deposition experiments. We find that as
randomly deposited particles diffuse and aggregate they configure themselves into a wide variety of
fractal structures characterized by a length scale L&. We introduce an exponent p that tunes the
way the diffusion coefBcient changes with cluster size: if the values of p are very large, only single
particles can move, if they are smaller, all clusters can move. The introduction of cluster diffusion
dramatically affects the dynamics of film growth. We compare our results with those of several
recent experiments on two-dimensional nanostructures formed by diffusion-controlled aggregation
on surfaces, and we propose several experimental tests of the model. We also investigate the spanning
properties of this model and find another characteristic length scale L2 (L2 )) I i) above which the
system behaves as a bond percolation network of the fractal structures each of length scale L&.
Below L2, the system shows similarities with diffusion-limited aggregation. We find that L& scales
as the ratio of the diffusion constant over the particle Hux to the power 1/4, whereas L2 scales with
another exponent close to 0.9.

I. INTRODUCTION

Understanding the processes underlying the growth
of thin Elms has led to widespread interest, both &om
physical and technological points of view. Equilibrium
(thermodynamic) models have been developed and ap-
plied with some success to the 61m-substrate system. '

However, improvements in experimental techniques
such as scanning tunneling microscopy —permit the in-
vestigation of atomic details of the embryonic submono-
layer stages of nanostructure 61m growth, and recent ex-
perimental works ' have recognized the importance of
out of equilibrium--(kinetic) effects on the formation of
the observed morphologies.

Addressing such out-of-equilibrium effects is important
if one is to be able to control the morphology of sub-

monolayer nanostructures. One might consider the use of
the percolation model to describe certain experiments of
surface deposition. However, percolation assumes that
particles do not diffuse after being deposited, when in
fact not only diffusion but also aggregation of the diffus-

ing particles takes place. There exist models of diffusing
particles that aggregate, but such "cluster-cluster aggre-
gation" (CCA) models do not allow the continual in-
jection of new particles via deposition. Here we develop
a model that incorporates the three physical ingredients
of thin-film growth: deposition, diffusion, and aggrega-
tion (DDA). Similar models that neglect the shape of the
islands or the possibility of cluster diffusion were studied
independently. We introduce the possibility of cluster
diffusion and we also investigate the spanning properties
of the system. These two topics have been neglected in
previous studies of similar models. ' The importance of

these novelties, from both the experimental and theoret-
ical points of view, will be explained in the subsequent
sections.

We show in the following that the DDA model gener-
ates a wide variety of &actal structures characteristic of
different models such as percolation, 4 diffusion lim-
ited aggregation (DLA), 'i or CCA. The introduction
of cluster diffusion moves this model away from the uni-

versality class of previous models with the introduction
of new scaling exponents. Moreover, it leads to an ex-

ponential increase in the mean cluster size as a function
of time, whereas in other growth models ' this depen-
dence is a power law.

II. MODEL DESCRIPTION AND
JUSTIFICATION

The DDA model is defined as follows (Fig. 1).
(1) Deposition. Particles are deposited at randomly

chosen positions of the surface at a Hux I' per lattice site
per unit time.

(2) Diffusion. All particles and clusters (sets of con-
nected particles) are chosen at random and attempted to
move north, east, south, or west by one lattice constant
per unit time. The probability that they actually move
is proportional to their mobility, which we assume to be
given by D, = D~s ~. Here s is the number of parti-
cles in the cluster, Dq is the diffusion coefIicient for a
monomer (s = 1), and the parameter p characterizes the
dependence of D, on cluster size.

(3) Aggregation If two particles co.me to occupy neigh-
boring sites, they (and, therefore, the clusters to which
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(b) (e)

FIG. 1. Schematic representation of the basic processes
considered in this model: (a) deposition, (b) and (d) par-
ticle diffusion, (e) island diffusion, and (c) aggregation. (b)
corresponds to nucleation [i.e., a new island (c) is created]
while (d) corresponds to growth of an already existing island
(see the text for details).

they belong) stick irreversibly.
We call particles the isolated atoms (or monomers) that

are deposited on the surface, clusters any set of connected
particles (including the monomers), and islands the clus-
ters containing more than one particle. Physically, two
competing mechanisms are introduced in the model, each
one with its own time scale: deposition and diffusion. It
is useful to introduce the normalized Qux defined as the
number of particles deposited per unit site per digusion
time 7, where 7. is the mean time needed by a monomer to
jump by a lattice site. The monomer difFusion coefBcient
is then given by Dq ——1/(4r), and the normalized fiux by

P = Fr. Then, from experimental values of F and Dq it
is possible to calculate P and the morphologies predicted
by our model. The program actually calculates a prob-
ability for dropping a particle: ps, ~

——PL /(PL + N, ~)

where L is the system size and N, ~ is the total number
of clusters present in the system. A random number p
is chosen and compared to pp«~. If p ( pQ«p a par-
ticle is added at a random position on the lattice. If
p & pQ p a cluster or a particle is chosen at random and
attempted to move. In both cases, the time is increased
by r/(PL2+ N, )).

