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We use a quasichemical formalism to make quantitative predictions of the native point defect
densities in Hgo. SCdo.gTe. The electronic contribution to the defect-formation free energy is calcu-
lated using the self-consistent first-principles full-potential linearized mufBn-tin orbital method and
the local-density approximation (LDA). A gradient correction is added to the LDA result so that
absolute reference to the chemical potential of the mercury vapor phase can be made. A Green's
function approach based on a valence force field plus a point Coulomb model is used to calculate the
vibrational contributions to the defect free energy (both energy and entropy). We find the double
acceptor mercury vacancy is the dominant defect, in agreement with previous interpretations of
experiments. The tellurium antisite is also found to be an important defect in this material. Predic-
tions of the low-temperature hole concentrations are made as a function of annealing temperature
and compared with available experiments. The order of magnitude of our predictions agrees well

with experimental results, and discrepancies can be attributed to contributions to the free energy
that we have neglected or to inaccuracies in the intrinsic reaction constant used. Suggestions for
further experimental work are made.

I. INTRODUCTION

The pseudobinary semiconductor alloy Hgi, Cd Te
with @=0.22 is currently the material of choice for high-
performance detectors in the long-wavelength infrared
(8—14 pm). Unlike other II-VI systems, both extrinsic
p- and n-type doping can be achieved in Hgo sCdo zTe,
although in as-grown material the electrical proper-
ties are often determined by native point defect con-
centrations. The dominant defect is believed to be
a double-acceptor mercury vacancy;i post-growth low-
temperature mercury-saturated anneals are routine for
the reduction of the mercury vacancy concentration. As
in other semiconductors, it is more difBcult to establish
the presence and identity of neutral and compensating
point defects, much less to determine their concentra-
tions. Di8'usion measurements2 indicate the presence of
mercury vacancies and mercury interstitials, as well as
tellurium interstitials, although no unambiguous deter-
mination of their densities can be made &om these ex-
periments.

Although extended defects such as dislocations often
appear to be the performance limiter in current state-of-
the-art Hgp 8Gdp 2Te devices, a number of mysteries
still persist that may relate to native point defects. (1)
For operation at 40 K, there i.s a vari. ation in RpA~ and
lifetime among pixels with no etch pits, indicative of
spatial nonuniformity in the material that is unrelated
to dislocations. (2) An as yet unidentified donor lim-
its the minimum n-type carrier concentrations obtain-
able during a mercury-saturated low-temperature anneal
of the material. %'hile the pressure and temperature de-
pendence of this residual donor does not appear to cor-
relate with the equilibrium dependences of any native
point defect, the nearly universal presence of the donor

in liquid phase epitaxy (LPE), solid-state recrystalized,
and molecular beam epitaxy (MBE) materials and its
elusive nature do suggest that a native point defect is
responsible. (3) Undoped LPE material that has been
subjected to a low-temperature mercury-saturated an-
neal and nominally converted to n type shows an anoma-
lously low mobility. One interpretation is that it is a con-
sequence of interpenetrating p- and n-type regions, with
the high effective-mass holes lowering the measured Hall
mobilities. 7 If this model proves to be correct, it may
well be a native point defect that causes nonuniform an-
nealing of the material. To overcome this low mobility,
a donor impurity is added in concentrations above that
of the unknown residual donor. Thus, to lower the n
doping to desirable levels, an understanding of the origin
of the doping, and the low mobility and a recipe for its
elimination are neeeded. (4) The identity of the primary
Shockley-Reed-Hall (SRH) recombination centers has not
been established; if they can be correlated with native
point defects, strategies for their elimination can be de-
veloped. (5) MBE material is often n type as growns and
may be related to a nonequilibrium population of native
point defects.

Unraveling the matrix of usually indirect and often
contradictory experimental data on the native point de-
fects in semiconductors is a complicated task, especially
when the defects may be spatially varying. Numerous
theoretical eÃorts have utihzed first-principles methods
to elucidate the properties of native point defects in the
group IV, III-V, and II-VI semiconductors (see, for ex-
ample, Refs. 9—12). %'hile these studies have led to much
insight into the properties of the point defects, no quanti-
tative predictions of the defect densities were made. Sev-
eral earlier theoretical studies have looked at the prop-
erties of defects in HgcdTe, 6 although once again no
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quantitative predictions of defect densities were given.
Our goal in this paper is to theoretically identify the

