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By means of a Green-function, volume-integral-equation approach we study numerically the scattering
of a surface plasmon polariton at a planar vacuum-metal interface by dielectric and metallic defects that
are either embedded in the metal substrate or are situated in the vacuum region on the substrate. We
calculate the transmission and re6ection coeScients for the surface plasmon polariton, as well as the
eSciency of its conversion into volume electromagnetic waves in the vacuum propagating away from the
surface. %'e also compute the near field in the vicinity of the surface defect.

I. INTRODUCTION

The theoretical study of the scattering of surface waves
by a surface defect had its origins in the work of Dean'
and Ursell, ' who showed that a surface wave incident
normally upon a rigid circular cylinder submerged in an
incompressible fluid of infinite depth passes over the
cylinder with a change of phase but without a change of
amplitude, and experiences no reflection, whatever the
frequency of the incident wave, for any values of the ra-
dius and depth of the cylinder.

Subsequently, Levine extended this work to the case of
oblique incidence, by the use of approximate methods in
the limit of a small radius of the cylinder, and shoeed
that in this case a partial refiection of the surface wave
usually occurs.

Davis and Hood showed that if the cylinder has an ar-
bitrary, noncircular, cross section, and if the depth of the
fluid is possibly finite, a vanishing reflection of the in-
cident surface wave occurs only for certain combinations
of the frequency of the wave and geometry of the fluid
system. They also showed that if the cross section of the
cylinder is not circular, and the depth of the fiuid is
infinite, there will be a reflected wave in general.

In contrast with the preceding studies, in which a sur-
face wave was scattered by a single cylinder submerged in
a fiuid, Davis and Leppington studied a surface wave
traveling under the influence of gravity along the surface
of a body of fluid and scattered by one or more totally im-
mersed cylinders.

The results for the scattering of surface waves by
cylinders of different cross sections, either completely or
partially submerged in a fluid of infinite or finite depth, in
particular the absence of reflection from a cylinder of cir-
cular cross section in a fluid of infinite depth, stimulated
investigations of whether an analogous phenomenon ex-

ists for surface electromagnetic waves. The first such
study was carried out by Cullen. He considered the case
of a plane, TM (p-polarized) surface electromagnetic
wave, propagating over a corrugated metal surface, and
incident on an infinitely long cylinder of elliptic cross sec-
tion, whose axis is parallel to the magnetic field, and
whose cross-section dimensions are small compared to
the wavelength of the surface wave. By the use of an im-
pedance boundary condition at the metal surface, he
showed that if the elliptic cylinder is perfectly conduct-
ing, and if the ratio of the semimajor and semiminor axes
of the cross section of the cylinder is suitably chosen,
there exists one specific frequency of the surface wave at
which the refiected wave vanishes.

This work was followed by that of Davis and Lep-
pington, who also considered the case of a p-polarized,
plane surface electromagnetic wave, that propagates
across a corrugated metal surface, and is scattered by a
cylinder of circular or elliptic cross section. The cylinder
was taken to be either a perfect conductor or a dielectric
with zero or finite conductivity. Its width was assumed
to be small compared to the other length scales in the
problem. An impedance boundary condition was as-
sumed on the metal surface traversed by the surface
wave. It'%as found that, in general, the wave is both par-
tially re8ected and partially converted into radiative
volume electromagnetic waves, in addition to being
transmitted as a surface wave, and calculated the
reflection and transmission coeScients of the surface
wave for various combinations of the geometrical and
material properties of the scattering system.

Whereas in the studies cited up to this point a surface
electromagnetic wave was scattered by a subsurface,
infinitely long cylinder, in a subsequent paper Davis and
Leppington studied the scattering by a perfectly con-
ducting sphere of a surface electromagnetic wave that
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travels along a corrugated surface between parallel, per-
fectly conducting walls. The reQection and transmission
coefficients of the surface wave were obtained in this
work. In a more recent follow-up to this study, Davis'
investigated a surface electromagnetic wave traveling be-
tween perfectly conducting walls and incident on a small,
axisymmetric, dielectric spheroid. The refiection and
transmission coefficients of the surface wave were calcu-
lated by a generalization of the method of Ref. 9, and the
results were used in an investigation of the possibility of
zero refiection of the incident wave.

In recent work, prompted in large measure by a desire
to establish a spectroscopy of solid surfaces based on sur-
face electromagnetic waves rather than on volume elec-
tromagnetic waves, due to the greater sensitivity of the
former to surface conditions, attention has been directed
to the scattering of p-polarized surface electromagnetic
waves by dielectric films deposited on metallic substrates.
Agranovich, Kravtsov, and Leskova" ' studied the
scattering of a surface electromagnetic wave at a
vacuum-metal interface that is incident normally on a
thin dielectric film that covers one half the surface of the
metal. The metal substrate and the semi-infinite dielec-
tric film were represented by a coordinate-dependent im-
pedance boundary condition satisfied on the surface of
the metal, which is exact to first order in d lA, , where d is
the thickness of the film and A, is the wavelength of the
surface electromagnetic wave. The frequency-dependent
dielectric constant of the dielectric film was assumed to
have a pole at a frequency coo of an electric dipole-active
excitation (vibration} that falls in the frequency range in
which surface electromagnetic waves at the metal-
vacuum interface exist. In this case, the portion of the
surface covered by the dielectric film supports two sur-
face electromagnetic waves. ' A portion of the energy of
the incident surface wave is converted into these two sur-
face waves. A portion is converted into a re6ected sur-
face wave on the metal-vacuum interface, and a portion is
converted into volume waves in the vacuum above the
structure. For frequencies of the incident surface wave
near coo its conversion into volume waves was found to be
enhanced, which effect can be used to obtain information
about the vibrational spectrum of the film. Analogous
calculations in the case that the dielectric film covers
only a portion of the metal surface of length L in the
direction of propagation of the surface electromagnetic
wave were carried out by Leskova and Gapotchenko. '

In this case, the transmission coefficient of the surface po-
lariton displays a complex, oscillatory dependence on the
length of the film L caused by the interference of the two
surface polaritons in the region of the film and by their
multiple re6ection from the edges of the 61m. However,
the results presented by Leskova and Gapotchenko are
valid only in the limit kL »1, where k is the wave nurn-
ber of the surface plasmon polariton.

The same calculations were carried out by means of a
modal analysis by Stegeman et al. ' and by Shen et al. '

In this work, the metal surface covered by a semi-
in6nite' or a finite' die1ectric film was embedded in a
waveguide bounded by perfectly conducting planes paral-
lel to the surface of the metal, and far enough away from

it that the electromagnetic field of the surface wave was
sensibly unaffected by their presence. The spectrum of
the electromagnetic modes in each of the segments of the
waveguide corresponding to the uncoated and coated
portions of the metal surface is made discrete by the in-
troduction of the perfectly conducting planes, and the
fields in each of the segments were expanded in these
modes. The coefficients in these expansions were ob-
tained by satisfying the electromagnetic boundary condi-
tions at the vertical interfaces between the segments. The
transmission and reflection coefficients for the surface
electromagnetic waves are obtained quite accurately by
this procedure, but the angular distribution of the intensi-

ty of the volume waves in the vacuum region generated
by the interaction of the incident surface wave with the
dielectric film is less well reproduced.

