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We use self-consistent solutions to Schrodinger's and Poisson's equations to calculate several
observable characteristics of wide parabolic quantuxn wells in a perpendicular magnetic field. We
calculate the dc magnetoconductivity, optical absorption, and acceptor photoluminescence of elec-
trons in these wells. Spin effects are included in both the bare interaction with the magnetic field
and the many-body interactions through a local-spin-density exchange-correlation potential. We
find several observable signatures of spin efFects, enhanced by many-body interactions, in both the
xnagnetotransport and the optical properties of these wells. These include disappearance of integer
quantum Hall effect minima in the resistivity, spin polarization, magnetic depopulation of states,
and nonlinear Landau fan diagrams. We relate details of these observable phenoxnena to their
microscopic origins in these systems.

I. INTRODUCTION

Wide parabolic quantum wells (WPQW's) are studied
because of the homogeneous distribution of the electron
gas in such structures and the intermediate dimensional-
ity between two-dimensional (2D) and three-dimensional
(3D) physics. The electron gas, in screening the parabolic
conduction band edge potential, forms a constant den-

sity slab, an approximation to jellium where electrons
move in a constant positive background charge density.
The nearly complete screening of the external potential,
and the resultant wide, flat potential well, causes the
exchange and correlation terms in the electron-electron
interaction to be very important to the observable prop-
erties of the well. When placed in a magnetic Beld, the
spin of the electrons can strongly in6uence the exchange-
correlation energy of the electron gas. The large width
of the wells and resultant small subband spacing make
them ideal for studying these spin effects.

Since the first realization of wide parabolic quantum
wells through molecular beam epitaxy growth, ~ there
have been significant studies of this system, both ex-
perimental and theoretical. Much of the experimental
work has been on either magnetotransport or in&ared
studies. ' These have confirmed the parabolic nature of
the well, and shown the exact renormalization of the
subband spacing in long wavelength optical absorption.
More recently, significant work has been performed on
capacitance, and photoluminescence in these wells. In
theoretical studies, several researchers have calculated
the subband spectrum of these wells, including per-
pendicular, parallel, and tilted magnetic fields, variations
in the effective mass across the well, and symmetry break-
ing potential structures on top of the parabolic poten-
tial. This work has shown interesting properties of the

in&ared absorption, magnetotransport, and possible cor-
related electron states in these wells.

In a recent paper, i4 we investigated the effect of spin
on the subband spectrum in these wells. We considered
a well in a perpendicular magnetic field, and included
the electron spin through both the bare g factor and
a spin-dependent exchange-correlation potential within
the local-spin-density approximation (LSDA).is is This
I SDA gives an effective potential that depends on the
local density and spin polarization of the electron gas.
The spin effects were included self-consistently in the sub-
band spectrum calculation. We found that the electron
gas can undergo significant changes due to the spin. In
many wells, the electron gas will undergo an abrupt spin
polarization with increasing magnetic field. Due to the
closely spaced subband levels, the enhancement of the
effective g factor can cause the spin energy to become
larger than the intersubband spacing, resulting in the
population of only one spin level and several subbands.
We also found spin density waves across the width of the
well and a sign change of the effective g factor for the
lowest electron subband for certain magnetic field values
and well geometries.

In this paper, we will consider observable signatures
of the spin effects described previously. In particular,
we are interested in the spin polarization of the elec-
tron gas and enhancements of the effective g factor.
We study Al Gaq As systems with the Al concentra-
tion tailored to produce a parabolic conduction band
minimum. These MBE grown wells are populated via
remote Si doping layers. The well is characterized by its
width, curvature, and filling factor fwhere f is given by
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n2 is the 2D sheet density and m is the width of the
parabolic well. n3 is the constant 3D density of back-
ground positive charge that will give the same potential
as the graded Al Gaq As structure. n3 is sometimes
called the "target density" of the well and is determined

by the curvature of the conduction band edge. We use the
eigensolver described in our previous papers ' to calcu-
late the eigenenergies and wave functions of electrons in a
WPQW. This eigensolver employs a fourth-order Runga-
Kutta integration and a self-consistent iteration scheme
similar to those used by other researchers. These,
in turn, are used to obtain the magnetotransport spectra,
the infrared absorption (o„),and the acceptor photolu-
minescence strength of the well. In all of this work, we
consider the geometry where there is a magnetic 6eld per-
pendicular to the plane of the 2D electron gas. The finite
potential walls bounding the parabolic potential are in-
cluded along with a phenomenological broadening of the
electron states. We do not include temperature because
the impurity broadening of the electronic states is larger
than k~T. We have also assumed the electronic conduc-
tion band is parabolic at energies less than 10 meV of
interest in this paper, and have not considered the effec-
tive mass dependence on the changing Al concentration
across the well.

