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Low-temperature dynamical simulation of spin-boson systems
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The dynamics of spin-boson systems at very low temperatures has been studied using a real-time
path-integral simulation technique, which combines a stochastic Monte Carlo sampling over the
quantum Huctuations with an exact treatment of the quasiclassical degrees of freedom. To a large
degree, this special technique circumvents the dynamical sign problem and allows the dynamics
to be studied directly up to long real times in a numerically exact manner. This method has
been applied to two important problems: (1) crossover from nonadiabatic to adiabatic behavior
in electron-transfer reactions, (2) the zero-temperature dynamics in the antiferromagnetic Kondo
region 2 & K ( 1, where K is Kondo's parameter.

I. INTRODUCTION

Spin-boson systems provide archetypical models for
many low-temperature dissipative quantum tunneling
systems. Applications include diverse problems such
as the observability of macroscopic quantum coherence
in a superconducting quantum interference device, in-
terstitial tunneling of light particles such as hydrogen in
metals, and many others discussed in Ref. 1. Two other
examples are of special importance to this work. First,
the so-called Kondo problem concerns localized spin im-

purities in nonmagnetic metals. 6 The second comes &om
the realm of chemical physics —in certain parameter re-
gions, the spin-boson model provides a generalization
of the Marcus model for electron-transfer reactions.
The wide range of applicability of the spin-boson model
stems from its apparent generality —by coupling two ex-
actly solvable models bilinearly, namely a two-state sys-
tem (spin) and an infinite-dimensional harmonic oscilla-
tor (boson) bath, one obtains a nontrivial description for
many dissipative systems.

The dynamics of the spin-boson system has been
widely studied using the Feynman-Vernon influence func-
tional method, mostly in conjunction with instanton
techniques. Much of the physics of this model has been
unraveled by analytical methods, though an exact solu-
tion is not possible (except for some special parameter
values). One particularly useful analytical approxima-
tion is the noninteracting blip approximation (NIBA).
Although the NIBA has been rather successful, there are
important regions in parameter space where this approx-
imation is expected to fail.

Very recently, numerical techniques for computing the
dynamics of dissipative two-state systems have been
developed. These real-time quantum Monte Carlo
(QMC) simulations have confirmed the NIBA predic-
tions quantitatively in many cases, and in addition have
provided information in regions where the NIBA breaks
down. However, due to the fundamental dynamical sign
problem inherent in these calculations, the numeri-

cal computations are restricted in their accessible range
of real times. The dynamical sign problem arises because
at long times a large number of interfering paths con-
tribute, leading to a very small signal-to-noise ratio. In
effect, the simulation becomes unstable. Consequently,
even numerically exact QMC methods have not been able
to resolve many important questions concerning the be-
havior of the spin-boson system, especially at low tem-
peratures and long times.

It is important to point out that many other ap-
proaches to dealing with the dynamical sign problem
have been developed during the last decade. For example,
methods based on related altering techniques, ' opti-
mized reference systems, or analytic continuation pro-
cedures following a conventional imaginary-time QMC
simulation have been proposed. Similar to the one de-
scribed in this work, the erst two methods attempt a
direct simulation in real time. While we restrict our at-
tention to discrete (tight-binding) systems which is ad-

equate for many problems in low-temperature physics,
most previous methods are designed for extended sys-
tems. On the other hand, the third method makes use of
an imaginary-time simulation that has no dynamical sign
problem to obtain numerical data which are then analyti-
cally continued to real times. To date, this procedure has
only been used to find (e.g. , electronic) spectral densities.
While real-time information follows from the knowledge
of these densities, such calculations have yet to be per-
formed and hence the effectiveness of this approach to
real-time dynamics is untested. We also point out that a
similar numerical problem exists for QMC simulations of
fermioiuc many-body systems. This fermion sign prob
Item has a different origin from the one dealt with here. It
is due to the antisymmetry of fermionic wave functions,
and makes even imaginary-time simulations problematic.
If simulated in imaginary time, however, the spin-boson
model does not pose any sign problem.

In this paper, we propose a simulation method to study
the spin-boson dynamics numerically. Like our earlier ap-
proaches, this technique is based on a discretized path-
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integral representation of the dynamical quantities of in-
terest, but difFers from them in that it exploits the sym-
metry properties of the infiuence functional. This al-
lows for an exact treatment of the numerically problem-
atic quasiclassical paths, and one is left with a stochas-
tic Monte Carlo saxnpling oF the quantum fiuctuations
alone. Related methods have been used previously to
study quantum Brownian motion, ' and we have used
a similar algorithm to study the primary electron trans-
fer steps in the bacterial photosynthetic reaction center. 24

Furthermore, this idea of exploiting the symmetries of the
inBuence functional has also led to an efficient simulation
method for computing the mobility and difFusion coeffi-
cient of a dissipative particle in an in6nite tight-binding
lattice. s The algorithm for this difFusion problem, how-

ever, is rather difFerent from the one employed in the case
of a system with a small number of tight-binding states.
In this article, we provide a detailed description of our
simulation method for the dissipative two-state system;
the necessary generalizations for the case of more than
two states should be obvious.