Some remarks on the assumptions of this simple model
regarding its connection to the experiments are now ad-
dressed.

(1) Island diffusion. Experimentally, two cases have
to be distinguished concerning island difFusion. For epi-
taxial systems [as obtained in molecular beam epitaxy
(MBE)), it has been argued that clusters larger than the
dimer are practically immobile. This case can be mod-
eled by taking a large value of p (typically 10). For
nonepitaxial systems, the situation is less clear. Ex-
periments on metal deposition on ionic substrates have
shown that the diffusion coefBcient of clusters of size N
varies as D~ = DON ~, exp( —E /k~T) which gives

2/3, ~s and that clusters containing several hun-
dredths of particles can move on the substrate.
Moreover, studies of deposition of compact, preformed
large molecules containing more than 1000 atoms have
shown that these large molecules do disuse on the sur-
face at room temperature. ' Therefore, in order to keep
the DDA model as close as possible to experiments and as
general as possible, we include a tunable parameter p that
characterizes the dependence of a cluster diffusivity on its
size. Clearly, the experimental situations where cluster

difFusivity is expected to be negligible can be modeled by
choosing a large p. Another point should be made about
the diffusion mechanism of the large clusters in the DDA
model. It seems clear that, even in systems where large
clusters do diffuse, the diffusion is not rigid, in the sense
that the cluster may change its internal structure to be
able to move. Several tentative possibilities for these dif-
fusion mechanisms are given in Ref. 1. This results typi-
cally in compact shapes for the clusters [see also remark
(3) concerning edge difFusionj. In this sense, the rigid
diff'usion mechanism assumed in the model is not realis-
tic for large clusters diffusing on surfaces. Rigid difFusion
might be interesting in other contexts, such as colloids.
However, for small clusters containing less than 10 sites,
the clusters are rather compact and it can be speculated
that the deformations needed to move do not significantly
alter their shape: then the DDA model should repro-
duce well the effects of the difFusion of small clusters.
From the theoretical point of view, it is interesting to
find out whether the introduction of cluster diffusion in-
troduces new universality classes as compared to previous
models ' which can be described by the "rate equations"
(see Sec. III).

(2) Second layer. When a particle "falls" on top of
another particle (i.e., is deposited in an already occupied
site), we assume that the particle deposited on the second
layer has no effect on the system. This means that the
model is mainly suited for experimental systems where
(i) there is a barrier at the edges of the (first layer) clus-
ters which prevents single particles from falling on the
substrate. The existence of such a "Schwoebel" barrier
has been suggested in the study of terrace formation
and/or (ii) particle diffusion on the second layer is much
smaller than diffusion on the substrate. This may hap-
pen because second-layer particles diffuse on a substrate
formed by particles of the same element, while first-layer
particles difFuse on the substrate, which is generally made
up by another element.

(3) Edge diguaion. The difFusion of the adatoms that
reach the already formed clusters is neglected in the
present "zeroth-order" model, i.e., as specified in (c),
particles stick irreversibly upon contact. Indeed, at low
temperatures edge difFusion is probably not relevant, due
to the higher activation energy for the edge diffusion in
comparison to the "simple" surface diffusion. However,
at higher temperatures, edge diffusion may infIuence the
cluster morphology. We intend to take into account edge
diffusion in future work on this model.

It should be stressed that this is only a zeroth-order
model which has the ambition to give a feeling on the rel-
ative influence of deposition and diffusion on the growth
properties of films. Details specific to certain experimen-
tal systems, such as the existence of the Schwoebel bar-
rier, the precise dependence of cluster diffusion on size,
etc. , are not carefully taken into account since we want
to keep the DDA model as general as possible. We could
focus on detailed models specific to precise experimen-
tal systems: for example, we could include anisotropic
difFusion 4 for Si-on-Si(001), but this is not our pur-
pose here. We only wish to capture the essential physical
ingredients involved in most deposition experiments (in
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this case: deposition, diffusion, and aggregation) and try
to understand the influence of each.

In the following section, we investigate briefly the way
the particles deposited on the substrate aggregate, and
the morphologies generated, in the case of large systems
where 6nite-size effects are negligible. We compare our
results to those obtained in previous models ' where only
monomers difFuse.