important native defects in HgCdTe, to calculate their
densities as a function of growth and processing condi-
tions, to substantiate the experimentally deduced prop-
erties of the native defects, and to begin to unravel the
remaining mysteries in this material. To express the
concentration of the native point defects in terms of
their formation free energies, we employ the quasichem-
ical formalism. In addition to the electron and hole, we
have included eight native point defects (and their ion-
ized species) in the analysis: the mercury and tellurium
vacancies, the mercury and tellurium antisites, and two
types of mercury and tellurium tetrahedral interstitials-
one surrounded by four cation near neighbors and one
surrounded by four anion near neighbors. As we will
show, we have attempted to incorporate all of the impor-
tant contributions to the f'ree energy and adopt a first-
principles approach for most of the quantities we calcu-
late. The only significant empirical data we employ are
those needed to obtain the temperature-dependent in-
trinsic reaction constant. Our calculated native defect
concentrations are in quantitative agreement with the
available experiment data. Preliminary results of this
work have been published previously.

A number of features make our study of defects in
Hgp SCdo g Te unique and permit us to calculate absolute
defect concentrations.

(i) To calculate the electronic contribution to the de-
fect formation &ee energies we employ the self-consistent
first-principles full-potential (FP) linearized muffin-tin
orbital (LMTO) methodi and the local-density approx-
imation (LDA). The LMTO method is well suited for
compounds containing d electrons, such as Hga Cd Te.

(ii) Because the LDA overbinds, we have also employed
gradient corrections to the LDA of the Langreth-Mehl-Hu
type. These corrections greatly improve the overbind-
ing found in the LDA. We believe the calculated en-
ergies are precise enough that we may make comparison
with atoms referenced to the &ee atom, and therefore by
combining these energies with the translational energy of
the atoms in the vapor phase, we are able to calculate the
chemical potential for a monoatomic mercury vapor.

(iii) A Green's function formalism within a valence
force model plus point-charge ionic model is used to
calculate the vibrational contribution to the defect-
formation Bee energy, both the enthalpy and entropy.

(iv) The combination of the electronic, translational,
and vibrational free energies calculated in (i)—(iii) en-
compass the primary contributions to the total defect-
formation free energies when referenced to a mercury
vapor. The total defect-formation free energy is then
incorporated into a quasichemical formalism, and pre-
dictions of absolute defect concentrations as a function of
the thermodynamic variables temperature and pressure
can be made.

The remainder of the paper is organized as follows.
In Sec. II we describe the quasichemical formalism used
to calculate the neutral native defect concentrations and
its extension for ionized defects and alloys. The calcula-
tions of the defect-formation free energies are discussed

in Secs. III and IV for the electronic and vibrational con-
tributions, respectively. In Sec. V we present the results
of our calculations and a comparison with available ex-
perimental results. We end with a brief summary and
conclusions of our work in Sec. VI.

II. DEFECT CQNCENTRATIGNS

A. Quasichemical formalism in compounds

TABLE I. Defect reactions considered for compound AC.
The notation is as follows: The primary symbol refers to the
species, the subscript refers to the site that the species occu-
pies, with no subscript indicating that the species is occupying
its usual lattice site. V corresponds to a vacancy, I an inter-
stitial, R some external reference state, and X a generic de-
fect. Two types of interstitials are considered, both occupying
tetrahedral sites, the 6rst surrounded by four cation nearest
neighbors Ic, the second surrounded by four anion nearest
neighbors IA Following th.e notation of Kroger (Ref. 21),
an x superscript corresponds to a neutral species, a prime to
a negatively charged species, a bullet to a positively charged
species, and e' and h are an electron and a hole, respectively.

AC
AR

2AR
2AC

AR
AR
AC
AC
Xx
Xx

/+ I e

V~ C+AR
AVc
AAc
CA" C+ 2AR
Ax

I~
AxIc
CI" + AR

X '+ zh'
X '+ ze'
0

(1)
(2)
(3)
(4)
(5)
(6')
(6)
(6')
(&)
(6)
(9)

We begin by outlining the formalism employed to cal-
culate the defect concentrations in a compound as a func-
tion of external parameters. In Sec. IIC we discuss ex-
tensions of the formalism necessary to treat the low-x
alloy Hga Cd Te.

The defect reactions for the compound AC to be con-
sidered in this paper are listed in Table I. We have chosen
the AC unit cell and A in the phase R as our reference
states for the calculation of the reactions' free energies.
From Gibbs's phase rule we know that for a system of two
components (A and C) and two phases (one of which is
the AC zinc blende solid) there are two degrees of free-
dom. For this paper we shall assume that temperature is
one degree and that the chemical potential of an external
reservoir of A or C atoms is the other. The chemical po-
tential is chosen to be consistent with the experimental
situation to be modeled. We shall choose our reference
state to be the mercury vapor and therefore choose to
reference our reaction energies to the AC solid and AR,
which will be taken as the monoatomic mercury vapor
(extensions of this analysis to the alloys are discussed in
Sec. V).