In a recent paper, ' the excitation of surface plasmons
by a submerged cylinderical defect illuminated by a plane
wave has been studied by a numerical approach based on
the solution of a volume integral equation. The interfer-
ence between the surface polaritons scattered by two
different defects has been investigated, and it has been
shown that surface polaritons can be almost localized be-
tween the defects for suitable values of the angle of in-
cidence and of the distance between the defects. This
study has been extended' to the case of a large number
of defects randomly distributed along the interface. For
that system, the surface polaritons are multiply scattered.
A backscattering enhancement peak is observed, which is
the signature of the weak localization of surface polari-
tons.

As the preceding survey shows, the problem of the
scattering of a surface electromagnetic wave by a surface
defect has a long history. Nevertheless, it is still of
current interest, and there are several motivations that
prompt us to investigate this problem further in this pa-
per,

The first motivation for this work is the desire to devel-

op a method for computing without approximation the
scattering of a surface electromagnetic wave —a surface
plasmon polariton —at a planar vacuum-metal interface
that is incident normally on an infinitely long, dielectric
or metallic, cylindrical defect of arbitrary cross section.
By a surface defect we will mean throughout this paper a
defect that lies near the interface, either completely em-
bedded in one or the other of the media in contact along
it, or that intersects the interface.

Second, we are interested in pursuing a systematic
analysis of the scattering of a surface plasmon polariton
incident normally on a surface defect of rectangular cross
section, whose length parallel to the direction of propaga-
tion of the waves is much larger than its thickness in the
direction norma1 to the surface. In the case that the sur-
face defect is a die1ectric film deposited on a meta11ic sub-
strate we seek results that are not restricted to 61ms
whose thickness is small in comparison to the wavelength
of the surface polariton, and which describe accurately
the angular dependence of the intensity of the volume
waves in the vacuum generated by the interaction of the
surface wave with the 61m. Such results can aid in the in-

terpretation of results of experimental investigations of
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such scattering phenomena. ' ' At the same time, the
exact formulation of surface polariton scattering prob-
lems developed here also enables us to study the scatter-
ing from a surface defect whose length in the direction of
propagation, even if much larger than its thickness, is of
the order of the vacuum wavelength of the surface polari-
ton, in contrast with the work of Leskova and
Gapotchenko. '" Such results may be of interest in the
study of optoelectronic devices and in integrated optics,
since the kinds of material and geometrical discontinui-
ties represented by such defects will occur in any in-
tegrated optics circuits impressed on surfaces that em-

ploy surface polaritons.
The last main motivation for this work lies in the re-

cent development of near field optics, which has stimulat-
ed the development of theoretical methods for studying
the scattering of illununating beams by given features of
the surface such as dielectric contrast, microroughness,
or the presence of a tip. As a consequence, we have
also calculated in this paper the scattered electromagnet-
ic field in the near field region in the vacuum, which
would be detected by a nonperturbative probe.

In Sec. II we present the theory of the volume-
integral-equation method used in this paper. In Sec. III
we present the results of our calculations for the scatter-
ing of a surface plasmon polariton by a 1ong, rectangular
surface defect We .look first at the case of a dielectric
film of finite length deposited on a metallic substrate (Sec.
IIIA), and then consider metallic particles (Sec. IIIB)
and dielectric particles (Sec. III C) embedded in a metal.
A discussion of the results obtained, and the conclusions
reached from them, is presented in Sec. IV.

II. THEORY

In this section, we outline the derivation of the numeri-
cal approach to the computation of the scattered elec-
tromagnetic field when a surface electromagnetic wave is
incident normally on a particle in the vicinity of the sur-
face of a semi-infinite medium. The volume-integral ap-
proach on which this technique is based has already been
described for the case that a p-polarized plane wave is in-
cident from the vacuum on such a system. ' In the
present article, the incident field is a surface electromag-
netic wave, viz. a surface plasmon polariton. Neverthe-
less, the scattering theory in this case is very similar to
that of Ref. 17. Consequently, we will only outline the
general numerica1 technique used here, to make this pa-
per self-contained, but will describe the treatment of the
far field and near field and the way to compute the
re6ection and transmission coefFicients of the surface
plasmon polaritons in some detail.

denoted by Q, and Q3, respectively. In what follows,
properties of this reference system will be labeled by the
subscript f. In particular, we denote by e&(z) its dielec-
tric constant, which is defined by

for z &0
(2 1)

We assume that the interface z =0 separating these two
media supports a p-polarized surface electromagnetic
wave.

We will be concerned with the following two situa-
tions: (1) the region Q, is a lossless metal while the re-

gion Q3 is a lossless dielectric and (2) the region Q, is a
lossless dielectric while the region Q3 is a lossless metal.
The dielectric constants e, and e3 are, therefore, both real
in each of these two situations, and the surface elec-
tromagnetic wave supported by the surface z =0 is called
a surface plasmon polariton. The conditions ensuring the
existence of this surface wave are

6)63 &0,
@1+@3&0.

(2.2a)

(2.2b)

We now introduce into this system a cylindrical particle
of finite extent in both the x and z directions, whose gen-
erators are parallel to the y axis. The resulting system is,
therefore, invariant along the y axis (BIBy —=0). The re-
gion of the xz plane intercepted by the particle will be
denoted by Q2. The particle is characterized by an iso-
tropic dielectric constant ez=nz, which is also assumed
to be real. In what follows, we will consider particles
present only in the semi-infinite region z)0(Qi). The
geometry of the resulting structure, and the notation
adopted, are shown in Fig. 1. The dielectric constant of
the entire system will be denoted by e(x,z).

The region Q2 in which the dielectric constant e(x,z) is
different from e&(z) breaks the infinitesitnal translational
invariance of the system depicted in Fig. 1 along direc-
tions in the plane z=0, and scatters a surface plasmon
polariton incident on it. We now turn to the study of this
scattering.

B. Determination of the field in the source region

In this paper, all components of the electromagnetic
field will be assumed to have a time dependence
exp( —icot) and we will write a typical component in the
form

A. Geometry of the problem

The unperturbed physical system underlying the work
described in this paper consists of a linear dielectric
medium characterized by an isotropic, dielectric constant
e& =n

1 in the region z & 0, and a linear dielectric medium
characterized by an isotropic, dielectric constant e3 53
in the region z &0. The regions z &0 and z &0 will be FIG. 1. Geometry of the system studied in this paper.
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A;(x,z;t)= A;(x, z~co)exp( —icot} . (2.3)

VX V'XE e(—x,z)koE=O, (2.4)

Let Ef(x,z ~co) be the incident electric field, viz. a sur-
face plasmon polariton, while E(x,z ~co} is the total elec-
tric field. The latter satisfies the vector Helmholtz equa-
tion

co
k, (co)=-

C E'1+E3

' 1/2

' 1/2

P, (co)= k, —e,
CO

C

2
1/2

P&(co)= k, —e3
c

E'1+E3

1/2
E'3

E1+63

(2.12a)

(2.12b)

(2.12c)

where ko=coic. The incident field satisfies a similar
equation We will also need the result that for z )0