III. DYNAMICAL EVGLUTIQN

A. Simulation results

We give here a brief presentation of the growth proper-
ties of the model. Figure 2 shows snapshots of the system
at four different coverages for a normalized Aux 10, a
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FIG. 2. Morphologies obtained for a normalized flux I|I = 10, a system size L = 500 and p = 1. Four different coverages
(corresponding to four different times of deposition) are shovtIn: (a) coverage 0.02, (b) coverage 0.15, (c) coverage 0.35, and (d)
coverage 0.43 (spanning paint)
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system size L = 500 and p = 1. The coverage is defined
as the ratio of the number of occupied sites to the to-
tal number of sites on the surface. At very short times
(8 ( 0.001), mainly monomers (isolated particles) are
found on the substrate, since they did not yet meet an-
other one to form a cluster [Fig. 3(a)]. Later, small clus-
ters are homogeneously grown on the surface [Fig. 2(a)],
and the island density (i.e., the number of islands per lat-
tice site) starts to grow [Fig. 3(a)]. These small clusters
can be considered, loosely speaking, as the "nucleation
centers" for the growth. As time increases, large clus-
ters (henceforth called "blobs") grow on these nucleation
centers, because of the diffusion of the clusters and also
by addition of single particles [Fig. 2(b)]. It is interesting
to characterize the morphology of the clusters by mea-
suring their "effective" fractal dimension as a function of
the coverage. This effective &actal dimension is obtained

by plotting, for each cluster, its gyration radius versus its
mass (number of sites): the effective fractal dimension is
defined as the inverse slope of a linear fit to these points
(see Ref. 17). From Fig. 2(a) to Fig. 2(b), the effective
&actal dimension of the clusters increases from 1.45 to
1.65 [Fig. 3(b)]. This is so because at the beginning, the
growth mechanism is very similar to the first stages of
CCA, where clusters meet on a surface by pure diffusion.
Thus the effective &actal dimension of the clusters is ex-
pected to be close to that measured in CCA (1.45—1.5,
see, Ref. 17). As time increases however, larger clus-
ters are grown whose diffusion is considerably reduced
according to the D, = Dqs ~ law. Then, the main mech-
anism governing cluster growth is the addition of single
particles. Thus the clusters tend to resemble DLA clus-
ters, which are built only by addition of single particles.
Therefore, their effective fractal dimension goes up to
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FIG. 3. (a) Densities of monomers and islands (clusters containing at least two particles) as a function of the coverage.
These curves were obtained for a normalized Sux P = 10 and a system size L = 1000. (b) Fractal dimension of the clusters
as a function of the total coverage for a normalized llux 4I = 10, and a system size L = 1000. For each cluster, we plot its
gyration radius versus its mass (number of sites): Dr is deSned as the inverse slope of a linear Bt to these points (see Ref. 17).
The solid line indicates the crossover between the three "asymptotic" regimes. (c) Scaling of island and monomer densities
according to Ref. 3 for P = 10, 10,10, 10, 10, and 10 . The scaled coverage is de6ned as 8/[ItIlog~o(28/P)] ~

and the scaled density as N;,&/[@log~a(28/I|I)] . (d) Dependence of the maximum island density (number of islands divided
by the total number of sites of the substrate) on the normalized aux. The circles represent the case p = 1, while the squares
show the densities obtained when only monomers diff'use.
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1.65, very close to the &actal dimension of the DLA clus-
ters. This (DLA-like) growth mechanism goes on until
the linear dimension of the clusters becomes comparable
to the separation between them, and the effective fractal
dimension of the clusters stays close to 1.65. When the
cluster radius becomes comparable to the separation be-
tween them [Fig. 2(c)], many particles start to fall inside
the clusters and their effective fractal dimension rapidly
increases [Fig. 3(b)]. Large clusters are built up by dif-

fusion of the blobs and the blobs become denser by the
addition of particles inside them. Eventually, a cluster of
a size comparable to the system size is built and the sys-
tem spans [Fig. 2(d)]. At that time, the effective fractal
dimension of the spanning cluster reaches a value close to
1.9 [Fig. 3(b)]. The continuous increase of the effective
fractal dimension seen in Fig. 3(b) can be explained by
introducing three asymptotic regimes, each with a well-
defined Fractal dimension: CCA (1.45), DLA (1.7), and
percolation (1.9). Asymptotically, for very low fluxes,
one expects rapid jumps between these values of Dy as
the coverage increases. For the flux investigated in Fig.
3(b), the finite size of the blobs results in a continuous
variation of the effective &actal dimension. This analysis
is supported by the fact that sharper jumps are observed
for lower values of the normalized flux where the blobs
are larger (P = 10 s, not shown).