We apply this special method to the spin-boson model
in the low-temperature and the small bath cutofF regions.
The accuracy of the NIBA in some other parameter re-
gions has been confirmed by our earlier simulations al-
ready, and the numerical results presented in this work
focus on these previously inaccessible regions. Since the
present algorithm is more powerful than previous meth-
ods, we are able to study longer times and much lower
temperatures.

Data are presented for two practical problems of cur-
rent interest: (1) electron transfer in a condensed phase
environment, where we have examined the transition
&om nonadiabatic to adiabatic behavior for both the
high-temperature and the low-temperature case. The
high-temperature results should coincide with classical
Marcus theory, whereas for low temperatures we would
expect quantum effects commonly attributed to nuclear
tunneling. r (2) The dissipative two-state system is also
signi6cant for the antiferromagnetic Kondo problem of a
localized impurity embedded in a nonmagnetic metal.
The anisotropic Kondo Hamiltonian is related to the
spin-boson model in a certain parameter region, and we
have studied the most interesting antiferromagnetic case
1/2 ( K ( 1, where K is Kondo's parameter, at zero
temperature. An important question to be addressed in
this parameter region relates to the destruction of quan-
tuxn coherence. For K ( 1/2, one can observe quantum
coherence (oscillatory behavior) in the zero-temperature
dynamics of the dissipative system. The NIBA predicts
such coherent behavior to be completely destroyed for
K ) 1/2. Unfortunately, the justification for NIBA is
suspect in this special parameter region, and our method
oR'ers a way of studying this region.

In Sec. II, we present our simulation method for
the dissipative two-state system. The results for the
crossover between nonadiabatic and adiabatic electron
transfer are discussed in Sec. III, followed by a discus-
sion of the dynamics in the antiferromagnetic Kondo re-
gion at very low temperatures. Some final remarks and
conclusions are given in Sec. IV.

II. SIMULATION METHOD

In the following, we present a dynamical simulation
technique for dissipative tight-binding models with a 6-
nite number of states. For simplicity, the discussion is
restricted to the case of two states, which leads to the
often-studied spin-boson Hamiltonian

H = Ho+ Hgg+ Hl
= —(hb, /2) o + (he/2) o,

2

+) +zm u ~z
2

(2 1)

The parameters in the free Hamiltonian Hp describing
the isolated two-state system are the tunnel matrix ele-
ment b —in the parlance of electron-transfer theory, 4/2
is the electronic coupling between the two difFerent redox
sites, the external bias c corresponds to an asymmetry
between the two localized energy levels, and cr and 0,
are the usual Pauli matrices. The bath is described by
harmonic oscillators (x ) which are bilinearly coupled to
the spin operator O', . This type of coupling is reasonable
for the problems considered in this work (and for many
others); for a justification, see, e.g. , Refs. 1—3.

Within this model, the bath parameters enter only via
a single function called the spectral density

C2
J((u) = —) h(ur —(u ),

2 YA~(d~a
(2.2)

which should have a continuous form in the limit of in-
finitely many bath oscillators. The spectral density then
determines the bath correlation function

a' cosh[a) (hP/2 —iz)]
srh p sinh[(uhP/2]

(2.3)

which is de6ned for complex-valued times z = t —i7. The
distance between the localized states is given by a length
scale a, and P = 1/kxxT. Here, we limit our attention to
the case of an Ohmic spectral density which has the form

J(~) = (2nhK/a2)(ue (2.4)

C(t) = Re (o, (Q)o, (t))

g —1R ~ —pH ~Ha/h —~He/A
S z (2.5)

This spectral density has a characteristic low-&equency
behavior J(u) blur, where q is the usual Ohmic vis-
cosity. The system-bath coupling strength is measured
in terms of the dimensionless Kondo parameter K. The
time scale distribution of bath motions is described by
a cutoK frequency u . For many problems in low-
temperature physics, this cutofF frequency is taken to be
the largest &equency scale in the problem. In the case of
electron transfer, the same spectral density with some in-
termediate value for u is most appropriate for a realistic
description of many polar solvents.

Two dynamical quantities of interest for this model are
the symmetrized time correlation function
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with Z = Tre ~, and the time-dependent occupation
probabilities for the two sites P+(t) and P (t) which can
be expressed in terms of a single function

P(t) P (t) P (t) (
tHt/s —tHt/s) (2.6)

t/q,
t/q, —

—ihP/r,

]. (j(q
q+1& j & 2q

2q+ 1 & j & 2q+ r —= N,
(2.7)

and the complex time after i steps is z, = P'.
~ b,~.2=1

The construction of the discretized path integral then
proceeds by inserting complete sets

with the initial condition P(0) = 1. From a comparison
of Eqs. (2.5) and (2.6) we observe that the two quantities
difFer only by the way the system is prepared initially. For
P(t), the system is held fixed in the + state until t = 0
with the bath being unobserved (factorized initial condi-
tion). On the other hand, the more realistic situation for
many experiments is represented by equilibrium states of
the total system at t = 0 as described by C(t).

To numerically compute the two-state dynamics, we
employ a discretized path-integral representation of
the dynamical quantities. The correlation function
(o, (0)o, (t)) can be regarded as the probability ampli-
tude for a sequence of steps in the complex-time plane.
In particular, one propagates along the Kadanoff-Baym
contour p: z = 0 ~ t ~ 0 ~ —ihP, and measures o, at
z = 0 and z = t. Of course, there are several other possi-
ble choices of this contour due to the cyclic structure of
the trace.