VXVXEf ef (z)koEf''=0 . (2.5) (O) ik x P~z
Hfy(x, z ~co) = . E, e

ic
(2.13a)

By subtracting Eq. (2.5) from Eq. (2.4) we find that the
scattered field E,(x,z~co) =E(x,z~co) E—f(x, z~co) satisfies
the equation

while for z (0

V X V XE, —ef(z)koE, = [e(x,z) —ef(z)]koE . (2.6)
H&~(x, z ~co) = — E,' 'e

iC
(2.13b)

To solve this equation we introduce the Green dyadic
G(x —x', z,z'), which is the solution of the equation

V X V X G(x —x', z,z') —ef (z)koG(x —x';z, z')

=I5(x —x ')5(z —z' ), (2.7)

We solve the integral equation (2.8) by the method of
moments. By assuming that the particle can be mapped
into a set of rectangular cells of dimensions Ax and LL
parallel to the x and z axes, respectively, and that the
electric field can be considered constant throughout each
cell, we obtain from Eq. (2.8) the linear system

where I is the unit dyad, subject to the radiation condi-
tion at infinity. By using Eqs. (2.6) and (2.7) we obtain
the following integral equation for E(x,z ~co):

E(x,z ~co) =Ef(x,z ~co)

+ko f dx'dz'G(x —x';z, z')
"2

X [e(x',z') —ef(z')]E(x', z'~co) .

(2.8)

(2.14a)

(2.14b)

where we have adopted the convention that repeated su-

perscripts in the same term are to be summed over. In
Eqs. (2.14), E' and Ef are the total and incident fields at
the center (x;,z;) of the ith cell, the cells i and j are re-
stricted to the region 02 occupied by the particle, and the
matrix elements M'~ are given by

Ef(x,z ~co) = [Ef„(x,z ~co), O, Ef,(x,z ~co)], (2.9)

The integration is carried out over the region in which
e(x, z) differs from ef(z), which is the region Q2 occupied
by the particle.

The incident field Ef(x,z~co) is that of a surface
plasmon polariton, and is given by

with

I'J, =ko[e(x, z, )
—ef(z~ )]G„'J,

x.+(1/2)bx z. +(1/2)hz

J

(2.15a)

(2.15b)

where, for z &0,

Ef„(x,z ~co) =EI 'e

Ef,(x,z ~co) =i E,' 'e
1

(2.10a)

(2.10b)

while for z (0

Ef„(x,z~co)=E' 'e

Ef,(x,z~co)= i "E"'e' —'&"

3

(2.1 la)

(2.11b)

In Eqs. (2.10)—(2.11), E,'0' is a real amplitude and k, (co),

P, (co), and P3(co) are given by

In the numerical calculations carried out in this paper we
have set Az equal to hx.

The calculation of O'1 is far from straightforward, due

to the singularity of G(x —x', z,z') when (x,z)=(x', z'),
and the pole its Fourier coefficie with respect to x —x'
possesses at the wave number k, (co) of the surface
plasmon polariton of frequency ~. This calculation is de-
scribed in detail in Ref. 17.

The solution of Eqs. (2.14) gives the components of the
total electric field in the region 02 occupied by the sur-
face defect. Once that is known, the field at any point
outside this region can be obtained from Eqs. (2.14) by al-
lowing the point (x, ,z,.) to be any point outside this re-
gion, while the sum over j still runs over the cells within
this region.
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C. Calculation of the near fieM and the far Seld

1. The near field

As we have already noted, once the system of equa-
tions (2.14) has been solved, the electric field inside the
particle is known. It is then straightfoward to calculate
the near field, i.e., the total electric field within a few
wavelengths k of the surface, where A, is defined in terms
of the frequency of the surface plasmon polariton by

=2,nc/c.o In.deed, for this purpose we use the same set
of equations (2.14), but now assume the point (x;,z;) ta be
outside the region of the surface defect, in the near field
region, while the sum on j runs over the cells within the
region of the defect. It shauld be noted that the calcula-
tion of the near field does not require the inversion of any
matrices.

az
a8

(2.16)

The total incident Qux crossing the plane x=const.
per unit time per unit width of the system in the y direc-
tion is

P;„,= zRe „', (2.17)

2. The far jfeld

In calculating the far field we require the scattered field
far from the surface defect. We do not determine this
field at same set of points [x;,z;], but instead calculate
the difFerential refiection coeScient (DRC). This is
defined in terms of the power scattered into the angular
interval (8,8+d8) about the scattering angle 8,P (8)d8,
and the pawer in the incident surface plasmon polariton
P;„,by

An explicit result for the dyad g (k ~z,z'} is derived in Ref.
17.

Since we have assumed that the region Q2 is always in

the half-space z&0, the integration variable z' in Eq.
(2.20) is always non-negative, z'&0. When z is larger
than z', or when z is negative, g (k ~z, z') has the forms

g(k ~z, z') =g (k ~z')exp[iy &(co)z], z & z'

=g (k ~z')exp[ i—y3(co)z], z &0,

(2.22a)

(2.22b}

where (i =1,3)

y (~)—[e k2 k2]l/2 k2& e k2

i[k2 e;k2]l/2 k2 & e k2 (2.23)

where zz is the largest ordinate in 02, and

(2.24)

iko
~e, (k)= dx'dz'g ~(k ~z')e

4~ Q2

X [e(x',z') —e/(z')]E(x', z'~co) . (2.25)

With the use of the Maxwell equation
VXE= —c 'BH/Bt, the magnetic component of the
scattered field can be written in the form

The use of Eqs. (2.21) and (2.22) in Eq. (2.20), and a
change in the order of integration yields the following
representation of the scattered field:

E,(x,z~co)= f dke, (k)exp(ikx+iy, z}, z&zz

e, exp i x —iy3z z &0,

where S' is the complex Poynting vector,

S'= EXH' .
8m

(2.18)

H, (x,z~co)= f dk h, (k)exp(ikx+iy, z), z &z2

= f dk h, (k)exp(ikx iy3z), —z &0,

(2.26)
When we use the results given by Eqs. (2.10), (2.11), and
(2.13), we find that where

Pine = (2.19)
h, (k)=y —[y,e,„'(k)—ke„'(k)]= e,e,„',

C'Y
&

(2.27a)

To calculate P (8) we start with the expression for the
scattered field obtained from Eq. (2.8),

h, (k}=y—[—y3e,„(k)—ke„(k)]=— e3e,„,
CP3

(2.27b)

E,(x,z iso) =ko f dx'dz'G(x —x', z,z')
2

X [e(x',z') —e/(z') ]E(x',z' ~co) .

(2.20)

We next introduce the Fourier representation of the
Green function G(x —x', z,z')

G(x —x';z, z') = f dk g(k ~z,z')exp[ik(x —x')] .
4m

(2.21)

since V.E=O in the far field region.
We can now proceed to the calculation of P (8} We.

will consider explicitly only the case in which the region
Q&(z & 0) is a lossless metal, and the region Q3(z &0) is a
lossless dielectric. The case in which 0& is a lossless
dielectric and Q3 is a lossless metal is treated in exactly
the same way.