B. Discussion

We now attempt a brief analysis of the previous results
in the &amework of preceding studies. '

Scaling with the flux Tangs h. as analyzed the growth
mechanisms of his model in the &amework of the "rate
equations, " a mean-field approach where islands are
treated as point objects and only monomer diffusion is
allowed. This analysis leads to scaling relations of the is-

land and monomer density as a function of the coverage
for different fluxes. ' Particularities of random walks in
two dimensions introduce logarithmic corrections. The
modified scaling relations are in agreement with the nu-

merical results only at small times, when the shape of
the islands is unimportant. At small times, the islands
are separated by a distance much larger than their ra-
dius; this explains that they can be treated as "point"
objects. We also expect these scaling relations to apply
to our simulations at early times, when the efFects of is-

land difFusion are negligible. Figure 3(c) shows that,
indeed, the scaling relations are well verified by our nu-

merical results too. However, we note that the range of
agreement is smaller than the range found in Ref. 3. The
analysis using the rate equations do not represent a sat-
isfactory treatment for higher coverages, even for models
without cluster diffusion, for many different reasons: the
shape of the islands, the correlations in particle positions,
the coalescence of the islands among others.

Maximum cLuster density. A calculation for the max-
imum number of islands that takes into account their
&actal dimension has been proposed. We now show that
this formula does not apply to the DDA model, certainly
because of cluster diffusion. According to Ref. 3, the

maximum island density N „scaleswith the flux as

1V

where

& = 2/(4+dt) (2)

and dy is the fractal dimension of the islands. Figure 3(d)
shows that indeed a power law fits our results quite well.
However, the &actal dimension that the value of the ex-
ponent implies (dt = 0.8) is unphysical. This means that
the analysis of Tang is not suited for our model where is-
lands diffuse. Instead, Villain et al. have calculated the
value of the exponent when dimers are allowed to dif-
fuse. They find ( = 2/5, which is very close to our value
of ( = 0.42. It is interesting to note that the importance
of cluster diffusion had already been pointed out by Stoy-
anov et al. long ago. They noticed that: "At present,
there is considerable experimental evidence that, under
favorable conditions, dimers, trimers, and even clusters
with diameters up to 50—100 A. can migrate on the sub-
strate as entities. This random motion of the clusters
may be an important factor in the overall kinetics of thin
film growth (...). For instance, in Sec. 6 we saw that,
owing to cluster migration, at higher temperatures the
saturation cluster density can be lower than expected
from growth coalescence of immobile clusters. " This is
precisely the effect that we observe in the present model.

Coverage at maximum island density. There is another
difference with the case where only monomers are allowed
to move. Tang points out that the maximum density of
islands should take place for a roughly constant value of
the coverage, since the number of islands starts to de-
crease only when they start to coalesce. This can only
be achieved, in systems where cluster mobility is absent,
when islands occupy a significant fraction of the total
area, i.e. , at constant coverage (Tang takes the value

0.25). We have checked that this is actually a reason-
able assumption. Cluster diffusion modifies the situation
dramatically as is shown in Fig. 4. Here, the maximum
number of islands is obtained for coverages that change

by more than a factor of 100! This is understandable
since now cluster diffusion allows island coalescence even
at the first stages of growth. We stress that this dramatic
modification of the dynamical evolution of island density
only requires small cluster mobility, since for the cover-

ages where the island density reaches its maximum, the
mean cluster size is around 10. This can be checked from

Fig. 4 by noting that, by definition of the mean island size

S, one has the relationship S = (0 —N „)/%;,i which
implies S ( 0/N;, i. Then, this particular island evolution
should be observed in many experimental systems, since
it only requires that small clusters can move.

Mean cLuster size. Another discrepancy with the rate
equation analysis is the following: it is expected that the
mean island size increases roughly as a power law of the
coverage. Bartelt and co-workers actually find an expo-
nent close to 2/3. We have checked that this is indeed
the case when only monomers diffuse (p = oo). Instead,
in the DDA model, for p = 1, we find that the mean size
of the cluster distribution increases exponentially with
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FIG. 4. Island density as a function of the coverage for
several values of the normalized 6ux (p = 1). The value of
the coverage for which the island density reaches its maxi-
mum changes dramatically with the fiux, passing from 0.3 for

P = 10+ to 0.0001 for P = 10

coverage (Fig. 5). A possible explanation is that here the
mean island size not only increases by single particle ad-
dition, which would be consistent with a power law, but
also by cluater coalescence, even at the early stages of the
growth. Then one could argue that the increase of the
island mean size is proportional to the actual size of the
island, generating an exponential increase. This expo-
nential increase is very peculiar since usually, in growth
models ~ power laws are found, for example in the CCA
model.