To parametrize the paths, we use q uniformly spaced
discrete points for each of the two real-time paths and r
points for the imaginary-time path (see Fig. 1). Hence,
there are N = 2q+r points in total. The time discretiza-
tions are

where H' = H —Ho is diagonal in the representation
(2.8). The free part Hp of the Hamiltonian (2.1) leads to
the short-time propagator

K(o ' o' +&) = (o' +&I exp( —ia Hp/h) o ) (2.10)

which can be evaluated exactly. Thereby we arrive at

I dNr se[rq, . ..,r~j oo.

(o, (0)tT, (t') ) = (2.11)

which converges to the true path integral as the num-
ber of discretizations N ~ oo. The discretized ac-
tion S[rq, . . . , r~] is a complex-valued sum of the actions
picked up in separate parts of the contour p. To compute
the correlation function in Eq. (2.11), one can average
over all pairs of spins (cr', o ")separated by a time t' along
the contour p. This allows us to compute the dynamical
quantities for all times tl, = kt/q (where k = 0, . . . , q)
from one single Metropolis trajectory. Because of the
cyclic structure of the trace in Eq. (2.5), r~+q = rq.

Since the bath is made up of harmonic oscillators,
one can integrate out the environmental degrees of free-
dom analytically. After performing this integration, the
bath-plus-coupling part H' of the Hamiltonian leads to
an influence functional 4[cr] in terms of the spins (o,)
alone. ' As a result, the correlation function takes the
form

(o, (0)cr, (t')) = —) exp —O[cr]

To disentangle the short-time propagator, we use a
(symmetrized) Trotter formula,

exp( —iHA, . /h) = exp( —iH'6, /2h) exp( —iHpA, /h)

x exp( —iH'4, ./2h) + O(h, [Hp-, H']),
(2.9)

(2.8) + Q ln K(o, , ~,+g), cr'rx", (2.12)

at each discretization point z, (i = 2, . . . , N). The vector
r; represents the state cr, = +1 of the two-level system
as well as the environmental degrees of freedom (x,).

Im

where Z = g& &
exp(. . .) (the exponent will be referred

to as "the action" henceforth). In the continuum limit
N ~ oo, the nonlocal influence functional is given in
terms of the bath correlation function L(z) introduced in
Eq. (2.3), and one finds with cr, -+ o'(z) Ref. 27

i =~q+& i =q+~
Rez 4[or] = dz dz' o (z)L(z —z') o.(z') /4 . (2.13)

The integrations in the complex-time plane are ordered
along the Kadanoff-Baym contour p. Note that L(z) ful-
fills the important symmetry relation

j = 2q+r+ 1

= —ibad

L(z —ihP) = L(—z), (2.14)

FIG. 1. Discretization of the KadanoK-Baym contour p in
the complex-time plane.

which implies certain symmetry properties of the infIu-
ence functional.

In discretized form, the inHuence functional is given
by 12
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N

4 [0'] =
2 ) 0'&L&goy/4,

j,k=1
(2.15)

with the complex-valued influence matrix L~k. We ob-
serve from Eqs. (2.12) and (2.15) that the (discretized)
spin-boson problem is isomorphic to a classical one-
dimensional Ising model with long-range complex-valued
interactions. The influence matrix is the average
value of the influence functional interaction between two
points z~ and zk

L~i, = Li,~
= dz' dzi, L(z' —zq)

Cj Cg
for j&k,

(2.16)

L,s = Q(E, i + (bi+ Ai i)/2)
+Q(his + ( bi its)/2)-

Q(~,'+( ~-, .+~. i-)/2)

Q(Aii + (bi —As)/2), (2.17)

where C; is one discretization on the contour centered at
the point z, , i.e.,

(z E C;[z; —b„ i/2 ( z ( z; + 6„/2) .

The remaining time integrations in Eq. (2.16) can be car-
ried out easily, and one finds with 6~k ——z~ —zk

where Q(z) is the twice-integrated bath correlation func-
tion with Q(0) = 0, i.e., d2Q(z)/dz = L(z). Of
course, this function exhibits the same symmetry prop-
erty (2.14). Finally, the diagonal elements are given by

L, = 2Q((b, , i + b, .)/2) .

A detailed derivation of the influence matrix can be found
in Refs. 15 and 24.

Since the action for each spin configuration (a path)
is complex valued, a stochastic Monte Carlo evaluation
of the resulting isomorphic Ising chain is faced with the
dynamical sign problem. In the past, we have par-
tially circumvented this problem either by transform-
ing to a continuous spin representation and applying
stationary-phase Monte Carlo (SPMC) methods, is is or
by introducing a local filtering function in discrete state
space. ' The latter approach is related to ideas like the
stationary-phase approximation and allowed for a study
of many phenomena on an intermediate time scale.