In the case being considered, the scattered field, which
has the form of a bulk wave, is nonzero only in the region
Q3. The time average of the z component of the Poynting
vector of the scattered field in the region Q3(z & 0) is
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(S, ) =ReS;= ReE,„H;

(2.28)

PS=
Pine I d8P (8)=J 18

inc

(2.33)

The total scattered Aux crossing a plane z =const. & 0 per
unit time per unit width of the system in the y direction is

P = J dx(S, )

f a ),~a„'(k)~'.
4ct)6i —v ~,ko

(2.29)

We now introduce the scattering angle 8, measured coun-
terclockwise from the —z axis, by

k =QE~kosin8 . (2.30)

It follows that yi=+eikocos8 and dk=+eikocos8d8
The magnitude of P can then be rewritten as

~P„~=J a8P (8),

where

(2.31a)

P„(8)=—cos 8~Ii, (Qe~kosin8)~
4

(2.3 lb)

The differential reflection coeScient is, therefore, given

by

az,
80

=4m
cos 8~h, (Qe3kosin8)~

', + ', (E,',")'
Pi 13i

4~&i I e,:( V'siko»n8) I'

~P p3 p3 SP

(2.32)

The amplitudes e,„(k)and e„(k)can be calculated from
Eq. (2.25) once the electric field in the source region is
known, and h, (k) is obtained from them by the use of
Eq. (2.27b).

D. The surface plasmon polariton re8ection,
transmission, and scattering coef5cients

%'hen the incident surface plasmon polariton impinges
on the particle, three kinds of waves are generated: (i) a
transmitted surface plasmon polariton; (ii) a reflected sur-
face plasmon polariton, and (iii) bulk electromagnetic
waves which propagate away from the region of the par-
ticle in the lossless dielectric medium. It is of interest to
calculate the fraction 8 of the power in the incident sur-
face plasmon polariton that is converted into the reflected
surface plasmon polariton; the fraction T transmitted
beyond the particie in the form of a surface plasmon po-
lariton; and the fraction S converted into bulk waves.

Knowledge of the differential reflection coefBcient en-
ables us to evaluate S. Indeed, from Eqs. (2.16) and (2.31)
we obtain

To calculate the surface plasmon polariton reflection
and transmission coe%cients, 8 and T, respectively, we
first notice from Eqs. (2.10) and (2.11) that a surface
plasmon polariton is completely defined once we know its
sense of propagation and the value of E„(z~co)at one
point. Moreover, the power flow in a surface plasmon
polariton is proportional to IE, ~, where E, is the value
of E„(x,z ~co) at (x,z )=(0,0). We also note that since the
metals we consider in this paper are lossless, the modulus
of any component of the electric field of a surface
plasmon polariton is a function only of z. Thus we have

E(R) 2 E(y) 2

(2.34)
sp sp

where E',
&

' (EI&') is the amplitude of the x component of
the electric field of the reflected (transmitted) surface
plasmon polariton at z =0.

The near Seld scattered by the particle has two contri-
butions: (1) the contribution of the surface waves; (2) the
contribution of the bulk waves, which vanishes rapidly
with increasing z inside the metal. For the calculation of
R and T it is only the former contribution that is of in-
terest. Once the electric field inside the particle is known
we can calculate the scattered field taking into account
only this contribution. ' The complete derivation is
given in Sec. III of Ref. 17. The resulting scattered field
has the form of the field of a surface plasmon polariton
on each side of the particle. We use this scattered field to
calculate 8 and T.

Thus, for the calculation of R we calculate the incident
fieid and the surface polariton contribution to the scat-
tered field E,(x,z ~co) at the same point (x, ,z;) in the metal
in front of the particle, and obtain

(2.35)

In the same way we calculate the incident field and the
total field at the same point (x, ,z, ) in the metal behind the
particle, and obtain

(2.36)

III. RESULTS

In this article, we focus our attention on the ease of
long particles, i.e., partic1es whose length is much larger
than their width. This is, for example, the case for a film

of finite length deposited on a substrate or embedded in
the substrate. For such a long particle we expect to see
some features in the resu1ts of our scattering calculations
that can be related to the properties of surface and guided
wave polaritons propagating in the corresponding three-
or four-1ayer system that is obtained when the length of
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the particle becomes infinite (cf. Fig. 2). From the disper-
sion relations of these waves (Appendixes A and B) we
find that at a given frequency these multilayer systems
support zero, one, or two surface plasmon polaritons, and
zero, one, or more guided wave polaritons. Thus, when
the incident surface plasmon polariton impinges on the
particle, it excites one or more of these surface and guid-
ed waves. Then, since the waves that are excited are
refiected from the end of the particle, this system acts as
a Fabry-Perot interferometer. When the length L of the
particle is increased the surface polariton reflection
coefficient R should display an oscillatory dependence on
L. This has been discussed by Leskova and Gapotchen-
ko, ' but in our paper we are not restricted to very long
particles. Finally, we can look at the near field above the
particle. Here, too, we should see some interference pat-
terns related to the geometry of the problem and the
difference in dielectric constants. In view of current ac-
tivity in near field optics, such a result might be of in-
terest as a way obtaining information about the dielectric
constant of finite films.

In this article, we will restrict our analysis to three gen-
eral cases. In Sec. III A we will study the scattering of a
surface plasmon polariton from long dielectric particles
deposited on a metal. We will first obtain the dispersion
curves of surface guided waves in the equivalent three-
layer system, which will aid in explaining the results for
scattering from a particle of finite length. In Sec. III B
we will focus on a metallic inclusion in a metal. In Sec.
III C we will discuss the case of a dielectric particle em-
bedded in a metal.

A. Dielectric particle on a metallic substrate

e(z)= e2 for 0&z &d

e3 for z&0.
(3.1)

We derive in Appendix A the dispersion relation for sur-
face and guided wave polaritons propagating in this sys-
tem. It is a transcendental equation that must be solved
numerically. In this subsection we assume that the upper
semi-infinite medium is vacuum (e, =1); that the slab is a
lossless dielectric (ez=ed); and that the lower semi-

infinite medium is a lossless metal whose dielectric con-
stant has the Drude form [@3=1—(cur/co ), where cv is
the plasma frequency of the charge carriers].

We present in Fig. 3 a typical example of the resulting
dispersion curves. We can observe the dispersion curve
of the surface polariton propagating along the interface
between the slab and the metal. This curve tends to an
asymptotic value of (to/co ) = 1/Qez+ 1 [i.e.,
e(to)= —ed]. In addition, we can see the dispersion
curves of guided wave polaritons propagating in the slab.
We note that for (co/to )&1/+Ed+1 a polariton can
propagate along this three-layer system, but for
1/+ed +1 & (co/cur ) & 1/~2 no polariton can propagate
along this system, although a polariton can propagate
along a single metal-vacuum interface. The presence of
additional guided waves is linked to the ratio of the

1. Dispersion curves for the corresponding
three-layer system

We consider a slab of thickness d between two semi-

infinite media. The dielectric constant of this system,
e(z), is given by

e, for z)d

1.0

o.e

0.4

0.2

0.0
0.0 0.5 1.0

CR/G)p

1.5 2.0

FIG. 2. (a) A film of finite length on a metallic substrate and
the corresponding infinite, three-layer system, (b) a particle em-
bedded in a metallic substrate and the corresponding infinite
four-layer system.