Ezperimentat tests of cluster mobility. We have seen in
the previous paragraphs that the introduction of cluster
diffusion leads to dramatic efFects that were not previ-
ously studied and could be investigated experimentally.
It is interesting to note that these dramatic effects are
expected even if only small clusters can diffuse. Speci6-
cally, we think of three difFerent possibilities: (i) Measur-
ing the mean cluster size as a function of the coverage.
A power law dependence would be compatible with ex-
clusive monomer diffusion, whereas an exponential de-
pendence would reveal that large clusters can diffuse.
(ii) Similarly, it would be also interesting to study the
dependence of the maximum island density on the de-
position parameters (Bux, temperature) and to compare
them with the different models. (iii) An even more inter-
esting test would be to study the island density as a func-
tion of coverage for low normalized fluxes (typically less
than 10 s): if the maximum is reached only at roughly
a coverage of 0.2, this indicates that only monomers can
move. On the contrary, if this maximum is reached for
smaller values of the coverage and if this coverage be-
comes smaller as the Qux decreases, then we guess that
cluster difFusion has to be taken into account. We believe
that this last test is realistic since the precise morphology
of the clusters (compact or fractal) is not relevant here
since we only deal with small clusters.

To summarize this section, we have found that at
short times "nucleation centers" separated by a typi-
cal distance grow on the substrate. Then, blobs grow
on these nucleation centers and the fractal dimension of
these blobs increases monotonically &om 1.5 to 1.9 as
time increases until the percolation threshold. We have
demonstrated that other dynamical analysis than that of
the rate equations are needed to account for these re-
sults and we have proposed experimental tests that can
show whether cluster diffusion is relevant to each specific
experimenta1 system.

IV. PROPERTIES AT SPANNING
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FIG. 5. Mean cluster size as a function of time for a nor-
malized Sux P = 10, and a system size L = 1000 (p = 1).
The mean size is de6ned as (s) = P sN, /N, where N, is the
number of clusters containing 8 particles. It can be seen that,
for coverages larger than roughly 5%, the cluster mean size
increases exponentially with time.

It is dear that the properties of the system at the
spanning point are the result of the growth processes
studied in the preceding section. The focus on the per-
colation threshold is important both &om experimental
and theoretical points of view. Experimentally, the per-
colation threshold is a fundamental quantity for inves-
tigating the growth mechanisms of thin films prepared
by deposition. As an example, Hashimoto and Hohara
used the percolation threshold —as measured by conduc-
tance measurements —to systematically study the influ-
ence of the experimental conditions on the growth prop-
erties of antimony thin films. The percolation thresh-
old also indicates the metal-insulator transition at which
metallic thin films show an anomalous optical behavior.
For a more comprehensive discussion, see the review by
Smilauer. Thus, experimentally, it seems very impor-
tant to focus on the properties of the system at the per-
colation threshold. Prom the theoretical point of view, it
is interesting to find out how diffusion affects the widely
used percolation model, in which particles are deposited
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on a surface but are not allowed to move. Our study
shows that cluster diffusion significantly changes the per-
colation picture at criticality by introducing two typical
length scales.

We find that, for a fixed flux, the morphology of the
system at the spanning point changes as a function of
the system size. We define the spanning time (or span-
ning "point") as the first time at which a cluster spans
the whole lattice, i.e. , contains sites on every column (we
use periodic boundary conditions). Figure 6 shows the
dependence of the total coverage OT and the spanning
cluster coverage &pc as functions of the system size at the
spanning time. (We define the spanning cluster coverage
as the number of sites of the spanning cluster divided by
L2.) We find three characteristic regimes, delimited by
two crossover length scales Lq and L2'. we will see later
that Lq is related to the characteristic diffusion length of
a single particle on the surface, while L2 emerges from
the competition between deposition and cluster diffusion.
The dependence of these two length scales with the nor-
malized flux is studied in Sec. IV D.

Much of the knowledge about the behavior of the
model at the spanning point can be summarized by the
following picture [Fig. 7(a)]. We find that the system
at the spanning time is equivalent to a bond percolation
network of blobs, where the blobs are clusters of a typical
length Lq and a fractal dimension that depends on the
system size. This can be seen in Fig. 7(b) where the ratio
Opc / OT is plotted for many different fiuxes as a func-
tion of the efFective system size L/I i All the d. ifferent
curves obtained for the different fluxes fall into a single,
universal curve when rescaled by the "natural" length
unit Lq. We argue that, for all the different fluxes, the
systems at the spanning threshold are made up by blobs
of a linear dimension Lq that depends on the flux but
with the same &actal dimension. The fractal dimension
of the blobs does depend on the system size. The total
coverage is given by

where m is the mass (number of sites) of a blob and nT'

is the total number of blobs present in the system, which
is proportional to the size of the system (nbT' ——nLz).