The organization of the paper is as follows. In Sec.
II, we calculate the magnetotransport at arbitrary mag-
netic 6elds in parabolic wells. We 6nd that transport
in low magnetic fields is relatively insensitive to field-
dependent many-body effects. At higher fields, the
exchange-correlation enhancement of the spin splitting
is important for understanding the quantum Hall spec-
trum. In Sec. III, we compute the infrared absorption
of full or nearly full wells. The hard walls of the well
allow us to see features beyond the single center-of-mass
mode. We see features of the photoabsorption that can
be associated with subband depopulation and the spin
polarization. In Sec. IV, we compute the optical ma-
trix elements of acceptor photoluminescence in parabolic
wells. The photoluminescence spectrum mirrors the sub-
band structure including nonlinearities in the energy lev-
els with changing magnetic field, spin splitting, and po-
larization. Section V is a brief summary of our results.

II. MAGNETOTRANSPORT

Magnetotransport measurements have revealed inter-
esting features in WPQW samples. Ensslin and co-
workers found that quantum Hall plateaus disappear
and reappear as a function of the 2D density, n2, in the
well. This phenomena is better observed via the min-
ima in the longitudinal resistivity, p, that disappear
and reappear in concert with the Hall plateaus. Here, we
present results of calculations of the magnetotransport
spectrum in these wells that agree with experimental re-
sults. We find that spin splitting plays a substantial role
in determining the densities where this occurs. Addi-
tionally, we show that an abrupt spin polarization of the
electron gas might be observable via transport measure-
ments.

To generate the conductivities and, hence, the resis-
tivities, it is first necessary to calculate the density of
states. For magnetotransport in two dimensions, this de-

pends on two factors, the energy level structure of the
electron system and the broadening of levels due to scat-
tering. Scattering is taken into account in our model
by considering an ad hoc field-independent broadening of
each energy level. The broadening function is given by a
truncated Lorentzian:

i&i ( 4I' (2)

where N is a normalization constant,

4F

F(x)dx = i.
—4r

In this approximation, the total density of states is given
by

g(E) = ) KiF(E —E,,„,), (4)

where E,„,are the self-consistent; eigenenergies of
Schrodinger s equation for subband i, Landau level n,
and spin s. N~ is the 2D density of a 61led Landau level.
I', the level broadening, is assumed to be the inverse of
the transport scattering time. This level broadening is
included in the self-consistent LSDA calculation of the
states.

The form that we use for the broadening is an approx-
imate description of the constant, short range scattering
from the Al alloy in the well. For the range of magnetic
fields and densities of interest here (around v = 4), this
field-independent level broadening shows the best agree-
ment with experiment of several broadening functions we

investigated. To a large extent, the energy level spectrum
is insensitive to the shape of the broadening. However,
we have found that the shape of the broadening function
does effect the transport properties. A positive curvature
for the tails of the density of states peaks of each Landau
level, such as in Eq. (2) above, is necessary for agreement
with experimental results. %e found that the behavior
of the v = 3 minima observed by Ensslin et al. did
not appear when we used a field-dependent broadening
such as the standard self-consistent Born model. The
broadening of the levels increased faster than the spac-
ing between the spin levels as the density was increased.
Thus the v = 3 plateau does not appear at all in this sys-
tem with the self-consistent Born density of states. At
high magnetic fields, we expect the self-consistent Born
approximation due to ionized impurities to hold. This
would give an elliptical broadening proportional to the
square root of the magnetic 6eld.