FIG. 3. Dispersion curves for a three-layer system consisting
of vacuum for z & d, a dielectric slab of dielectric constant ed for
0(z (d, and a lossless metal, whose dielectric function has the
Drude form, for z &0. For this graph d /A, ~

=0.5 (with
cu~ /c =2m/A~), and ed =4. Solid curve: surface polariton
dispersion curve; dotted line: surface polariton dispersion curve
for a metal-vacuum interface; dot-dash curve: guided wave
dispersion curve.
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height d of the layer to the wavelength in vacuum,
A, —2&C /Q).

2. Dieiectric particle ofPnite length
on a metal substrate

The preceding analysis of a three-layer system leads us
to the following comments concerning the interaction of
a surface plasmon polariton with a long dielectric particle
on a metallic substrate. We first analyze the frequency
range in which a surface plasmon polariton can propa-
gate in the three-layer system, (co/co ) & I /+ed+1. For
frequencies in this range we expect that the incoming sur-
face polariton will excite another surface polariton in the
particle, whose wave number k,' ' must be almost equal to
that of a surface polariton in the corresponding three-
layer system at the same frequency. This second polari-
ton will be reflected from the right edge of the particle
and, as a consequence, the near field above the particle
should display an interference pattern with a spatial
period D that satisfies 2k', ' =2m /D.

Figure 4 displays the square of the electric field at an
ordinate just above the dielectric particle. This dielectric
particle has a dielectric constant ed=2. 25, while the
dielectric constant of the substrate is —17.2. The length
of the particle a is equal to 3A., and its width b is I,/10.
This particle is placed on the substrate between x /A, =5
and x /A, =8. On the left side of the particle we see an in-
terference pattern due to the interference of the incident
polariton with the reflected polariton due to the finite
length of the partic1e. The period Do of this interference
satisfies 2k, =2m/Do 'By me.asuring this period Do we

find a value of k, =(1.025+0.015)(co/c), which is to be

compared with k,~=1.03(co/c) given by Eq. (2.12a). In
the same way the interference pattern above the particle
is due to the interference of the second polariton propa-
gating in the positive x direction with the second polari-

35.0

ton reflected from the right edge of the particle. From
the period of this interference structure we obtain a value
of k,'~' equal to (1.26+0.04)(co/c), which is to be com-
pared with the theoretical value of 1.257(to/c) calculated
numerically for the three-layer system. The agreement
between these two values is very good, which indicates
that a particle of length 3A, supports the same surface po-
lariton as the infinite three-layer system. Thus it is possi-
ble to evaluate k,' ' by looking at the near field. From a
knowledge of k,' and the height of the defect it should
be possible to estimate ez, the dielectric constant of the
dielectric cylinder, by the use of the results of Appendix
A. As a consequence, looking at the near field should be
of interest in determining dielectric constants of integrat-
ed optics elements, since it is not obvious how to evalu-
ate, by conventional methods, the dielectric constant of a
dielectric cylinder whose cross-section dimensions are of
the order of a micron.

A particle on a substrate possesses some similarities
with a slab in a Fabry-Perot interferometer Thu. s we ex-
pect to see an oscillatory dependence of the reflection
coef5cient R on the length a of the particle. Such an in-
terference pattern has already been found by Leskova and
Gapotchenko' for the case of a very long particle
([kI„'—(co/c)]a ))I). In this paper we find an interfer-
ence pattern with a period ha+ =2m /2k Iz' for much
smaller values of the length a. Figure 5 displays the R
coef6cient for the system used in obtaining Fig. 3 but as a
function of the length a. The conservation of energy is
very well satisfied at each point since
~1

—R —S—T~ &10 (and most of the time &10 ).
%e see a very well-defined interference structure for the
reflection coeScient, which yields a value of k,' ' equal to
(1.253+0.02)(co/c), in good agreement with the theoreti-
cal value of 1.257(to/c). It should be noted that the in-
terference pattern is already very well-defined for parti-
cles whose lengths are smaller than A, .

When the wave number of the incident surface polari-
ton differs only slightly from the wave number of light in

30.0

25.0

~3=-17.2
cq=2.25

0.020

0.016

I I

op=2 25 zg ———17 2

@ 20.0

15.0

10.0

0 ~ 012

0.008

5.0
0.0 4.0 8.0 12.0 16.O 20.0
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0.000

FIG. 4. Near field for a system consisting of a finite dielectric
particle of length 3A, and thickness A, /10 deposited on a metallic
substrate, where k is the wavelength in vacuum (A, =2mc/co).
The dielectric constants are —17.2 for the metal and 2.25 for
the dielectric. The near field displayed is the square of the
modulus of the electric field at a fixed ordinate z/A, =5/40. The
size of the integration mesh used is Ax =k/20.

0.0 0.5 1.0 2.0 2.5 3.0

FIG. 5. Reflection coefficient for a system consisting of a
dielectric particle on a metallic substrate as a function of the
length of the particle a. The parameters are: thickness
b=k/10, h =0 (the particle touches the substrate), e&=2.25,
e3= —17.2, and Ax =A, /40.
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FIG. 6. Differential reflection coefBcient for a system consist-
ing of a dielectric particle over a metallic substrate for two
values of the substrate dielectric constant. The parameters are
a =3k,, b =A./20, @2=2.25, and Lbc =A, /40.

vacuum, the field scattered into bulk waves at the first
edge of the particle has a maximum power fiow into
directions almost parallel to the surface. This can be seen
in Fig. 6, which shows the DRC for a particle of length
3A, and height A, /20 of dielectric constant 2.25 on a me-
tallic surface. We display the DRC for the dielectric con-
stant of the metal e = —5 (dotted line) and —17.2 (solid
line). For e = —17.2, k, is equal to 1.03(co/c), also
close to (co/c), and the maximum of the scattered energy
is in the forward direction. For comparison, when
e = —5, k» is equal to 1.12(ro/c), and the maximum of
the scattered energy is no longer in the direction parallel
to the surface.

These bulk waves can excite a surface polariton at the
right edge of the particle. As a consequence, when

[(k,~
—(c0/c)]a &&1 we have two sources for the

transmitted polariton: the bulk waves and the second po-
lariton propagating along the particle-metal interface.
Thus we expect an oscillatory dependence of the
transmission coefficient T on the length a of the particle.
The period ha&. of this interference pattern should satisfy
2m/bar =k,' ' —(co/c). This behavior has already been
predicted by Leskova and Gapotchenko' for the case of
a metallic film on a metallic substrate.