Here, we observe that a much more eKcient method
can be constructed when one takes into account the
symmetry properties of the influence matrix due to
Eq. (2.14). These symmetry relations can be expressed
mathematically as a set of index relations (we usei, j, k =
1, . . . , q+ 1, and n, m = 2, . . . , r)

L2q+2 —z 2q+2 j —L&& ) L2q+2 —&i~
———L,'~ for j & i ) L2q+2, ~

———L,~ for i & j
L2q+2 —i,z = —Re Lz ) L2q+~ 2q+2 j = L2q+~ z for j & 1, Lz q+1 = L2q+2 z q+1 = L2q+~ q+1 = 0 )

which can be proved easily from Eq. (2.17).
The benefit of exploiting these relations is realized

upon switching to a new spin representation. To that
purpose, we introduce the sum and diH'erence coordi-
nates of the forward (n~) and backward (o') real-time
spin paths and rename the imaginary-time spins (o ),

fA )7L 2 j,k=1

+i ) (~X~i,gi, + ) ) (~Z~ o.
j=].m, =2

4[(,g, o] = 2i ) o Y „o„+2 ) (~Aii, gg

rl = (o +o'.)/2,

6 = (~~ —~,')/2

&m, = &2q+rn )

(2.18)

+pl l ) am [L2q+rn, l + L2q+m, 2q+1)

(2.19)

The elements of the matrices appearing in Eq. (2.19) are

where o' = o 2q~2 i in the old notation (j = 1, . . . , q+ 1).
Thus we Grst relabel the spins on the three pieces of the
Kadano8-'Baym contour and then form the said linear
combinations. A physical meaning can be assigned to
these new spins: (gi) describe the propagation along the
diagonal of the reduced density matrix and can thus be
identified with quasiclassical paths, while ((z) describe
the ofF diagonaliticity of the reduced density matrix and
can be identified with quantum fluctuations. According
to the definitions (2.18), the new spins can take on three
possible values (, rl = —1,0, 1, but they are not entirely
independent because either (~ or g~ has to be 0 for the
same j.

Written in terms of the new spins and exploiting the
index relations above, the influence functional takes the
form

Y~~ = L2q+~, 2q+~/4 ~

A~k
——Re L~k,

X~k ——ImL~k )

Zi- = L~,2q+-/2.

It is worth mentioning that these matrices are real val-
ued (with the exception of Z~ ). The meaning of the
five terms in Eq. (2.19) is as follows. The first term de-
scribes a self-interaction within the imaginary-time seg-
ment. Due to the second term, the dissipative bath will
damp out the quantum fluctuations, and the system is
likely to be found in a diagonal state characterized by
( = 0. This paint will later be important with regard ta
the choice of a suitable Monte Carlo weight. The third
terxn is a bilinear interaction between quasiclassical paths
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and quantum fluctuations, and the fourth term describes
a similar interaction between the imaginary-time spins
and the quantum fluctuations. The last term is a prepa-
ration term, coupling g1 to the imaginary-time spins. Re-
markably, there is no self-interaction in the quasiclassical
paths, and they are coupled only linearly to other degrees
of freedom.

This observation is crucial for our computational pro-
cedure, since it allows for an exact treatment of the quasi-
classical paths. For any given quantum ftuctuation path,
the path summation over all allowed quasiclassical paths
can be carried out in an exact manner. To elucidate
this, we first examine the Bee action due to Hp. The
imaginary-time contribution can be put into the ma-
trix elements Y „by simply adding 2 1ntanh(hPA/2r)
to Y +1 and Y +1, in case an external bias e is
present, the action has to include an additional term
(hPe/2r) P o . Regarding the real-time paths, we

proceed in a different way. For the isolated two-state
system, we have (in terms of the original spins) a prod-
uct of the form [cf. Eq. (2.10)]

(0., (0)0., (t')) = — ) ) J[(]
(()=—1,0,1 (e)=+1

X eXP 2 &m Ymnon
m n=2

q, k=1
q

—) ) (,Z,
j=1 m=2

Therefore, we are left with the task of summing over the
imaginary-time spins {o j and the quantum fluctuations

((» ), which is conveniently done via Monte Carlo (MC)
sampling. The suitable MC weight for the imaginary-
time spins is straightforward,

m)n )m

(2.20)

If we now switch to the f(, rl) representation and per-
form the summation over all )I spins (while keeping the

( configuration frozen), we obtain a matrix product for
Eq. (2.20). Of course, one has to account for the r)-

dependent terms in the influence functional (2.19) during
this procedure. In the end, the complex-valued contribu-
tion of all these terms for a given ( configuration takes
the form

) ()))lV('). . .V(') l)7,+i), (2.21)
g& ——0)+1 pq+&

——0)+1

Since the influence functional forces the quantum fluctu-
ations to stay near the diagonal of the density matrix, we
first try to use the following MC weight for the quantum
fluctuations

P„~)[(] exp —
2 ) (»A»), (i, —Re ) (»Z»~o~

) m

The problem with this weight, however, arises for small
system-bath couplings where the damping of the quan-
tum fluctuations becomes weak. In this case, the impor-
tance sampling would become very inefBcient for small
coupling K. Hence, in a next step, we try the product

where the (3 x 3) matrices V(»[(] are defined by2

(~»lv" l~»+i) = [K «*](~» ~»+i (» (»+i)

x exp i))» ) —XA,»(i,
A:)j

(2.22)

Each of the matrices V(») depends on all (A, spins with
k ) j; however, the "free" part K x K* is determined
by (» and (»+i alone. Clearly, J[(] can be evaluated
with a simple matrix multiplication routine, leading to
a numerically exact and efBcient treatment of the quasi-
classical paths. Note that the remaining part of the influ-
ence functional is real-valued —with the exception of the
fourth term in Eq. (2.19), which is generally very small—indicating that much of the dynamical sign problem
has been relieved by treating the numerically problematic
quasiclassical paths in an exact manner.