We calculate the magnetoconductivity from

0'o 0 o aegir (B)
y + ~ 2&2 y + id 2~2 g&(0)
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where u, = eB/m'c is the cyclotron frequency, iro ——

Noe r/m' is the classical zero field conductivity, v =
2h/I' is the transport scattering time derived from the
experimental mobility, and Agz; (B) = g~(B) —g~(0) =
g(EF, B)—g(E~,.0) is the magnetic field induced change
in the density of states at the Fermi energy. The re-
sistivity is determined by inverting the 2D conductivity
tensor. We calculate both the low Geld Shubnikov —de
Haas (SDH) and high field quantum Hall effect magne-
toresistivity.

Measurements of the low Geld SDH spectrum of quan-
tum wells are often compared to a "rigid potential model"
for the subbands in standard 2D electron gas systems.
In this model, the subband energies are determined at
B = 0, and then Landau levels are extended linearly
from these energies. As has been pointed out by several
researchers, ' this is not a good approximation in wide
parabolic wells. It ignores the Beld-dependent exchange-
correlation efFects seen in the fully self-consistent calcu-
lations. However, it turns out that the SDH spectrum
agrees quite well with the rigid potential model, even
though the subband spectrum is quite nonlinear.

Figure 1 compares the fully self-consistent SDH spec-
trum to this linear subband approximation. Figure 1(a)
is the magnetoresistivity, p, plotted as a function of
field. Figure 1(b) is the Fourier transform of the resis-
tivity giving approximate population of states. One sees
that the two are essentially indistinguishable. This is due
to the fact that, at low Gelds, the spacing between Lan-
dau levels is much smaller than the broadened width of
the levels. This leads to a relatively smooth density of
states which allows the Fermi energy to remain almost
constant as a function of magnetic Geld. Therefore, the
relative populations of the difFerent subbands also tend
to remain constant leading to a rigid potential type of be-

havior of the SDH spectrum. Shubnikov —de Haas simply
counts electrons in each state and the nonlinearities in
the subband energies will not be observed. The inclusion
of the broadening of the self-consistent states is necessary
to understand this agreement. Without broadening, we
Bnd that both the subbands and E~ are highly nonlinear
functions of the magnetic Beld.

It is possible that the spin dependence of the electron
gas will have an observable efFect on the SDH spectrum in
a parabolic quantum well. We have found a signature in
the resistivity of an abrupt spin polarization of the elec-
tron gas. i4 This polarization causes significant changes
in the electronic energy levels, density proBles, and pop-
ulations. In Fig. 2(a) we show the subband spectrum
(lowest Landau level of each subband) as a function of
magnetic Geld. Spin-down levels are plotted with solid
lines, spin-up levels are plotted with dashed lines, and
E~ is plotted with a dark solid line. Figure 2(b) shows
the SDH signal corresponding to this well. At B=3 T,
a spin polarization occurs where the electrons abruptly
fall into a single spin state with two subbands populated.
At this Beld, we see a spike in the SDH signal due to the
change in the population and density of states at E~. It
is unlikely, however, that such a signal could be observed
experimentally because it will be washed out by density
inhomogeneities across the sample.

At higher magnetic Gelds, energy level crossings have
a profound efFect on the transport properties. In Fig. 3
we show the longitudinal resistivity, p, as a function
of Beld for several difFerent electron densities for a well
of width 750 A and height of the parabolic region of the
well of 75 meV, similar to Ennslin et al.4 The 2D den-
sities range from 2.84 x 10 cm to 3.98 x 10 cm
The p axis is ofFset for each density graph. Lines have
been drawn to show the v = 2, 3, and 4 minima. We no-
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tice that for certain values of the 2D density, the v = 4
minimum disappears in excellent agreement with the ex-
perimental results. This occurs when the second Landau
level of the first subband crosses the first Landau level
of the second subband at the Fermi energy, eliminating
the energy gap at E~. We find that spin plays an im-
portant role in the details of the minimum disappearance
even though this minimum is usually a Landau level gap
rather than a spin gap.