Reference to other reservoirs can be obtained by con-
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sidering the additional reaction

AC m AR+CR (Sa)

or for molecular species as the reference

1 1A„„+ C„
nen+

(sb)

where n; is the appropriate integer, and by taking linear
combinations of these with the reactions in Table I.

We are not restricted to specifying the temperature
and a chemical potential of one of the species as the two
degrees of &eedom, but could choose instead another par-
ticular set, including, for example, the stoichiometry of
the system. While other choices are possible, usually
one does not know a priori the material's stoichiometry.

Assuming that the defect densities are small and that
they are noninteracting, &om the law of mass action we
can write the reaction constant for each of the neutral
defect reactions in Table I as i'

[X'] gx. (Eg —y,p —F~'b + Fx'b l
exp!

[X ] g„. ( k~T )
for a donor state of the defect X. A bullet superscript
indicates a positive charge and a prime a negative charge,
E and E~ are the acceptor and donor one-electron ion-
ization energies with respect to the valence and conduc-
tion band (both defined as positive for states in the gap),
and p~ is the Fermi energy. Although the last term in
the exponential, Fx—'b + F&'„, should rightly be there,
and corresponds to the difFerence in the vibrational &ee
energy of the neutral and ionized defect, it has never been
considered previously and for the present we shall neglect
it too.

For multiply ionized defects with positive Hubbard U's
[reactions (7) and (8) in Table I], the above expression
for the number of ionized acceptors generalizes to

[X"] gx* 1 s vib vib

[Xx]
exp (zpJ; —E — —E —Fx., + Fx„),

t' Fx~Kxx = 8exp! —
!
= [X"],

k~T ) (2)

where [X"] is the density of the neutral defect X, 8 is
the number of unit cells per volume and converts [X"]
&om site fraction to defects per unit volume, and Fx~ is
the &ee energy for the neutral defect reaction. The &ee
energy for any defect X can be written as the sum

Fvib + Felect + Ftrans + k T l (G)

where k~ is Boltzmann's constant, and F~' is the vibra-
tional, F&" is the electronic, and F&~"' is the trans-
lational energy contribution to the reaction &ee energy,
and G accounts for the degeneracies of the reactants. In
the quasichemical approximation, G = (g&g~)/(g~gB)
for the reaction A + B -+ C + D, where g; is the de-
generacy of reactant i. Once Fxx is know for a given
reaction, Kxx can be evaluated and the defect concen-
tration can be determined. The diKculty, of course, is
in the evaluation of Fxx, which is discussed in Secs. III
and IV.

B. Ionized defects and the intrinsic reaction constant

[X] gx (&F —E —Fx~, +F
[X ] gx. k k~T

exp ! (4)

for an acceptor and

The above discussion applies to the neutral defect den-
sities. In most semiconductors the native point defect
will have one or more localized levels in the band gap, al-
lowing for multiple ionization states of the defect. We
thus need to calculate the concentration of these ion-
ized defects, in addition to the neutral concentrations
discussed above, to obtain the total defect populations.
Once the -energies of the localized levels are determined
(Sec. IIIE) their populations can be calculated via

where z is an integer and E is the ionization energy of
the ith ionization level. A similar generalization applies
for the donor levels.

For each ionized defect concentration, we introduced
one equation. In addition, though, we have two new
unknowns, the Fermi energy and either the electron or
hole concentration. Thus two additional equations are
needed.

First, we have the additional reaction for the genera-
tion of electron-hole pairs across the band gap, reaction
(9) in Table I, and the corresponding intrinsic reaction
constant

K„„=[h'][e'] = pn,

where p—:[h'] and n = [e']. In general, K~ depends
on the shapes of the conduction and valence bands, the
band gap energy, the Fermi energy (for degenerate statis-
tics), and the temperature variation of these quantities.
Several limits are often encountered in the evaluation of
K~„. First, when the conduction and valence bands are
parabolic, although not necessarily isotropic, E oc k2,
and the reaction constant can be written in terms of the
Fermi-Dirac integrals as

3

4l h, I
(m~m)

I 2vrkBT l
h' )