In efl'ect, the factor J[(]contains all contributions from
Hp and, in addition, the third and fifth term of the influ-
ence functional (2.19). The correlation function can thus
be written as

[(] = ) ) (q, lH. ,
g1 ——0)+1 Pq+1 —0)+1

x (( )V(1) V(k —1)II
x((„)v(").. . V(~)l&, ,) . (2.23)

where J[(] has been defined in Eq. (2.21). This weight
function considers both the damping of the quantum
fluctuations due to the influence functional and the
integrated-out quasiclassical paths.

Unfortunately, there is another problem with
this weight, similar to the case of the multistate
algorithm. ' This problem arises since for correlation
functions such as (o, (0)0,(t)) one has to compute the
ratio of two quantities. It turns out that certain spin
configurations only contribute to the denominator but
not to the numerator (and vice versa). Due to this ex-
clusivity problem, one will not be able to access all rele-
vant spin configurations ((j contributing to the numer-
ator when using W[(] alone as the Monte Carlo weight.
%'e can circumvent this problem by observing that for
the numerator, one has to compute terms such as [where
Cli, Ci!2 = 6]
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The projection operators H+ ——(1+o,)/2 and H = (1—
cr, )/2 onto the two spin values have the rl representation
(for a given ()

(1 0 0) (0 0 0)
H+(( = o) = o o o, H (( = o) = o o o

0 0 03 (0 0 1

('0 o o)
Hy(( = +1)= 0 1/2 0

(0 o 0)
Finally, an appropriate positive definite Monte Carlo
weight function can be constructed

(2.24)

(a)
(b)
(c)
(d)

At „for PE = oo~

5
9
12
22

At „for PE = 0.5
8
14
18
24

TABLE I. Performance of di8'creat dynamical simulation
techniques for spin-boson systems: (a) a brute-force evalua-
tion of the path integrals without any filtering, (b) the SPMC
calculation (Refs. 13,15), (c) the original discrete filtering
technique (Refs. 14,16), (d) the current optimized filtering
method. The data shown below are for a calculation of P(t)
for K = 1/2, u, /b, = 6, both for T = 0 and for a high temper-
ature, bP = 0.5. For times t )t, the dynamical sign prob-
lem becomes uncontrollable (with statistical errors ) 20%).

Using W[(] as the weight allows us to carry out an effi-
cient Monte Carlo sampling of the ( spins.

Our QMC algorithm employs single-particle Metropo-
lis moves as well as moves that allow kinks to translate
along the spin chain. is Single-particle moves attempt to
change one spin (i, = —1,0, 1 to a new value, whereas
kink moves attempt to change two adjacent spins simul-
taneously. The imaginary-time spins are sampled from
P; s[o] using single-particle moves, i.e., one tries to flip
a single spin 0 = +1. During one MC pass, the single-
particle moves are attempted once for every spin, and
the kink moves are attempted for every pair of spins with

Typical acceptance ratios for these types of
moves are —15%, and we take samples separated by 5
MC passes. This ensures that the MC samples are suffi-
ciently uncorrelated, since roughly half of the spins have
been assigned new values between two subsequent sam-
ples. Numerical results are then obtained &om several
10000 samples, with statistical errors always below 5%
for the data reported here.

The calculations were carried out on an IBM RISC
6000/580 workstation, at an average speed of 2 CPU
hours per 10000 samples (for q

—80, r = 0). As men-
tioned earlier, the dynamical quantities of interest can
be sampled from a single Monte Carlo trajectory for all
times t' & t since the remaining part of the Kadanoff-
Baym contour can be integrated out. Furthermore, the
quantity P(t) can be calculated using the same code by
simply removing all spins &om the imaginary-time path,
i.e., by putting r = 0. Finally, to ensure that the Trot-
ter error is suKciently small, we have to keep the dis-
cretization numbers q and r large enough. This is checked
by systematically increasing these numbers until conver-
gence is reached. For all results presented here, the Trot-
ter error is negligible compared to the statistical errors
due to the stochastic MC sampling (which are less than
5%).

We close this section with some remarks concerning the
relation between this method and our earlier techniques.
The algorithm presented here can be thought of as an
optimized (but essentially nonlocal) filtering method for
discrete-state systems as proposed by Mak. The opti-
mization is achieved by exploiting the underlying symme-

tries of the inBuence functional. This makes this method
superior in the sense that we can study longer times with
less computational effort. Since the dynamical sign prob-
lem grows exponentially with increasing time, most of
the results discussed in the next section cannot be ob-
tained by any former technique. An approximate mea-
sure for the performance of the difFerent real-time QMC
algorithms for the spin-boson problem can be obtained
&om the maximum real time t defined as the upper
time limit of the respective method. For times t & t
the large statistical errors caused by the dynamical sign
problem (more than —20%) will render the simulation
results useless. This is quantified in Table I. The com-
parison with earlier methods demonstrates that the spin-
boson dynamics can now be studied up to much longer
time scales despite the dynamical sign problem. The gain
is most significant at very low temperatures, but is also
important at higher temperatures.