Pronounced minima in p appear at integer filling fac-
tors when Eg, the gap between energy levels at the Fermi
energy, is greater than 2I'. If Eg ( 2I", the minimum in

p disappears and also the Hall plateau is suppressed.
For Geld-independent broadening, there are two possible
causes for the closing of the gap. There may be a re-

ordering of the electron density and spin that inherently
narrows the subband spacing or there may be a level
crossing. The behaviors which we observe in the v = 4
minima in Fig. 3 occur due to both of these efFects. In
Fig. 4, we show the many-body and spin dependence of
this gap. In this figure, we plot the electron energy levels
as a function of magnetic field at v = 4. The density of
the electron gas is changed as a function of the magnetic
field such that the electron gas remains at v = 4. The
lowest Landau level of the first two subbands are shown
as solid lines, the second Landau level of the first sub-
band is shown as a dashed line, and the Fermi energy
is shown as a wide solid line. The spin of each state is
given by the up or down pointing triangles. We see that
at the level crossing, the spin splitting is enhanced by the
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quantum Hall minima. Note disappearance
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50 CALCULATIONS OF THE SPIN DEPENDENCE OF TRANSPORT. . . 15 201

12.0

100-

8.0—
e

6.0-

40
T V V T Y T

~ Spin Up~ Spin down

FIG. 4. Subband and Landau level spec-
trum of same parabolic well as in Fig. 3 for
v = 4 as a function of magnetic 6eld. First
Landau level of the Srst two subbands are
narrow solid lines. Second Landau level of
the Srst subband are dashed lines. Fermi en-

ergy is thick solid line. The electron spin is
indicated by the triangles.

2.0
2.25

I

2.75
I

B (T)

I

3.75 4.25

exchange-correlation effects. The lower spin spht levels
are preferentially populated, changing the Landau level

gap to a spin gap. This afFects the density and magnetic
Beld ranges where the disappearance of the v = 4 gap
will be seen. Due to the spin splitting, the Fermi level is
pinned for a wide range of fields at an energy where there
will be a small energy gap. Without the enhanced spin
splitting, the levels will cross without such a pinning.

III. OPTICAL ABSORPTION

The infrared intersubband absorption of electrons
in wide parabolic wells has received a great deal of
attention. ~ As pointed out by Brey et al. , the ab-
sorption of electrons in a perfect parabolic potential will
be only at a single frequency, corresponding to the 3D
plasma &equency of the electron gas. Experiments have
confirmed this result, giving good evidence that the man-
ufactured wells are, indeed, parabolic. ' Adding poten-
tial structures to the well that break the parabolic sym-
metry, such as spikes, superlattices, or the hard side walls
of the well, 6 24 allows more detailed optical study of the
electron gas. In a recent series of papers, Dempsey and
Halperin 5' have performed a careful theoretical study
of the in&ared absorption in these wells without includ-
ing the effects of the electron spin. In this section, we
consider the eEects of spin on the optical absorption in
quasi-three-dimensional systems.

We follow the development originally used by Ando~
for 2D electron systems and add the required formalism
to treat spin efFects. In the following exposition, the g's
are the one-dimensional wave functions obtained &om
solving Schrodinger s equation self-consistently along the
growth axis of the parabolic quant»m well. The calcula-
tion of the photoconductivity is performed for the geome-
try where the applied electric field, De ' ~, is polarized in
the z direction to excite only the intersubband mode and
not the cyclotron resonance mode. For the intersubband

mode, one expects a strong central peak of the conduc-
tivity at her„, independent of magnetic field, for a perfect
parabolic well. In this work, we consider nearly full wells,
so that deviations &om this single "Kohn mode" are due
to the hard walls of the well that break the translational
invariance of the parabolic potential. We are interested
in the deviations of the absorption &om this single Kohn
mode due to the walls, magnetic depopulation of states,
and spin.

The self-consistent states and energies are used to com-
pute the corrections to the bare transition optical ma-
trix elements. The shift to lower frequencies caused by
electron-hole interactions takes the form of the vertex (or
excitonic) correction:

Pa r a', r = f W&(z)Q&'(z—)AV„,gq (z)g;, (z)dz, (7)

where the change in V„,due to the perturbing field is

. &bv„. sv„.)
b,v„,= ) i

"'+1/n2 "'
i

Any, .- ( bn

The indices, k, l, k', l' label the electronic subband, Lan-
dau level, and spin of the self-consistent states. Thus,
these are triplet indices, k ~ (ii„li„si,). dna is the
change in electron density for each state. Both density
and spin-polarization effects are included in this expres-
sion. ((z) = [p, (z)-p ](z)/[p, (z)+p (z)], where p, (z)
is the local 3D density of the spin-up and spin-down
electron gases, is the local polarization of the electron
gas. V„,is the spin-dependent LDA exchange-correlation
potential. ' It depends on both total density and spin
polarization so that