XP
k~T ) '~'

g knT

where %~~2 is the Fermi-Dirac function; E„E,and p~
are the conduction band, valence band, and Fermi ener-
gies, respectively; mp, and m, are the hole and electron
density-of-states effective masses, respectively; and h is
Planck's constant. In the nondegenerate limit, this re-
duces to the familiar expression

K~ =4! ! (mmmm ) ~ exp! " '!, (9)
(2vrk~T t

spaz
/'E„—E, l
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which is independent of the Fermi energy. For the general
case, which will apply even at moderate temperatures
for narrow-gap HgCdTe, K„„depends on the extrinsic
carrier densities through its dependence on p~. More-
over, the conduction band in this narrow-gap material is
not well represented by a parabola, but is rather more
hyperbolic. Because the hyperbolic dispersion relation
approaches a linear dependence away &om the band edge,
we will for the present assume a linear dispersion rela-
tionship of the form E = ak. In this case the intrinsic
reaction constant becomes

/2~k~Tmh) '
2 (k~TI

h2 ) x2 ( o. )
(p~ —E, l (E„—p~)

k&T ) q k&T

where T2 is the Fermi-Dirac integral of order 2.
The requirement of charge neutrality leads to a second

additional equation:

the alloy 0 is the same.
In addition to Eq. (12), in the alloy the vacancy on

the o. sublattice can also form via the reaction

BC m V"C+ B~ (15)

with

[V"] = 0(x)exp
k~T )

(16)

F.'.-~
(1 —z)exp = (z)exp &"'r (17)

It is apparent that this simply corresponds to the differ-
ence of Eqs. (12) and (15)

where I""„ is the reaction free energy corresponding to
Eq. (15) in the alloy. Now the vacancy concentrations
predicted by Eqs. (14) and (16) must be equal and thus

):) [& ]+[']=).). [&;-]+[h']
2 Z

Ag+BC m AC+BR (18)

where i sums over the various defects and z sums over
the various ionization states of the defect X;.

C. Quasichemical formalism in alloys

We wish to generalize the above formalism to the ideal
cation substituted pseudobinary alloy Ai B C. It is
perhaps easiest to demonstrate the generalization with a
specific defect reaction, for example, a neutral vacancy on
the cation sublattice. In the compound AC the formation
reaction is given by reaction (1), Table I:

AC-+ V C+AR )

where V indicates a vacancy on the cation sublattice. In
the alloy a neutral vacancy on the o. sublattice can form
via the same reaction. The only difference comes in the
evaluation of the reaction constant. In the compound the
vacancy density is given by

f Fvx )—[V"] = Oexp
(( kBT )

(13)

and in the alloy it is given by

[V"] = 8(1 —x)exp
I kgT) (14)

where —I"' „ is the reaction free energy corresponding to
a

Eq. (12) in the alloy. The factor of (1 —x) results from
the configurational entropy contribution to the chemical
potential of A on a lattice site (ls), knTln([A~, ]/[ls])
k~Tln(x). Because we have assumed that the defect con-
centrations are small, the configurational entropy contri-
bution to the chemical potential of A in the compound
AC is k~Tln([Ai, ]/[ls]) 0. In both the compound and

that is, the exchange of an A and B on a lattice site,
which is a reaction in the alloy in equilibrium with A~
and Bg. An analysis similar to the above applies for the
anion antisite C, which also substitutes on the cation
sublat tice.

In the pseudobinary alloy, the vacancy free energies
F&x and F' „appearing in Eqs. (13) and (14) may be
difFerent. The energy of a vacancy depends on the lo-
cal configuration of the surrounding lattice; this changes
in the second and more distant neighbor shells for the
cation vacancy and the anion antisite in the cation sub-
stituted alloys. A completely rigorous approach would
treat each kind of vacancy uniquely; indeed in a previ-
ous work we found a configuration dependence of the
vacancy in the Ap 5Bp 5C lattice of several tenths of an
eV, varying approximately linearly in the number of A
atoms in the second neighbor shell. Here we have ig-
nored this refinement and assumed the A vacancy and
C antisite surroundings are totally of species A. This is
justified to some extent because we are interested in low
x compositions of Hgq Cd Te.

For defects on the C sublattice (e.g. , the anion vacancy
and the cation antisites) as well as interstitial atoms in
certain tetrahedral sites, one must more carefully con-
sider the complications from the alloy because disorder
is found already for nearest neighbors. For systems in
which these classes of defects are important, the configu-
ration dependence of the surrounding sublattice must be
taken into account. For low x Hgi Cd Te we find the
densities of these defects to be quite low and thus the
error incurred in using the electronic energies calculated
for the pure AC compound will not impact the major
conclusions of our work.