By definition of the fractal dixnension, m = MOL&
D, (r.)

where Mo is a constant. Similarly, the coverage of the
percolating cluster is given by

ilpc(L) =
z o''pc(L, Ll)m /I z MoL,

where np& is the number of blobs connected to the span-
ning cluster and P is the ratio of blobs that are connected
to the percolating cluster to the total number of blobs.
Figure 7(b) demonstrates that P is independent of the
system size properly scaled by Lz, i.e. , that the systems
generated for different fluxes are similar in this sense.
Next we study how the system size affects the precise
morphology of the blobs, i.e., affects their number and
their fractal dimension.

A. Regime I: "Particle diffusion regime"
(L ( Li)

In this regime, only one cluster is present in the sys-
tem. This fact is seen in Figs. 8 (a) and (b) and is also
supported by Fig. 6: the total and spanning cluster cov-
erages are superposed. Since the characteristic diffusion
length of a single particle Lq is larger than the system size
L, every deposited particle attaches to the already exist-
ing cluster before the next particle is deposited. At short
times, the cluster is small, and virtually all the particles
are deposited outside the cluster and reach it by Brown-
ian diffusion, so we expect that the cluster should have
features in common with DLA. Indeed, at short times, we
find that the cluster resembles DLA [Fig. 8(a)]. Its fractal
dimension, measured by the sandbox method is found
to be 1.7, in agreement with the expected value for a DI A
cluster. At longer times, when the size of the cluster be-
comes comparable to the system size, a larger fraction of
particles are deposited inside the cluster. Therefore, the
model cannot be precisely the same as DLA, e.g. , at the

I
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FIG. 6. Total coverage (opeu symbols) and
coverage of the spanning cluster (full sym-
bols) at the spanning time as a function of
the system size L for three different values of
the normalized flux P: 10,10, aud 10
The arrows indicate the values of the two
length scales Lq aud I2 for P = 10 . The
line on the right indicates the slope —0.11
that would be expected in the percolation
model for the density of the spanning clus-
ter as a function of L.
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time of spanning, almost all new particles are deposited
inside the boundaries of the cluster [cf. Fig. 8(b)].

B. Regime II: "Cluster diffusion regime"
(L &L&L )

age. The reason for this is that the diffusion length is
now smaller than the system size, so that several clusters
nucleate on the surface. The spanning cluster is mainly
built by the accretion of the diffusing blobs [Fig. 8(d)].
Moreover, we 6nd that the &actal dimension of the blobs
increases as the system size increases [Fig. 9].

Now several clusters are present in the system, as can
be seen in Figs. 8(c) and (d). This can also be inferred
&om Fig. 6: at Lq the curves for the different coverages
split, indicating that, in addition to the spanning cluster,
there are other clusters contributing to the total cover-

C. Regime III: "Percolation regime" (L ) Lq)

At short times, many clusters are present in the system
[Fig. 8(e)], and, as the system is bigger, their number is

S
%~Re

R
$%&&Ã

I

&+3 (L1=3)

0.0 ~~.—

0 -3
& -3.4

-0.3

-1.0
I
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1.0
L*FA(1/4)

I

2.0 3.0

FIG. 7. (a) Schematical picture of the blob model for the system at the percolation threshold. (b) Ratio of the spanning
cluster coverage to the total coverage versus the scaled system size. A value Lq ——3 has been taken for the curve I" = 10+ .
We use here the scaling relation Lz P [Eq. (7)] which is investigated in Sec. III D.
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higher than in regime Il. As time increases, bigger clus-
ters are formed both by the connection of clusters that
difFuse and by the addition of single deposited particles.
At the spanning time, the system resembles a percola-
tion network [Fig. 8(f)]. This resemblance is supported
by the fact that, in this regime only, we hand behaviors
characteristic of a percolation system. For example, the
slope of the spanning cluster coverage as a function of

the system size becomes close to —0.11 (Fig. 6) as pre-
dicted by percolation. Moreover, we 6nd that only in
this regime, the mean square deviation b

(where the average is taken over many diff'erent config-
urations) varies with the system size as b L ~~" with
v 1.3, [Fig. 10(a)] which is in good agreement with the

(b)

FIG. 8. System morphologies in the three regimes: (a) and (b) regime I; (c) and (d) regime II, (e) and (f), regime III.
Regime I (system size smaller than Lq): shown are two stages of the growth for P = 10 (Lq 500) and L = 200. (a) Total
coverage=0. 02 (b) spanning point: total coverage=D 27 Regime II .(sy.stem size between Lq and Lz): shown are two stages of
the growth for P = 10 (Lq 90 and Lz 10 ) and I = 300. (c) Total coverage=0. 1, (d) spanning point: total coverage=0. 31.
Regime III (system size larger than Iz): shown are two stages of the growth for P = 10 (Lq 17 and Lz 36) and L = 300.
(e) Total coverage=0. 1 (f) spanning point: total coverage=0. 49. For all six figures, we choose p = 1.
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FIG. 8 (Continued)