"'b,f = ) 1/n2 "'b,ns.
b(

„

h(

One should note that the sum in this expression includes
a sum over the two spins.
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The shift to higher frequencies due to the resonance
screening (or depolarization) correction has the form

4me' +
dz gk (z)g,

*
(z)

Iz z
I d II y ( Il)y*( II)

These terms are used to calculate the transition matrix:

~k, l;k', l' Ek, ( ~k, k' ~l, l' + (&k 'nl) (leak' lit')2 1/2 1/2

X(Ek !Ek' I') (o'k I k' I' —pk I k' L').X/2

In this equation, nk is the 2D density of the state k and
Ek ~ is the energy difference between the states k and l.

The structure of this matrix is key to the calculation.
For our computation, we have not included spin fIip tran-
sitions so that the A matrix is divided into four quad-
rants. The upper left quadrant describes pairs of elec-
trons making ak, sk =t to st, s~ =g transitions. The
lower right quadrant describes pairs of electrons mak-
ing sk, ak =J, to a~, a~ =$ transitions. The oK-diagonal
quadrants describe ak =g to a~ =g and sk =$ to s~

——j.
transitions, and vice versa.

The eigenvalues of this matrix, E&, are the squares
of the experimentally observed transition energies in the
system. The eigenvectors of this matrix are used to con-
struct the oscillator strengths:

Zk k'

1/2

xi
I'nk —~k ~

n2
Uk, k', l

where Uk k .
~ are the elements of the lth eigenvector of

A, and Zk k~ are the matrix elements of z between the k
and k' states. We use the sum rule on these oscillator
strengths to check the calculation and to determine if we
are using a sufBciently complete set of states.

Finally, the conductivity is calculated by

We choose our phenomenological relaxation time v to
correspond to the level broadening in the wave function
calculation as described in Sec. II above.

We perform the calculations for a parabolic quantum
well which is 1000 A. wide and with filling factors of 0.6,
0.8, and 1.0. The Al concentration at the edge of the we11
is 5% to produce a well depth of the parabolic region of
40 meV. The result is a well with two states at B = 0
for the 0.6 and 0.8 filing factor and with three states
at B = 0 for the 1.0 filling factor. These parameters
correspond to a well with a target 3D density of n3 ——

2 25 x 10 cm and a plasma &equency of ~~ = 5 55
meV. We investigate such a wide, shallow well because
of the enhanced exchange-correlation effects and a strong
spin polarization.

In Fig. 5, we show the subband spectrum and photo-
conductivity of the full well (filling factor f = 1.0). This
well is efFectively a square well, the bare parabolic poten-
tial canceling the Hartree term in the electron-electron
interaction, giving a strong interaction between the elec-
trons and the walls. Figure 5(a) shows the energies of
the lowest Landau levels of each of the subbands as a
function of the magnetic field (the subband spectrum).
Each spin state is shown, with the Fermi energy given by
the thick line. Figure 5(b) shows logio o„(~)as a func-
tion of magnetic Geld and energy. We see strong peaks
near the 3D plasma &equency, shifted upwards by the in-
teractions with the walls of the well, and satellite peaks
caused by the hard walls of the well. In Fig. 5(c), we plot
the contours of logio cr (u). In Fig. 5(c), the transition
energy is the horizontal axis and magnetic Geld is the
vertical axis. There are two very nonlinear peaks that
begin, for B = 0, at 6.32 and 6.85 meV, and two satellite
peaks that disappear due to subband population at 9.74
and 12.4 meV. We should note that satellite peaks above
the 3D plasma mode have been observed in tilted field
experiments.