Finally, the band gap is one other important consider-
ation when comparing the alloy to the pure compound.
This is of particular importance for the intrinsic reaction
constant and we employed an empirical fit to the tem-
perature dependence of the alloy band gap and intrinsic
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carrier concentration that are used to calculate K~„. This
is presented in detail in Sec. III G.

III. CALCULATION OF DEFECT FORMATION
FREE ENERGY: ELECTRONIC CONTRIBUTION

A. Pull-potential LMTO calculations

Total energy calculations for the defect reactions were
all obtained with a full-potential version24 of the LMTO
method in the local-density functional approximation of
von Barth and Hedin. This method has been tested
extensively for most of the elemental 8p and d bonded
solids, the II-VI, III-V, and column IV semiconductors,
and a host of other solids. Our results, which will be
reported elsewhere, show good agreement with experi-
ments for all systems studied, with small and systematic
errors in structural and mechanical properties. The most
prominent error, particularly for the present purposes, is
the overbinding of the solid.

In the FP LMTO method, the only important approx-
imation we make beyond the local-density approxima-
tion lies in the treatment of the interstitial matrix ele-
ments. The LMTO method employs an atom-centered
basis, represented by Hankel functions in the intersti-
tial. For the calculations presented here, the basis con-
sisted of a "triple kappa" basis 22 orbitals per atom, with
energies —0.01, —1, and —2.3 Ry for the 8 and p or-
bitals and —0.01 and —1 Ry for the d orbital. Inside
the muflin-tin (MT) spheres, wave functions are repre-
sented by spherical harmonics and numerically tabulated
radial functions. The electron density and potential can
be similarly represented since the density generated by
a Hamiltonian is obtained by summing over the eigen-
vectors. Outside the MT spheres, another treatment is
necessary. Methfessel developed a simple, eKcient way
to represent the density and potential in the interstitial
by extrapolation from the edges of MT spheres, where the
value is well known. The electron density is represented
in the interstitial as a linear combination of Hankel func-
tions that are chosen to match the value and slope of the
function at each MT sphere. Two Hankels per site and
lm are enough to match the values and slopes at all MT
spheres. This representation of the density throughout
the interstitial is approximate, although it becomes ex-
act near any MT sphere. Extensive tests show that the
approximation works very well for close-packed systems,
but the errors can become significant when the packing is
poor. To ensure a good fit to the charge density and po-
tential in the interstitial region of the zinc blende solids,
we include empty spheres at each tetrahedral intersti-
tial site (rendering the sphere packing bcc for the ideal
lattice). In addition, we added orbitals to the basis by
centering them on the empty spheres. The addition of
2s and 2p orbitals changed the energy by approximately
0.1 mRy/atom, showing that the basis is nearly complete.

To assess the validity of the interstitial approxima-
tion for the representation of the charge density and in-
terstitial matrix elements, an alternative approach was
developed, which is similar to a procedure described by

Jones and Sayyesh. When calculated in this way the
total energies changed by approximately 1 mRy/atom,
showing that the approximation is a good one.

Both the charge density inside the spheres and the
tails of Hankel functions centered on a neighboring sphere
were expanded to E = 6. We estimate that the error intro-
duced by truncation at l = 6 to be about 1 mRy/atom,
in line with other errors in the method. The core was
allowed to relax during the self-consistency cycle. The
semicore d electrons in the tellurium were treated explic-
itly as valence states in a second panel; explicit treat-
ment of these states was found to introduce a small but
significant correction to the total energy. For the 16-
atom cells, the Brillouin zone integrals were done by a
sampling method for the charge density and the linear
tetrahedron method for the band —structure energy, aug-
mented by Blochl weights, and a mesh of four divisions
was used (six k points). Checks showed that this was
sufficient to converge the energy to 1 mRy/cell.

B. Supercell approximation

Supercells are used in which a periodic array of defects
is constructed. Defect formation energies are calculated
from a difference in total energies of the compound with
and without the defect. For example, if we denote Cz (V~)
as the energy of a supercell containing j lattice sites and
one A vacancy, the energy for defect reaction (1) in Ta-
ble I is given by

E(V~) = f~(V~) + E(A~) —E'~(AB),

where E(AR) is the energy of an A atom in the reference
state R and fz(AB) =jE(AB), where E~~ is the energy
of an ideal AB unit cell. For some defects the number of
lattice sites changes in the reaction; for example, for the
formation of the B antisite via reaction 4 in Table I, the
formation energy is given by

E(B~) = f, (Bg) + 2E(A~) —t'~+2(AB)

Because we wish to calculate the formation energies
in the dilute limit, we use the largest supercell compu-
tationally feasible. For this paper, all calculations were
done using 16-atom supercells.