III. SIMULATION RESULTS

In this section, we present dynamical simulation results
for two diferent problems, namely the crossover between
nonadiabatic and adiabatic electron transfer and the dy-
namics in the low-temperature antiferromagnetic Kondo
region. We will restrict our attention to the symmetric
case e = 0 here, and we also consider only Ohmic spectral
densities of the form (2.4). For numerical results in other
parameter regions of the spin-boson model, we refer to
our previous work.

A. Crossover from nonadiabatic to adiabatic
electron transfer

The spin-boson system is an adequate model for many
electron transfer reactions in condensed phase systems.
The electron-transfer rate is, in general, determined not
only by the overlap of the electronic wave functions local-
ized on the redox states (which is proportional to the tun-
nel splitting 4), but also by the properties of the solvent
environment. For a charge transfer to occur, a specific
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large-scale reorganization of the solvent is required to
achieve the resonance condition necessary for electronic
tunneling. Using linear response theory for a description
of the solvent modes and a tight-binding model for the
redox states, one arrives at the spin-boson model. In our
study, we have taken an Ohmic spectral density (2.4) for
the bath with a finite cutofF frequency cu, which can be
regarded as a &ee parameter.

The solvent is described by a continuous spectral den-
sity peaked around a characteristic bath mode frequency
~„and the classical reorganization energy corresponding
to this bath is AA = 2K~„where K is Kondo's parame-
ter. For typical electron-transfer reactions, the reorgani-
zation energy fulfills the condition A/6 )) 1. The nona-
diabatic regime of electron-transfer is defined by small
electronic couplings, 6/~, && 1, whereas the adiabatic
limit corresponds to electronic couplings of the order of
~, (or larger). We note that the nonadiabatic limit is re-
alized in most biological and in many chemical systems;
nevertheless, the adiabatic limit is also important for a
description of many chemical electron-transfer reactions.

The high-temperature limit of electron transfer is well
understood within the framework of classical Marcus and
Sutin theory. The rate can be factored into an equi-
librium Boltzmann factor containing the activation free
energy for the required global bath Huctuation, and a
Landau-Zener factor for the transition probability once
this Landau-Zener region has been reached. For sym-
metric electron-transfer reactions, Marcus found a bath
activation energy hA/4, and combining this with a con-
ventional estimate for the Landau-Zener factor, one ob-
tains a formula for the total (forward plus backward)
rate

0.5
L

i
"ct

FIG. 2. Simulation results for K = 2, keT/Auu, = 4 and
two values of the electronic coupling. Note the change in
time scale.

7rhp
exp( —PSA/4),

4A l+ A2 (ugA
(3 1)

which is valid for hPu, « 1. The Landau-Zener factor
contains a kequency scale ug reminiscent of transition
state theory which is usually applied to the adiabatic
limit. Note that for small electronic couplings, the rate

which is just the golden rule behavior. In the adia-
batic limit of large 6, however, the rate becomes indepen-
dent of 6, and the dynamics is totally solvent controlled.
We note that for the spectral density (2.4), one can ob-
tain analytical expressions in the nonadiabatic golden
rule limit for both the high- and low-temperature rate
(T' = bur, /k~ provides a rough measure for the temper-
ature below which quantum eKects due to nuclear tunnel-
ing become important). For the special values K = 1/2
and K = 1, the crossover behavior &om high to low tem-
peratures can be solved explicitly.

In Fig. 2 we show some results for P(t) in the high-
temperature limit; in this parameter region, the efFects
of the initial preparation are negligible, so C(t) = P(t).
For a study of the crossover between nonadiabatic and
adiabatic behaviors, all model parameters except 4 are
kept fixed. In the case of small 4, the simulation re-
sults exhibit a monoexponential decay on the golden rule
time scale. However, for larger 4, the dynamics becomes
progressively more complex. After a fast initial tran-

sient, the decay slows down; fitting this slower decay to
an exponential law, one can again extract a rate for this
adiabatic situation.

The 6-dependent high-temperature rates measured in
units of u, are plotted in Fig. 3. Clearly, the nonadiabatic
limit is nicely reproduced by the simulations for small 6,
and the rates A2. In the adiabatic limit, the rate
constant is approximately independent of the magnitude
of the electronic coupling. These results are in agreement
with the conventional Landau-Zener prediction (3.1) in
the limit of high temperatures. Remarkably, the data in
Fig. 3 show that the golden rule formula is accurate for
values of 4/w as large as 1.5. Note also that we find a
monotonic dependence of the rate on 4, in contrast to the
findings of Skourtis et al. which are based on a rather
simplistic Hamiltonian and would predict a maximum in
the rate as a function of A.