Figure 7 displays the re6ection coefficient R and
transmission coefficient T as functions of the length a of a
film whose dielectric constant is 4 and whose height is
A, /10, deposited on a metallic substrate of dielectric con-
stant —8. As in Fig. 5, we can see an interference pat-
tern for the re6ection coefficient. The measured period of
these interferences yields a value of (2.53+0.1)(c0/c) for
the wave number k,' ' of the surface polariton, in good
agreement with the theoretical value of 2.545(co/c).
Moreover, we see an interference pattern for the
transmission coefficient as expected. The measured value
of the period, although a little less precise, yields a value
of (2.57+0. 1)(co/c) for k,' ', in agreement with the previ-
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&a=4, e3=-8
R - T (dx=A/40)

—- R --- Y (dx=X/80).
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FIG. 7. Reflection and transmission coefBcients for a system

consisting of a dielectric particle on a metallic substrate.
b =A, /10, F2=4, and @3=—8. Two sizes of the integration mesh
have been used: M =A, /40 and )be =A, /80.

ous values. We note that these results have been obtained
for particles whose lengths are smaller than 3A, . We also
note that when c increases the amplitude of the oscilla-
tions of the transmission coefficient diminishes, since the
power Bow of bulk ~aves reaching the second edge of the
particle is smaller the larger a is.

In Fig. 7, we have displayed the re6ection coefficient R
and transmission coefficient T for two values of the mesh
size M. For the solid and dotted curves lb& is equal to
A, /40, whereas for the dash-dot and dash-dash-dot curves
b,x is equal to A/80. Although these curves are almost
identical, we can see that the period of the interference is
slightly shorter when bx is equal to I(, /80. This is due to
the fact that kI~' is large, thus a finer discretization of the
field within the particle is required. We note that the
values of k,'2i have been calculated with the results ob-
tained for )bc equal to A, /80. In contrast, although the
result for R presented in Fig. 5 was calculated with
hx =A, /40, no difference in this result was observed when
the calculations were repeated with hx =A, /80, because
of the much smaller value of k,' ' in this case.

In the case that 1/+ed + 1 & co/co& & 1/v 2, no surface
polariton can propagate along the three-layer system. As
a consequence, when the incident surface polariton im-
pinges on the particle it cannot excite any surface polari-
ton. The main source for the transmitted polariton is
then the bulk waves due to the diffraction of the incident
surface polariton from the left edge of the particle. Con-
sequently, we can expect a sharp decrease of the
transmission coefficient with increasing length of the par-
ticle due to the decrease of the bulk wave power Qow
reaching the right edge of the particle. Another possible
source for the transmitted polariton is the existence of
guided waves when the height of the particle is large
enough. However, we are not able to display in this arti-
cle results for this range of frequencies, since we could
not obtain converged results, i.e., when the mesh size Lx
was decreased, the results for the re6ection, transmission,
and scattering coefficients changed significantly.
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B. Metallic inclusion in a metallic host

1. Dispersion curves for the corresponding
three-layer system

In this subsection we are concerned with a long metal-
lic particle located in a different metal and interfacing
with a semi-infinite vacuum. As we have seen in the
preceding subsection, it is worthwhile studying the corre-
sponding three-layer system defined by

e(co) for z )d

e(z)= ei(to) for 0&z &d

1 for z(0.
(3.2)

The metallic di.electric functions are assumed to have
the Drude form, viz. , e(to) = 1 —

(to& /to ), e2(co) = 1

-(mp22/~2), and we denote by a the ratio mpz/~p. Note
that the vacuum now occupies the region z & 0, which
makes the corresponding experiment less easy to carry
out. We were obliged to make this choice since our com-
putational approach is based on the assumption that the
defect is situated in the upper semi-infinite medium.
However, we can easily imagine that the z direction
points downward to obtain a more conventional picture
of the system.

We display in Fig. 8 the dispersion curves for the struc-
ture defined by Eq. (3.2) for two values of a, viz. a=0.4
[Fig. 8(a)] and a= l. 5 [Fig. 8(b)]. For values of a smaller
than 1 [Fig. 8(a)] two dispersion curves can be seen. The
lower one is the dispersion curve of the surface polariton
at the slab-vacuum interface. The asymptotic value of
co/to reached by this curve is a/v 2. This value corre-
sponds to a frequency tos2/v 2, which is the usual asymp-
totic value for the case of a planar interface between two
semi-infinite media: vacuum and a metal whose dielectric
function is e2(co). In this frequency range k,' ' has very
large values. As a consequence, the skin depth for the
polariton is very small and the polariton does not feel the
presence of the semi-infinite metallic medium. This ex-
plains why we retrieve the results for a planar interface
between two semi-infinite media. The upper dispersion
curve corresponds to a surface polariton propagating
along the interface between the slab and the semi-infinite
metallic medium. Indeed, when a is smaller than one,
there is a range of frequencies in which the dielectric
function of the slab is positive, while the dielectric func-
tion of the semi-infinite metallic medium remains nega-
tive. Thus a polariton can propagate along the interface
between these two media.

For values of a larger than 1 [Fig. 8(b)] we have similar
results, but now the asymptotic value of m/co for the
lower branch is larger than 1/v'2, and for the upper
curve the dielectric function of the slab is negative
whereas the dielectric function of the semi-infinite metal-
lic medium is positive.

2. Long metallic inclusion in a metallic substrate

The preceding analysis of the dispersion curves
prompts the following comments. When the plasma fre-

quency of the metal in the slab is larger than that of the
semi-infinite metal substrate (a & 1), then the situation is
simple for the entire range of frequencies in which a sur-
face polariton can propagate along the planar metal-
vacuum interface (co/to & I/&2). Indeed, in this case
there is always one, and only one, surface polariton that
can propagate along the three-layer system. For a&1
the situation is more complicated since there are ranges
of frequencies in which either one or two surface polari-
tons can propagate along the three-layer system when
co/tos is smaller than 1/v 2. We look at a case where
only one polariton can propagate, and follow in that case
the analysis of the previous subsection. We display in
Fig. 9 the reflection and scattering coefficients for a me-
tallic inclusion of dielectric constant —5 in a metallic
host of dielectric constant —2. The metallic inclusion is
in contact with the vacuum, its thickness is A, /20, and its
length a varies from 0 to 3A,. Since the dielectric constant
in the inclusion is smaller than that of the metallic host,
this case corresponds to a value of a larger than one.
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FIG. 8. Dispersion curves for a three-layer system consisting
of vacuum for z &0, a metallic slab whose dielectric function is
6'z 1 cop2 /co' for 0 & z & d, and a metal whose dielectric func-
tion is e&=1—co~/co for z & d (solid curve). The dotted curve
represents the dispersion curve for a surface polariton in the
structure without the slab. (a) d =A~/5 cop2/cop 0.4 and (b)
d —A,p, 67p2/cop —1.5.
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FIG. 9. Re6ection and scattering coeScients for a system
consisting of a metallic inclusion (@2=—5) in a metal host
(e& = —2), when the inclusion touches the interface (h =0). The
other parameters are b =A, /20 and hx =A. /40.

One polariton can propagate along the corresponding
three-layer system. As a consequence, a similar surface
polariton is excited at the left edge of the inclusion and is
reflected from the right edge. Thus we observe an in-
terference pattern for the reflection coefficient as a func-
tion of a, with the same origin as that for the result
displayed in Fig. 5. The value of k,' ' given by our
scattering calculation is (1.153+0.008)(co/c), which is in
very good agreement with the value of k',~' for the three-
layer system, viz. , 1.143(co/c). Once again we find these
interferences even for very small value of a.