The behavior of the conductivity peaks as a function
of Geld has several features of interest. One can deter-
mine the physics of these features by comparing the con-
ductivity [Fig. 5(c)] with the subband spectrum [Fig.
5(a)]. The disappearance of the highest energy conduc-
tivity peak around 2.3 T corresponds to the depopulation
of the third subband in the system. Up to this Geld, the
energy of all the peaks remain constant. Above 2.3 T,
the second subband begins to depopulate, with a corre-
sponding decrease in the conductivity peak at 9.74 meV.
In this regime of magnetic field, we also see an increase
in the splitting between the two main conductivity peaks
that reaches a maximum when the second subband is
fully depopulated. The two different peaks here corre-
spond to the two spins, because the excitonic correction
[(Eqs. (7) and (8)] depends on spin through the spin-
dependent exchange-correlation potential and the inter-
action with the well walls. This is the magnetic Geld

regime where we see a maximum in the spin splitting in
the subband spectrum due to V„,. The system undergoes
a spin polarization at around 5.5 T. At this Geld, the en-

ergy of the electron gas is minimized by populating only
a single spin state. Changes in the exchange-correlation
energy and the electron density cause a significant shift
in the subband energies of the well, and one spin of the
second subband is repopulated. This effect is reQected
in the conductivity by the reappearance of the satellite
peak at 9.74 meV and the shift back together of the two
main conductivity peaks around 6.5 meV. This change
in the conductivity is very large because the second sub-
band has an odd parity wave function across the well
and thus has peaks near the walls giving a strongly non-
parabolic potential term. For fields above the polariza-
tion, the satellite conductivity peak again decreases and
disappears as the second subband depopulates, and the
main peaks again separate with increasing 6eld due to
spin-dependent excitonic corrections.

For a system with filling factor f = 0.8, we find a sub-
band spectrum with many of the same features as the
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full well. This is plotted in Fig. 6(a), with logos o (~)
shown in Figs. 6(b) and 6(c). There is a single satellite
peak, at 10.0 meV, that disappears with field correspond-
ing to the second subband in the well. Because there is
less overlap between the electron wave functions and the
walls, the Kohn mode is a more dominant feature in the
conductivity with a strong, relatively constant peak at
5.79 meV and a much smaller spin-split peak at 7.37
meV. This is again above the 3D plasma frequency, but
is much closer than for the full well. Because we are plot-
ting logip o, the peaks at 7.37 meV and 10.0 meV in
this figure are more than an order of magnitude smaller
than the main peak. A spin polarization also occurs in
this system at a magnetic field of 5.5 T but the effects
on the subband energies are clearly smaller. The satel-
lite peak at 10.0 meV reappears only slightly at the spin
polarization. This is because the second subband is only
partially repopulated by the polarization and is quickly
depopulated with increasing magnetic field. Above 7.5 T,
where there is only a single state filled and the conductiv-
ity is constant reQecting the constant subband spacing.

The above results can be contrasted to results from a
system with f = 0.6 shown in Fig. 7. Here, the satellite
conductivity peaks are five orders of magnitude smaller
than the Kohn mode, and the main conductivity peak
does not change position as a function of magnetic field.
This is due to the separation of the populated wave func-
tions in the well and the hard walls at the edge of the
well. This system acts like an infinite parabolic system.

Our results show t;he effects of spin on the absorp-
tion spectra in these wells when the electrons interact
with the hard walls. The walls cause satellite peaks in
the conductivity corresponding to higher populated sub-
bands. There is also splitting of the Kohn mode due to
the spin dependence of the exchange-correlation poten-
tial when the electrons interact with the well walls. The
satellite peaks generally disappear as the magnetic field
is increased and the subbands depopulate, one spin at a
time. The peaks can grow and shift significantly at high
fields when the spin effects in the exchange-correlation
potential become large. This is particularly noticeable
when the system undergoes a spin polarization and re-
populates higher subbands. These effects will give ob-
servable signatures of the spin polarization.

have found nonlinear spectra as a function of increasing
magnetic field, in good qualitative agreement with our
previous work.

In this section, we study the optical transitions be-
tween the electrons confined in the parabolic quantum
well and holes bound on acceptor levels. We assume
the parabolic well is lightly doped at its center with a b

layer of acceptors (Be or Zn, e.g.) and consider lumines-
cence due to transitions from the quasi-three-dimensional
electron gas to the ground state of the bound acceptor
levels. Assuming the doping is low enough to neglect
correlations between acceptors, we consider only a sin-

gle acceptor. Because of the strength of the interaction
between the electron gas and the bound hole, there will