Next we study the low-temperature region (hPu,
2.5), where the classical rate formula (3.1) is not ex-
pected to hold. Again, we 6nd complete agreement
with the nonadiabatic golden rule formalism for small
values of b, /cu„with P(t) decaying monoexponentially
on the golden rule time scale (with a fast initial tran-
sient). When increasing A/~ beyond = 0.5, however,
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the dynamics exhibits an oscillatory behavior as shown
in Fig. 4. This prevents a meaningful estimate for the
decay constant (but when increasing K to significantly
larger values, we expect-that the dynaxnics will become
totally incoherent again, at least for not too small u, /6).
We note that in the limit ur, /4 -+ 0 (but A finite), the
dynamics can be solved exactly. This is the case of a
strictly adiabatic bath, where the dynamics is always os-
cillatory. From the simulations we also observe that the
nonadiabatic regime is con6ned to increasingly smaller
values for b, /ur, when the temperature is lowered.

In conclusion, the simulations con6rm the classical pic-
ture for the crossover &om nonadiabatic to adiabatic
electron transfer in the high-temperature limit and, in
addition, provide a dynamical explanation. In the low-

temperature limit, however, the dynamics becomes os-
cillatory unless the system-bath coupling is made very
large.

0.5

io
q t

20

FIG. 3. Electron-transfer rate constants as a function of the
electronic coupling; squares denote decay constants of P(t)
for K = 2, knT/hu, = 4, i.e., total rates. The dashed line is
the nonadiabatic golden rule prediction, and vertical bars are
error estimates.

B. Antiferromagnetic Kondo region:
low-temperature dynamics

We next turn to a di8'erent problem. The determina-
tion of the dynamical quantities of interest in the low-

temperature Kondo region characterized by a Kondo pa-
rameter 1/2 & K & 1 has been a long-standing problem.

We start with a brief discussion of the relationship of
the spin-boson model to the Kondo problem. The Kondo
Haxniltonian in its simplest form describes a spin- 2 impu-
rity interacting with a band of free electrons via isotropic
exchange scattering. A particularly useful method for
studying the low-temperature spin relaxation dynamics
of the Kondo problem (the equilibriuxn properties are well
understood ) employs a bosonization procedure to map
it onto a spin-boson problem with Ohmic dissipation.
The case 1/2 & K & 1 then corresponds to the interest-
ing antiferroxnagnetic Kondo problem. The important
dynamical quantity in the Kondo problem is the imagi-
nary part of the &equency-dependent spin susceptibility
y"(u). It can be expressed in terms of the Fourier trans-
form of the correlation function (2.5)

C(~) = hcoth(Pike/2)y" ((u) . (3.2)

/a = 1.8

0

8.5

FIG. 4. Simulation results for K = 2, knT/hu, = 0.4 and
two values of the electronic coupling. Note the change in time
scale.

Therefore, a computation of C(t) will yield all relevant
dynamical quantities (structure factor, dynamical sus-
ceptibility, etc.) of the Kondo problem.

Unfortunately, the noninteracting blip approximation
(NIBA) by Leggett et aL cannot be justified in this re-
gion for temperatures below the Kondo temperature de-
fined as Trc = hb, „/k~, where 4„= b, (A/u, )
In fact, if one equates C(t) = P(t) (which NIBA predicts
is true), the NIBA would imply certain unphysical prop-
erties of the related Kondo problem, such as a divergence
in the susceptibility as T —+ 0.

Furthermore, this parameter region is also interesting
in the context of xnacroscopic quantum coherence, since
there could be remnants of coherent (oscillatory) behav-
ior in the zero-temperature dynamics for 1/2 & K & 1.
For this region, NIBA predicts a complete destruction of
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quantum coherence. We have studied P(t) at zero tem-
perature in order to check this prediction.

Some numerical results for this parameter region have
already been given in Refs. 14 and 15, and a biexponen-
tial behavior has been found. However, due to the limita-
tions of our earlier techniques, these simulations were re-
stricted to very small values for the cutoff (~,/6 = 1.25
has been used in Ref. 15). Furthermore, our previous
algorithm did not allow for a study of extremely low
temperatures, and we have considered temperatures only
slightly below T~. These shortcomings can be overcome
by the algorithm discussed in Sec. II, and we are now
able to reach both the scaling region ~,/6 && 1 and the
zero-temperature limit for P(t). At zero temperature,
the time scale of the dynamics should be set solely by
the frequency

0.5

K = 1/2

kT/d = 0.025

~/d =6

= [ os(irK) I'(1 —2K)]'~ I' -0.2
|0

where I'(z) denotes the p function. This effective fre-
quency scale is equal to 6 at K = 0, becomes equal to
mA2/2&v, for K = 1/2, and shrinks to zero as K ~ 1.
Since the cutoff u, should enter the dynamics only via a
renormalization of this effective frequency scale, we use
the dimensionless time y = A,~t; at zero temperature,
the only system parameter left is the Kondo parameter.
As shown by Grabert and Weiss, the NIBA solution
for T = 0 and K ( 1 can be written in terms of the
Mit tag-Lefner function,

FIG. 5. Symmetrized correlation function C(t) for
K = 1/2, u, //d = 6, and knT/hb, = 0.025. The triangles
denote the QMC data for discretization numbers q = 60 and
r = 130. The solid curve is the exact solution from Ref. 35,
and vertical bars are error estimates.

PNIBA(y) = E2Ii Icl(—y"' ') ~ (3.4)

In the parameter region 1/2 & K & 1, this describes a
purely incoherent relaxation.