For the same reason as in Sec. III A 2, we should also
be able to see an interference pattern for the transmission
coefficient as the length of the sample increases. The
period of the interference b,ar is 2n/[k, '~' —(co/c)], so
that in order to obtain a small period we must chtoose a
frequency yielding a large value of k,' ', that is a value of
co/ro slightly sinaller than a/~2. We display in Fig. 10
the results for such a frequency. The dielectric constant
of the inclusion (the host) is —1.2 ( —3.4). The reflection
coefBcient as a function of a shows an interference pat-
tern, with a short period has, which yields a large value

of k', '=(2.2+0.08)(co/c), in good agreement with the
theoretical value for the three-layer system of
k,' ' =2.22(r0/c). We display the scattering coefficient in-

stead of the transmission coeScient in order to plot the
two curves (R and S) on the same graph. Since
R+T+S=1, and R takes very small values, we have
S=1—T, and the interference pattern for S is the same
as the one for T. The period of these interferences yields
a value of (2.27+0.08)(co/c) for k,'~'.

As in Fig. 7, we have displayed in Fig. 10 the results
for two sizes of the elementary mesh lid. We find
discrepancies similar to those observed in Fig. 7. Indeed,
since k,' ' is large, we need a finer mesh to solve the equa-
tions accurately. The choice of hx =A, /40 enables us to
deal with large systems with a reasonable amount of com-
puter time, and the results are of interest since they differ
only slightly from those of a more accurate solution.

Finally, we display in Fig. 11 the near field for this
configuration when the length of the inclusion is equal to
2A, . The results are not as clear as those presented in Fig.
4. Indeed, over the defect (in vacuum) we have an in-
terference between three waves: the bulk wave and two
surface polaritons, one propagating in the positive x
direction, the other in the negative x direction. Since the
prominent wave consists of the surface polariton propa-
gating in the positive x direction, we expect to see the in-
terference of this polariton with the polariton propaga-
ting in the negative x direction with a period
6, =n./kI2', and the interference of this polariton with
the bulk wave with a period bb„ii,=2~/[k,'~' —(~/c)).
In Fig. 4, b,b„ii, was larger than the size of the particle,
and this second type of interference could not be ob-
served. The situation is difFerent for the results plotted in
Fig. 11 where b.b„iz-—0.808K, and b,~=0.2235K,. Al-
though the analysis of the results displayed in this figure
becomes somewhat tedious, we were able to find a value
of (0.226+0.007)A, for b.. .which yields a value for k', ' of
(2.21+0.061 )(~/c).

The interferences with the bulk wave are not very clear
in Fig. 11. Nevertheless, by looking carefully at this
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FIG. 10. Same as Fig. 9 with e&= —3.4, e2= —1.2, and
b=i, /10. Two sizes for the integration mesh have been used
Lx =A, /40 and M =A, /80.

FIG. 11. Near field for the same system used in obtaining
Figs. 10 and 11. a=2K, , b=A. /40, Ex=A, /80, el= —3.4, and
e2= —1.2. The near field displayed is the square of the modulus
of the electric field at a fixed ordinate z = —A, /160. The arrows
indicate the edges of the particle.
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figure we can notice oscillations with a large period, with
the first main dip around x/A, =1.9 and a second dip
around x/A, =2.7. This second dip does not appear
clearIy due to the fact that at the same position we have a
peak due to the interference between the two surface po-
laritons. From the distance between these two dips we

0.797+0.06Q, which yields a ~aine for k,
of (2.25+0.07)(co/c).

Since we cannot describe fully every possible case, we
refer to the article of Leskova and Gapotchenko' for the
study of the frequency range where two polaritons can
propagate along the three-layer system. For frequencies
in the gap, i.e., in the frequency range in which no sur-
face polariton can propagate along the three-layer sys-
tern, we encountered problems of convergence similar to
those described in the preceding subsection.

C. Dielectric inclusion within a metallic host

l. Dispersion curves for the corresponding four layer sy-stem

e& for z &dz

ez for d, &z &dz

e, for 0&z &1,
e3 for z &0,

(3.3)

where ez and e3 are two positive real dielectric constants,
and e, has the Drude form e, = 1 —(co~/co ). We display
in Fig. 12 the dispersion curves for a typical set of param-
eters: @3=1,ay=16 cf]=0.105k& and dz=0. 2111~. As
expected, we observe three branches. The two lower-
frequency branches correspond to the surface polaritons
propagating along the interfaces between the dielectric
layer and the metal. These two branches converge to-
wards a value of co/co =1/Qez+1. The third (highest-
frequency) branch corresponds to the surface polariton
propagating along the vacuum-metal interface.

In this example no guided wave polariton dispersion
curve is present in Fig. 12 due to the small width of the
dielectri layer.

As we have seen in Secs. III A and III B, knowledge of
the dispersion curves of surface and guided wave polari-
tons in the corresponding multilayer structure is of pri-
mary importance when we want to study the scattering of
a surface plasmon polariton by a long particle. In con-
trast to the systems studied in the two preceding subsec-
tions, in this subsection we study the scattering of surface
plasmon polaritons by particles completely embedded in
the host. As a consequence, the extrapolated system for
an infinitely long particle is a four-layer system [Fig.
2(b)j. We derive in Appendix B the dispersion relation
for such a structure. It is obvious that, even by restrict-
ing ourselves to structures consisting of dielectric and
metallic layers, a completely general study of this disper-
sion relation is outside the scope of this article. Conse-
quently, we will limit ourselves to the case of a dielectric
layer in a metal host.

For that case we consider a system whose dielectric
constant e(z) satisfies
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FIG. 12. Dispersion curves for a four-layer system consisting
of vacuum for z&0, a metal whose dielectric function is
e= 1 —co~/co for 0&z & d& and z & dz, and a dielectric slab for
d& & z & 4gp. We have 1) =0.105Ap dg =021 1A& and 6g = 16.
The solid curve represents the different surface polariton disper-
sion curves. The dotted line is the surface polariton dispersion
curve for a similar system without the dielectric slab.

In the absence of guided waves, we can distinguish
three frequency domains. For low frequencies two sur-
face polaritons can propagate. For frequencies just below
co~/v'2 only one surface polariton can propagate. And
for the range of frequencies in between a gap appears in
which no surface polariton can propagate.

2. Dielectric inclusion offinite length within a metallic host

We turn now to the problem of the scattering of a sur-
face plasmon polariton by a long dielectric particle em-
bedded in the metal. We will consider here the cases
where one or no surface polariton can propagate in the
corresponding four-layer system. We omit consideration
of the case in which two surface polaritons can propagate
in the four-layer system, since the study of the near field
and the reflection coe%cient in this case would be too
long for this article.

We turn first to the case where only one surface polari-
ton can propagate in the corresponding four-layer sys-
tern. We note that this case corresponds to a value of the
frequency close to co /~2, which means a rather small
modulus for the dielectric constant, at least smaHer than
the value of the dielectric constant of the dielectric in-
clusion. In a similar manner as in the two preceding sub-
sections, where only one surface polariton could propa-
gate in the three-layer system considered there, we expect
to see an interference pattern for the surface polariton
reBection coeScient as a function of the length of the in-
clusion. We have displayed in Fig. 13 this re8ection
coefficient for a system characterized by e&= —3.472,
@&=16, @3=1, b =A, /20 (b is the width of the particle),
and h =A, /20 (h is its distance into the metal).