exponent 4j3 predicted by percolation. 4 The total cover-
age also changes as predicted by the percolation model:
linearly with b for L ) L2. p, (L) —p, (oo) b [Fig.
10(b)].~4 Thanks to this analogy with the percolation
model, we can extrapolate the values of the coverage to
infinite systems. According to the "blob picture" [Fig.
7(a), Eq. (3)], the total coverage at spanning for an infi-
nite system should scale as

p.(~) -I„'' - S'('- t l~', (6)

where we have used the scaling law [Eq. (7)] to be stud-
ied in Sec. IVD. From the simulations, we can estimate
p, (oo) as the intercept with the vertical axis for b = 0 in

Fig. 10(b). Figure ll(a) shows that indeed the total cov-
erage for an infinite system scales with the Bux according
to Eq. (6) and the slope of Fig. 11(a) gives Df (oo) = 1.92,
in good agreement with the fractal dimension of percola-
tion clusters (Df = 1.89). The fractal dimension of the
blobs can also be investigated directly using the sand-
box method. ~7'2s Figure 11(b) shows the density of the
spanning cluster as a function of the box size l for sev-
eral Huxes. It can be noticed that the plots indicate the
existence of two regimes: for 3 & l & L', the curve is a
straight line, while for / & L', the density is Grst roughly
constant and then decreases rapidly. The explanation is
as follows: for l & L', we see the structure of the blobs.

CO
C
tD
U

cl 05

-0.6 — c o L=316 Df='1.84
o L=1000 Of=1.89

FIG. 9. Fractal dimension of
the spanning cluster obtained
by the sandbox method (Ref.
17) for four ditferent system
sizes and a normalized fiux

P = 10 . The spanning clus-
ter is fractal up to a length
scale Lf which remains ap-
proximately constant when I
changes, but its fractal dimen-
sion continuously increases as L
increases.

.0
I I I

2.0
log (system size)

3.
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For larger t we should see the structure of the spanning
cluster. However the latter is hidden by finite-size eH'ects.
From the small t behavior, we infer that the &actal di-
mension of the blobs for a very large system (I = 1000)
is about 1.9+0.03 which is in very good agreement with
the value found from Fig. 11(a). Thus, we find from these
two measurements that the fractal dimension of the blobs
in the percolation regime is similar to the fractal dimen-
sion of percolation clusters (Df. = 1.89). The reasons
for this agreement are not clear. From Figure ll(b) we
also check that the linear dimension of the blobs (L') in-
creases as I" decreases. Actually, we find that L' is equal
to the Li delned previously.

D. Phase diagram

Figure 6 shows results obtained for Huxes
10, 10, and 10, but similar results have been ob-
tained for the other Huxes we have studied (10 s ( P (
10+s). We find that a change of the Hux afFects the val-

ues of the two crossover lengths Lq and L2. We have
determined Li and L2 for several fluxes: the results are
presented in Fig. 12. The dependence of Lq on P can be
understood by noting that the time needed by a single de-
posited particle randomly diffusing to explore the whole
system is proportional to the system area and inversely
proportional to the difFusion coefficient, td;0 L /Dq
By definition of the flux, the average time at which an-
other particle is added to the system is t&,p

——1/(FL ).
If tQ ff (( Cd p the particle has sufFicient time to explore
the whole system (and, therefore, find an already existing
cluster) before another particle is added. Consequently,
a single cluster is built. If tg;ff )) tg, &, the particle Gnds
another deposited particle before having had time to ex-
plore the whole system. Then several clusters are formed:
this corresponds to regime II. The crossover between the
two regimes occurs when these two times become com-
parable. This occurs for

0

C QF
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w F
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V-—~ F
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0.55
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FIG. 10. (a) Log-log plot of 6 (mean
square deviation of the total coverage at
spanning) vs the system size. A linear re-
lation is expected for percolation (Ref. 14).
This linear relation is observed only for sys-
tems larger than L2. The solid line shows
the slope expected from the percolation the-
ory: 1/v = 3/4. (b) Variation of the total
spanning coverage as a function of its mean
square deviation for diferent system sizes. A
linear dependence, characteristic of percola-
tion, is only found for L ) L2. The intercept
of the straight part of the plot with 8 = 0
gives the spanning threshold for an infinite
system (Ref. 14).
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where gi ——1/4 in excellent agreement with the numer-

ically obtained exponent of 0.24 6 0.02 (Fig. 12). Li
can be interpreted as the length scale determined by the
competition between particle deposition (t~,~) and single
particle difFusion (tsdr).