C. Cradient corrections to the local density

The local-density approximation generally overbinds
the solids. Several systematic extensions of the local-
density function have been proposed that are based on
generalized gradient approxiznation for the exchange and
correlation energies. We have considered one of these
extensions, that proposed by Langreth and Mehl, and
have examined the systematics in the gradient corrections
to the lattice constants, cohesive energies, bulk modulus,
and other elastic constants for a wide array of solids;
preliminary results of that work for the zinc blende semi-
conductors are shown in Table II. With few exceptions,
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Compound
Si
Ge

LD
2.58
2.22

Cohesive energy (eV/bond)
GC Experiment
2.31 2.32
1.88 1.94

AlP
AlAs
AlSb

2.35
2.17
1.91

2.05
1.85
1.61

2.13
1.89
1.76

GaP
GaAs
GaSb

2.08
1.91
1.70

1.76
1.56
1.36

1.78
1.63
1.48

TABLE II. Bulk cohesive energies with and without the
gradient corrections (GC) to the local density (LD), and com-
parison with experiment.

the radial relaxation of the defect near-neighbor atoms.
For the on-site defects (the vacancies and antisites) we

permit only the nearest-neighbor atoms to relax. Esti-
mates of these relaxation energies are given in Sec. V.

Relaxation energies are calculated only for the neu-
tral defects and are assumed comparable in the ionized
defects. Nonradial relaxations such as the trigonal and
tetragonal distortions that split the degeneracy of the
triply degenerate T2 states may be important and may
differ substantially for the different charge states of the
system. Because the symmetry of the distortion depends
on the charge state of the defect, distortions and charge
states must be treated simultaneously. These distortions
have not been considered in this paper.

InP
InAs
InSb

1.89
1.77
1.60

1.56
1.42
1.26

1.74
1.55
1.40

ZnS
ZnSe
Zn Te

1.82
1.64
1.43

1.53
1.35
1.15

1.59
1.29
1.20

CdTe 1.33 1.04 1.10

HgS
HgSe
Hg Te

1.29
1.19
1.09

0.94
0.84
0.76

1.02
0.85
0.81

D. Relaxation

In general the lattice relaxes in the presence of a de-
fect, thereby lowering the lattice energy. In the dilute
defect limit, the radial relaxation of the lattice extends to
infinity. In the supercells we account for this relaxation
by allowing the overall lattice constant of the supercell
to relax to minimize the supercell tota1 energy. Because
Hg Te and CdTe are nearly lattice matched and their elas-
tic constants are the same, the defect relaxations in pure
HgTe should be comparable to those in the HgCdTe al-
loys. Second, for the most important defects, we permit

the gradient correction systematically improves the pre-
diction of the cohesive energy, although the prediction of
the elastic constants often worsens slightly. The improve-
ment in the cohesive energy is largely due to improvement
in the calculation of the total energy of the free atoms,
rather than the solid.

Here we are interested in calculating total energies for
reactions in which a constituent is exchanged between
the solid and the vapor, and thus the errors inherent
in the local —density calculation of the cohesive energy
will be present in these energies also. Because the re-
laxations do not change significantly when gradient cor-
rections are added, we have completed the majority of
the calculation, including the relaxation, within the FP
LMTO. The gradient correction energy, calculated at the
LDA-determined relaxed positions, is then added to the
LDA energy.

E. Localized defect levels

The calculation of the ionization states of the defects
is perhaps the most dificult part of the calculation of the
native defect concentrations, in a large part because of
the inadequacies of the LDA in predicting the band gap of
the semiconductors. This is additionally complicated by
the fact that our calculations were done for Hg Te, which
is known experimentally to be a semimetal with a nega-
tive band gap of —0.3 eV, so that even if the LDA band
gap were correct, we would still have a zero-gap material.
Furthermore, because the Coulomb fields associated with
a defect may be extended, we expect that very large su-

percells will be needed to isolate the localized levels of an
individual defect.

We have developed a method to calculate the loca-
tion of localized defect levels in the band gap and have

applied it to the arsenic antisite defect in GaAs. This de-
fect was chosen because of its technological importance
and because these levels have been determined experi-
mentally by Weber et al. Calculations were done within
the atomic-spheres approximation so that we could ex-
amine the convergence of our results going to large (128-
atom) supercells. Our approach is similar to that dis-
cussed by Van de Walle et al. in which the shift in the
Fermi level is examined as electrons are added to (or re-
moved from) the defect, with a compensating uniform
background charge added so as to maintain charge neu-
trality. We find good agreement with experiments of the
two antisite donor levels. We also have found these en-

ergies agreed closely with the positions of peaks in the
density of states, when referenced to the top of the va-

lence band. Details of the calculation will been given
elsewhere.