We can see as expected the interference pattern for R.
The period of these interferences yields a value of
k, =(1.018+0.006)(co/c), which is in very good agree-
ment with the theoretical value of k,'z' =1.017(oi/c). We
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FIG. 13. Reflection coef6cient for a system consisting of a
dielectric particle totally embedded in a metal. e, =—3.472,
F2=16, b =A, /20, h =A, /20, and hx =A, /40.

5.0

note that since the value of the modulus of e(co) is small,
k, differs significantly from the wave number of light in
vacuum, and as a consequence (cf. Fig. 6) the bulk waves
excited at the first edge of the particle have a maximum
power fiow direction significantly away from the forward
horizontal direction. This means that it will be hard to
see an interference pattern for the transmission coefBcient
as the length of the particle is increased unless we find pa-
rameters yielding a large value for k,' '.

By looking at the near field along the x axis we expect
to see an interference pattern as in Fig. 4 and for the
same physical reason. Figure 14 displays the near field
along the x axis in vacuum but very close to the metal.
The edges of the particle are marked by arrows. We ob-
serve the interference pattern and, by analyzing it, we
find a value of k,' ' =(1.01+0.02)(co/c), correct but less
precise than the value found by looking at the interfer-
ence pattern for R. Moreover, the intensity of the elec-
tric field on the vertical sides of the particle is larger than
over the particle, and the amplitude of the interferences

above the particle is not very large. Consequently, it will
not be easy to characterize this sample by looking at the
near field: only the edges of the inclusion could be detect-
ed easily.

When no polariton can propagate along the four-layer
system, we expect no interference pattern in the reflection
coefficient or the near field for finite-size particles. Figure
15 displays the reflection and transmission coefficients as
functions of the length a of the particle. The parameters
for this plot are 6&

= 3.472 6'2= 10 63= 1 and
h =b=A, /20. The reffection coefficient tends to a con-
stant value of g lo as the length of the particle increases,
whereas the transmission coefficient decreases sharply.
This sharp decrease can be interpreted as follows. The
main source for the transmitted surface polariton, espe-
cially for a long particle, is usually the polariton propaga-
ting along the finite three- or four-layer system whose
wave number has been denoted by k,'&' throughout this
paper. But in the present case there is no such second
surface polariton, and the only remaining source for the
transmitted polariton consists of the bulk waves excited
at the first edge of the defect, which excite the transmit-
ted polariton at the second edge of the particle. Since the
power flow of the bulk waves reaching the second edge
diminishes when the length of the particle increases, the
transmission coefficient follows the same trend.

If we turn to a study of the near field, we expect, as al-
ready said, no interference pattern for the electric field
above the particle. Figure 16 displays the squared
modulus of the electric field when the parameters are the
same as for Fig. 15, the length of the particle is two vac-
uum wavelengths (a =2k,), and we calculate ~E(x,z ~co)~

in the vacuum just above the interface (z= —
A, /160).

The arrows on the graph show the edges of the particle.
We observe the usual interference pattern in front of the
particle due to the interference between the incoming and
reflected surface polaritons, but no interference above the
particle, since no surface polaritons can propagate back
and forth. We cannot obtain a precise value of the dielec-
tric constant of the inclusion by looking at the near field,
but we can infer the positions of the ends of the particle
and can obtain some idea of the dielectric constant, since
we know we are in the gap of the dispersion curves.

4.0

3.0

ci=-3.472
cg=i6

1.0

0.8
—R — - T

eq
——10, ei—--3.472

2.0 0.6

1.0 0.4

0.0
0.0 2.0 4.0 6.0 8.0 10.0

0.2

Q.O

FIG. 14. Near field for the same system used in obtaining
Fig. 13. a=3K,. The near field displayed is the square of the
modulus of the electric field at a constant value of
z: z= —A, /80.

0.0 0.5 1.0
a X

1.5 2.0

FIG. 15. Reflection and transmission coefBcients for the sys-
tem used in obtaining Fig. 13, with @2=10 and hx =A, /80.
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APPENDIX A: DISPERSION RELATION
FOR p-POLARIZED SURFACE POLARITONS

IN A THREE-LAYER SYSTEM

ose dielectric con-We consider a three-layer system whose d'

stant is defined by
@ 3.0

2.0

1.0

e& for z) d

e(z)= e2 for 0&z &d

e3 for z&0.
(A1)
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p, = k2 —e, Rep;)0, Imp; «0 . (A3)

~ ~ ~

ndar conditions satisfied by Hz (x z ~co) require
'dH /Bz across each inter-

ldth' ""f' u't
'nuit of H and e z

face. These conditions at z = yie e

—p2d p] —pid
Ae = e

2d ~2d(Be —' —Ce '),
E'2

(A4)

and at z =0 we obtain

D=B+C,
—1

piD =—p2(—B—C) . (A5)

of E s.'lit condition for the system q .
1

' f f 1(A4) —(A5) yields the dispersion re ation or
itons in the structure defined by q.

e '+ 1+ e
P,d

eA eA
1 p3-

E3

1——p2
Ep

e ' — 1+ e ' =0.P,d

eA eA

he ma netic field has only a single,p p ' ' g
onent, H(xi')=[O, H» x,z co,po & y

ce is the xz plane, anP
H~(x, z ~co) for a surface wave propagatmg in e
x direction cand' t' an be written as follows:

ikx —
P&zAe, z

'"" Be '+Ce ' ], 0&z &d (A2H (x,z~ci))= 'e' " Be e
ikx+P3z

De

with (i =1,2, 3).

(A6)
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APPENDIX B: DISPERSION RELATION
FOR p-POLARARIZED SURFACE POLARITONS

MIN A FOUR-LAYER SYSTE

er s stem whose dielectric con-We consider a four-layer sys em
stant is given by
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where (i =1,2, 3,4}

(Bl)

z&0. ReP, &0, ImP; &0 . (B2)

The single, nonzero component of the magnetic Seld for a
surface polariton propagating in the positive x direction
in this structure is given by

Hy(x, z~co}=
'

ik —p, z
Ae z&d,

e' (Be '+Ce ' ), d& &z&d2

e' (De '+Fe ' ), 0&z&d,
ikx+ p~z

Ge ', z&0,

The boundary conditions require the continuity of H„
and e 't)H~/t)z at each interface. To find the dispersion
relation we proceed as in Appendix A. We write the
equations arising from the satisfaction of the boundary
conditions at z=dz, z=d„and z=0. The solvability
condition for the resulting system of equations yields the
dispersion relation for surface polaritons in the structure
defined by Eq. (Bl)

p2d& p&d&e e
eA

~4 &3 tt,d, -eA
e4 e3 e2P3

P4 P3 P~d )3 1

E'4 E'3

Pl i~d2 —t ~d(

eA
eA1— ~4 &3 -t d, eA

e
e4 e3 e+3

+ e ' ' =0. (B3)
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