Before discussing the zero-temperature limit for P(y)
and 1/2 & K & 1, we first present data for the corre-
lation function C(t) at K = 1/2. This special case has
been solved exactly by Sassetti and Weiss, and one finds
for sufficiently low temperatures that C(t) approaches
zero from below at long times. This is reproduced by
our simulations shown in Fig. 5; the cutoff chosen here
(u, = 6b, ) is already large enough to ensure the validity
of ~,/6 && 1. Note that the corresponding exact solution
for a factorizing initial state, P(t) = exp( —6,6t), does
not exhibit this behavior.

Finally, in Fig. 6 we show QMC results for the exact
T = 0 dynamics of P(y) in the Kondo region 1/2 & K &
1 ~ The cutoff chosen here is within the scaling region
~,/4 » 1 so that the dynamics should depend only on
the effective time scale y = A,gt. Indeed, as long as
w /A & 5, we found that a change in the cutoff enters
the dynamics solely via Eq. (3.3). Since the frequency
4 g becomes extremely small with increasing K, it is
not possible to numerically study the T = 0 dynamics on
time scales of the order 4,& for K larger than = 0.75.
Here, we have restricted ourselves to K = 0.6 and K =
0.7, see Fig. 6. For K = 0.5, the QMC data for P(t)
coincide with the exact solution.

It is not possible to Gt the numerical data in Fig. 6 to
simple (exponential, biexponential, algebraic, etc. ) de-
cay laws. However, it is obvious that the NIBA gives
the correct qualitative picture, especially at short times.

x
FIG. 6. Zero-temperature dynamics of P(y = b.,~t) in the

antiferromagnetic Kondo region. The solid curves are numeri-

cally exact results, dashed curves are NIBA predictions. Note
the change in effective time scale between both plots. The dis-
cretization numbers were q = 80 and q = 160 for K = 0.6 and
K = 0.7, respectively.
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The exact dynamics is fully incoherent, yet of quite com-
plicated appearance. These results again underline our
earlier finding ' that the NIBA provides an excellent
estimate for P(t) in the bulk of parameter space. The
data shown in Fig. 6 suggest that the NIBA is more ac-
curate for K = 0.6; this indicates that the NIBA becomes
exact for P(t) as K ~ 1/2.

One may question how much the respective correla-
tion functions C(t) will deviate from the P(t) depicted
in Fig. 6, since C(t) is the relevant quantity for a com-
parison with the Kondo problem. While the NIBA was
shown to give an excellent approximation for the func-
tion P(t) even in the low-temperature Kondo region, the
quality of the NIBA-prediction C(t) = P(t) seems to be
poor in this region (see Fig. 5). We have carried out
simulations for C(t) at temperatures slightly below T~
for 1/2 ( K ( 1 as well, and the characteristic behav-
ior shown in Fig. 5, namely C(t) approaching zero from
below as t ~ oo, was found to persist. This would re-
solve the divergence of the static spin susceptibility '

predicted by NIBA based on P(t) because P(t) and C(t)
show qualitatively difFerent behaviors. Such a behavior
of C(t) is also in correspondence with the exact Shiba
relation.

Unfortunately, we were not able to reach the true zero-
temperature lixnit for the equilibrium correlation function
C(t). Clearly, using the same Kadanoff-Baym contour
employed in our method would require an infinitely long
imaginary-time path for T = 0, which xnakes the algo-
rithm impracticable. By invoking ergodicity arguments,
however, a viable variant of our algorithm may facil-
itate such a calculation. To that purpose, one might
consider a factorized initial state at to & 0, so that for
to —+ —oo the system will be equilibrated at t = 0. In
efFect, one is then left with a real-time contour instead of
the KadanofF-Baym contour, and the initial correlations
are represented by negative-time paths. This method is
currently under study.

IV. CONCLUSIONS

We have proposed a real-time quantum Monte Carlo
sixnulation method for a numerically exact computation

of the dynamical quantities of the spin-boson xnodel. Our
technique is based on a discretized path-integral formula-
tion and makes use of the symmetry properties of the dis-
sipative influence functional, whereby one can integrate
out the quasiclassical paths and is left with a stochastic
sampling of the quantum fIuctuations alone. This leads
to a significant improvement compared to earlier meth-
ods, and allows us to study the dynamics at consider-
ably longer tixnes. The method is generally applicable to
dissipative tight-binding systexns with arbitrary spectral
density.

Results have been presented for two problems of cur-
rent interest. (a) We have computed the electron-transfer
rate constant as a function of the electronic coupling
in both the high-temperature and the low-temperature
limit. In the high-temperature limit, the classical Mar-
cus result is reproduced; for low temperatures, however,
one obtains an oscillatory behavior for large electronic
couplings which does not allow for a simple rate descrip-
tion. (b) The dynamics in the antiferromagnetic Kondo
region has been computed at T = 0 for several values of
the Kondo parameter. In accordance with the NIBA, we
find a fully incoherent (yet nonexponential) decay for the
occupation probability P(t). Initial preparation effects,
however, lead to important deviations &om the NIBA
prediction C(t) = P(t) for the equilibrium correlation
function. It is exactly this NIBA equality that led to
unphysical results for the equivalent Kondo problem.
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