Because the compositions of HgCdTe of interest here
have narrow band gaps, the determination of the exact
location of the defect levels in the band gap is not as ixn-

portant for the purpose of calculating the defect concen-
trations as in a wider-gap semiconductor such as GaAs,
although the identification of the position of defect lev-
els is useful in understanding mechanisms limiting carrier
lifetimes. We have used the 54-atom supercells of HgTe
to determine the type (acceptor or donor) of the various
native defects based on the position of the Fermi level
with respect to the states that lie within 0.1 eV above
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the valence band edge. In addition, an assessment of
whether the state is a single or double donor or acceptor
and whether the state is shallow or deep has been made
based on the position of the density of states peaks. For
the mercury vacancy, we follow the arguments of Cooper
and Harrison and assume that it is a negative-U cen-
ter, with the neutral and double acceptor states being
the only observable states; this assumption is consistent
with the observation that the mercury vacancies are al-
ways found to be doubly ionized acceptors.

F. Ionization state degeneracy

The degeneracy of the various ionization states of each
defect may differ and must be determineds2 to complete
the calculation of the density of ionized defects. As an ex-
ample, we consider the A vacancy in a II-VI material and
use tight-binding language for the purpose of discussing
the defect states. There are four dangling anion hybrids,
each donating 1.5 electrons to the system, for a total
of six electrons at the vacancy site. Although we have
not explicitly calculated it, for the purpose of computing
state degeneracy, we assume that a symmetry lowering
Jahn-Teller distortion will take place whenever there is a
state degeneracy beyond two (for spin) and a partial oc-
cupancy of that state. Thus we assume that the highest
611ed vacancy level in the neutral state is doubly occu-
pied with one electron spin up and one spin down, and
that the level can accept no other electron. Because there
is only one unique configuration for this state, the state
has a degeneracy of one. For the single acceptor state
in which one electron has been added to the vacancy,
the extra electron can either go in spin up or spin down,
with equivalent energies. The degeneracy of the state is
therefore two. Finally, if the vacancy is a doubly ionized
acceptor, the lowest energy con6guration for the two ad-
ditional electrons is with one spin up and one'spin down,
with a net state degeneracy of one. This assignment of
degeneracies —one, two, and one for the neutral, singly
ionized, and doubly ionized acceptor, respectively —will
hold even if the state is a Hubbard negative-U state, al-
though in this case, the singly ionized state w'ill not be
occupied.

A similar argument follows for the other donor and
acceptor defect levels. In general, for the II-VI materials
we 6nd a degeneracy of one for the neutral defect state,
two for the singly ionized state, and one for the doubly
ionized state.

G. Intrinsic reaction constant

We are interested in calculating native point defect
densities at the relatively high temperatures at which
equilibration occurs. It is difficult to calculate K~ theo-
retically because of the difficulty in calculating the finite-
temperature band structure; in general the band gap and
the conduction and valence band shapes are all tempera-
ture dependent. An additional complexity in calculating
K~ in low 2; Hgz Cd Te is the nonparabolicity of the

conduction and light-hole bands near their extrema. 2s

For the purposes of evaluating the defect concentra-
tions, we have calculated K~ using Eq. (10) with m& ——

0.443; an empirical relationship for the dependency of
the band gap on composition x and temperature

Eg (x, T) = E, —E„
= —0.302 + 1.93z —0.810x + 0.832x

+5.35 x 10 T(1 —2z), (21)

which was fit for 4.2 & T & 300 K; and a linear disper-
sion relationship for the conduction band with n chosen
to yield good agreement with experimental values of the
intrinsic carrier concentrations for T ( 400 K. We as-
sume that the intrinsic reaction constant thus computed
is valid at temperatures up to 655 C, although there have
been no measurements above 400 K to substantiate this
extrapolation.

IV. CALCULATION OF DEFECT-FORMATION
FREE ENERGY: VIBRATIONAL

CONTRIBUTION

When a defect is introduced into the lattice, the vi-
brational modes of the system are modified. We must
include in our calculation of the defect formation free en-
ergy a term that comes &om modifications of the vibra-
tional spectrum. Most authors neglect this contribution
to the formation free energy. As we will see in Sec. V,
although the electronic contribution to the &ee energy
is dominant, the vibrational changes can be significant
and they make a substantial impact on the calculated
magnitude of the defect concentrations.