The second length scale L2 also scales with the flux,

where g2 ——0.9 + 0.2 for p = 1. We find that $2 de-

creases as p increases, unlike @i which is independent
of p. To uncover a physical interpretation of L2, we fix
the flux and change the system size. For spanning to
occur, we must grow a cluster of size comparable to the
system size. If the system is large, the clusters become
large and, therefore, their diffusion coefBcient becomes
extremely small. In this limit, deposition dominates and
connects the system in a percolationlike way. For smaller
systems, the clusters are also smaller; they can move and
connect one another to build clusters of sizes comparable
to that of the system. Then diffusion dominates the con-

nectivity of the system. The boundary between these two
system sizes is set by L2. Then, I2 can be interpreted as
the length scale determined by the competition between
particle deposition and cluster diffusion. This analysis is
supported by the fact that the second crossover L2 is not
observed when only single particles are allowed to move,
thereby suppressing the possibility that the connections
are made by cluster difFusion.

Based on the previous results, we may now construct
a "morphology phase diagram" that serves to character-
ize the morphology of the system at the spanning time
in terins of the two tuning parameters L and P (Fig.
12). The three regimes, I—III, are delineated by the two
crossover lines, Li(P) and L2(P), which intersect at a
"critical point" whose coordinates, (P„L,), depend only
on p. Thus for a 6xed system size L, two situations can
arise, depending on the value of p. (i) If L « L (p),
then the system shows a direct transition &om the sin-

gle cluster regime to percolation as the normalized flux

P increases. (ii) If L )) L,(p), then regime II can also be
observed for intermediate values of the normalized flux.
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FIG. 11. (a) Spanning threshold for an
infinite system versus the normalized Bux.
From the slope of the best fit and Eq. (6), we

deduce the fractal dimension of the blobs for
an in6nite system: 1.92. (b) Sandbox (Ref.
17) density plots of the spanning clusters ob-
tained for a system size L = 1000 and sev-
eral Suxes. The curves are shifted for a bet-
ter visualization. L' is obtained as the maxi-
mum of the derivative of c(l), i.e., the value of
the derivative that is closer to 0. This would
correspond to a constant value of c(l) which
would be ideally obtained if no finite-size ef-

fects were present.

-0.8

-1.0
0.0

= F=10-5, Df=1.89, L'=51
- F=10-6, Df=1.92, L'M5

I

1.0
log {I}

2.0 3.0



15 328 JENSEN, BARABASI, LARRALDE, HAVLIN, AND STANLEY 50

I
I

CO 1.5—

1.0

&~iil". R
~Yj$~I =p.lf]8

I Aid

~4e~i ltd'WII&Ms~iv "ii

-7.I'.I - 'I ~ I."I

oc ~', ~or —aizec =ux',
i

FIG. 12. The (p, L) phase diagram for p = 1. Shown is the dependence on normalized flux of the two length scales L& (fuii
circles) and Lz {open squares). The lines separating the three regimes I—III have been obtained by linear fits of the data f'or
Lz (slope @i ——0.24 y p.p2) and Lz (slope @2 = 0.9 6 0.2). The arrows indicate the critical values p, snd L, The insets . show

typical morphologies for each regime.

V. DISCUSSION AND CONCLUSION

In summary, we have proposed a model that describes
the diffusion-controlled aggregation exhibited by parti-
cles as they are deposited on a surface. The model,
which incorporates deposition, particle and cluster dif-

fusion, and aggregation, is inspired by recent thin-film-
deposition experiments that use a low-energy cluster
beam deposition (LECBD) technique. i We find that the
model permits one to distinguish the effects of deposition,
diffusion and aggregation, and that tuning the relative
strength of, e.g. , deposition and diffusion, generates a rich
range of morphologies —including diffusion limited aggre-
gation, cluster-cluster aggregation, and percolation. The
length and time scales characterizing these morphologies
depend on such experimentally controllable parameters
as deposition Qux and diffusion constant, raising the pos-
sibility that the model may prove useful in future studies
seeking the controlled design of nanostructure morpholo-
gies. We can argue that the DDA model is suited for (i)
MBE by taking large p values, (ii) other deposition ex-
periments where edge diffusion is absent: the structures
obtained in Figs. 8(c) and (e) (low coverages) resemble
some experimental images obtained by LECBD (see Fig.

3 of Ref. 21, and Fig. 1 of Ref. 22) on substrates held
at low temperatures, (iii) all the dynamic properties re-
lated to small cluster diffusion on surfaces such as those
presented in Sec. III. (iv) Rigid large-cluster diffusion
is not realistic for clusters on surfaces: the investigation
of its effects (Sec. IV) at the spanmng point, resulting
in the new phase diagram may be interesting for other
experimental systems such as colloids.

Note added in proof. After this work was submitted,
Bales and Chrzan published a clear study of modified
rate equations.
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