be a strong, distinguishable signal f'rom a lightly doped
b layer. Acceptor luminescence experiments have several
advantages over those involving free exciton transitions.
The transition to a single energy level gives a sharper
energy spectrum due to the bound state of the optical
hole. The large acceptor binding energy in GaAs, 30
meV for Be, implies that there is a single, well defined
final state for the electron after transition. The lumi-

nescence energy will be distinct &om transitions across
the band gap and the pumping radiation. This well de-
fined hole state also has the advantage of being spatially
localized, giving distinctly different transition probabili-
ties for different electron subbands, the transition being
roughly proportional to the magnitude of the electron
probability density at the acceptor site. In the case of
doping at the center of a symmetric well, there will be
transitions only from even parity states. Doping the well

at different places will give different information about
the bound states of the electrons. Before the transition,
the bound hole-acceptor st;ate is neutral, causing little
change in the initial electronic states of the well. Finally,
because the ground acceptor state is, to a very good ap-
proximation, heavy-hole like, there will be a distinct po-
larization dependence to the transitions. This will allow
the observation of electron spin effects in the parabolic
well.

We have calculated the optical transition matrix ele-
ments within Fermi s golden rule. In this approximation,
the emission rate has the form

IV. ACCEPTOR PHOTOLUMINESCENCE
, (E,„., ) ~ ', l(alP eli, n, m, s) I'

&i hot'

x8(E —E;„,+ Epi, i). (l4)

Photoluminescence spectroscopy in wide parabolic

quantum wells will reveal details of the subband struc-
ture that cannot be determined by other experimental
means. Because the interaction between the optical hole
and the electron gas breaks the translational symmetry
of the problem, this experiment will not be limited by
Kohn's theorem to observe simply the bare, 3D plasma
fI.equency. Details of the subband energies will be observ-
able, including nonlinearities of the subband spectrum,
enhanced spin splitting, and spin polarization. Fritze
and co-workers and Burnett et al. have performed lumi-
nescence experiments in wide parabolic quantum wells
where they have observed free exciton transitions. They

In this expression, Eph & is the energy of the lumines-

cence, e is the polarization of the luminescence, and P is
the momentum operator of the electron. The electronic
states and energies are (la), E ), the acceptor level, and

(li, , nms), E;,), the conduction band state for an
electron in the subband i, Landau level (n, mj where we

use the symmetric gauge to describe the external mag-
netic field (n is the Landau level number and m labels the
degenerate states within a Landau level), and spin s. Us-

ing the form of the density of states described in Sec. II
above, the total emission spectrum for the luminescence
has the form
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&(EI,).t) ~ ). F(Eo —K,~,s + Ephor)
i,n, na, shot

x (a(P. e)i, n, m, s)

We have not considered the many-body electronic inter-
actions (the "Fermi-edge singularities" ) that can enhance
the luminescence spectrum as states cross the Fermi
energy.

The acceptor state in the quantum well is calculated by
a variational approximation, including the efFects of the
screened ixnpurity potential, the quantum well potential,
and the magnetic field. Because this is a wide quantum
well with a shallow curvature in the valence band as well
as the conduction band, the impurity potential is, by far,
the most important energy in the bound state problem
and will dominate the physics of the acceptor state. We
use a Gaussian form for the bound state,

@ (p, z)=Le 2( p +~

z is the growth direction of the well and the direction of
the external magnetic field and p is the radial coordinate
in the x-y plane. The energy of the bound hole is min-
imized with respect to n and P to get the form for the
wave function. The resultant wave function is very close
to that of the 3D acceptor state without the magnetic
field and parabolic well.

The electron states are calculated &om the self-
consistent solutions of Schrodinger's equation. For the
z-y dependence of the electron states we use the sym-
metric gauge because of the cylindrical symmetry of the
problem. In this gauge, the electronic conduction band
states in the x-y plane have the form

total z angular momentum mg = +1/2 so that the re-
sultant luminescence is, approximately, circularly polar-
ized. Specifically, the s = 1/2 electrons will make tran-
sitions to the m~ = 3/2 hole states with polarization
e = e+ ——x +iy and the s = —1/2 electrons will make
transitions to the mg = —3/2 hole states with polar-
ization e = e = x —iy. Therefore, distinguishing the
polarization of the output luminescence will separate the
spin-up and spin-down populations of electrons, and will
enable the experimental observation of spin-dependent
eH'ects. This polarization is not exact due to the overlap
between the acceptor state and states other than Q
This is, however, a very good approximation because the
binding length of the acceptor state is much smaller than
the magnetic length, 1/a « l. In this case, 1/o. 20 A.

and I ) 100 A..
In Fig. 8, we show a contour plot of the luminescence
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n!mf E {meV)

1495

(17)

where p is the angular coordinate in the x-y plane,

l = "& is the magnetic length, n is the energy in-

dex of the Landau level [E„=fuu, (n + 1/2)j, and m is
the degeneracy index for the Landau level. The matrix
elements in Eq. (15) are calculated using the expressions
above for the electron and acceptor states and the sym-
metry of the Bloch states of the conduction and valence
bands.

The polarization of the luminescence can be used to
distinguish between the two electron spin states. Be-
cause the lowest energy acceptor state is heavy-hole in
nature, the Bloch state of the hole in the transition
has orbital angular momentum L = 1 with total z angu-
lar momentnm m~ = +3/2. Because the acceptor state is
tightly bound at p = 0, and the electron states are of the
form @ oc (p/l)~ ~ for small p, only the states @
have significant overlap with the acceptor state. These
states have orbital z angular momentum L = 0 and

I I I I I I I I
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FIG. 8. Acceptor photoluminescence as a function of pho-
ton energy and magnetic Geld for a parabolic vrell, m = 1000
A and nq ——2x10 cm . (a) f = 1.0, (b) f = 0.8, (c)
f = 0.6.
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spectrum &om a parabolic quantum well as a function of
the magnetic field (z axis) and photon energy (y axis).
We have used the same well parameters as in Sec. III
above, with filling factors 1.0, 0.8, 0.6 plotted in Figs.
8(a), 8(b), and 8(c), respectively. We see the lumines-
cence follows closely the subband spectra plotted in Figs.
5(a), 6(a), and 7(a). At low magnetic fields there are sev-
eral populated Landau levels for each subband, giving a
broad luminescence band. At higher fields, we find dis-
tinct signatures of populated subbands, nonlinearities of
the subband energies due to subband depopulation, and
distinct features of the spin polarization around 5.5 T.
The width of these lines is due to the broadening of the
density of states. Broadening due to experimental appa-
ratus is not included.

The spin dependence of the electron states can be ob-
served through the polarization of the emitted photons.
In Fig. 9, we have plotted the positions of peaks in the
luminescence as a function of the magnetic field for each
spin. Figures 9(a), 9(b), and 9(c) are for Blling factors
1.0, 0.8, and 0.6, respectively. One should note that there
is no signal kom the second subband due to the fact that
it has zero amplitude at the well center. Higher energy
peaks at low magnetic fields, particularly for filling fac-
tors 0.8 and 0.6 are due to higher Landau levels of the
lowest subband. These figures show quite clearly the sub-
band level spectrum for the wide parabolic well. We see
the nonlinear behavior of the subbands with increasing
magnetic field, and the enhanced spin splitting of the
levels predicted previously. At higher magnetic field,
we see the abrupt end of one spin population due to the
spin polarization of the electron gas. This will result,
experimentally, in the abrupt polarization of the emitted
luminescence and shift in the photon energy due to the

change in the electron states. This is another clear indi-

cation of the predicted spin polarization of the electrons.

V. CONCLUSIONS

We have used numerical studies of wide parabolic
quantum wells to determine experimental signatures of
electron-electron interaction and spin eKects in these
wells. We have seen important correlation and spin de-
pendence in the magnetotransport, and signatures of the
electron density distribution and spin population in op-
tical experiments. For the integer quantum Hall eKect
in these wells, the spin splitting of levels is important
to understand the observed disappearance and reappear-
ance of Hall plateaus as the density of the electron gas
changes. There is also a possibility of detecting spin po-
larization. in Shubnikov —de Haas experiments. In&ared
absorption in these wells displays satellite peaks above
the 3D plasma mode that show strong dependence on
the electron spin. Finally, we propose acceptor photolu-
minescence experiments as an ideal probe of the subband
spectrum and many-body effects. We see that enhanced
spin splitting and spin polarization should be observable
in experimental investigations. These results are in qual-
itative agreement with excitonic luminescence data.
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