Although ideally the vibrational contribution to the
formation energy should be calculated within LDA on
the same footing as the static electronic contribution,
including all of the anharmonic terms, this is a diffi-
cult and computationally demanding task. Instead, we
take an alternative approach and calculate the vibra-
tional spectrum of the zinc blende lattice using Keat-
ing's valence force-field model for the short-range elas-
tic interactions. Although experimental elastic con-
stants were used, LDA theory actually predicts the elas-
tic constants within 10% for HgTe and CdTe, so we
could equally well have used the calculated values. Be-
cause we are dealing with an ionic crystal, we have in-
cluded a point-charge model to account for the Coulom-
bic interactions. Unlike the valence force-field contri-
butions to the dynamical matrix, the Coulomb contri-
butions are long range in nature and induce a macro-
scopic electromagnetic field, which results in a screening
of the transverse optical phonons. The ionic charge is
chosen to yield agreement with experiments for the zone
center splitting of the transverse and longitudinal opti-
cal phonons. A Green's function approach is used to
evaluate the lattice-defect-induced modifications to the
phonon spectrum; &om the perturbed phonon density of
states the change in the vibrational &ee energy can be
calculated. Like the electronic energies, the calculations
were done for pure HgTe and are assumed applicable to
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TABLE III. Neutral native defect formation energies for HgTe corresponding to reactions in
Table I, where A is mercury, B is tellurium, and the free atom is used as the reference state
AR. Local-density (LD) calculations were done using a 16-atom supercell, unless otherwise noted
Gradient correction (GC) energies are discussed in the text. The most important ionization states
of the native point defects are also given.

Defect

VHg

V~e

Hg~,
TeHg

Hgr„
Hgr

Tel

LD

2.83
0.99

—1.00
4.85
0.75
0.81
4.78
5.17

Energy (eV)
Relaxation

—0.05
—0.01

0
—0.19
—0.24
—0.31
—0.57
—0.84

—0.69
0.49
1.46

—1.54
0.70

0.62
—0.83
—0.96

Total

2.09
1.47
0.46
3.12
1.21
1.12
3.38
3.37

Ionization
state

double acceptor
shallow donor
deep acceptor
shallow donor
shallow donor

shallow donor
shallow donor
shallow donor

Assumed to be a negative-U center.

vib vib ~ vib+x = +x ~ = +x (22)

defect calculations in Hgo 8Cdo 2Te. We expect that this
is a reasonable assumption because the elastic constants
for HgTe and CdTe are nearly identical. In this paper we

only consider the vibrational &ee energy of the neutral
defects and assume

long-range elastic interactions in the near-neighbor va-
lence force-6eld model. The vibrational entropy and
energy contribution to the defect formation &ee energy
are calculated from the density of phonon states; results
at 500'C are given in Table IV. Equation (A20) can be
used to estimate the values at other (high) temperatures.

for all ionization states. Details of the calculations are
given in the Appendix. Preliminary results of this model
were given previously.

V. RESULTS AND DISCUSSION

A. Formation free energies in HgTe

Calculated defect-formation electronic energies in
HgTe for the defect reactions listed in Table I and with
AR as the &ee mercury atom are listed in Table III. For
all defects, the gradient correction for the 16-atom super-
cell is calculated for the relaxed configuration, as deter-
mined by the LDA calculation.

Although the total electronic formation energies listed
in Table III are important contributions to the formation
free energy, these energies alone cannot; be used to assess
the relative importance of the various defects in the solid.
This is mostly due to the free energy of the atom in the
reference state (in excess of its free atom electronic en-

ergy) that is uot included in these electronic energies, and
which is discussed in the Sec.VB. This point should be
obvious because we could have just as well de6ned our
defect reactions with respect to the tellurium molecule
in the vapor phase and the HgTe solid and obtained the
corresponding reaction energies that would be quite dif-
ferent from those in Table III.

The calculated phonon dispersion curve for HgTe is
given in Fig. 1 and is in fair agreement with the experi-
mental results. The discrepancies with the experimental
curves, in particular near the Brillouin zone boundary,
can be attributed for the most part to our neglect of

B. Defect reaction constants in Hgo. SCdo.qTe

The reaction constants for each of the defect reac-
tions listed in Table I are calculated as a function of
temperature, where the reference state was taken as the
monoatomic mercury vapor at pressure PHz. Electronic
energies for the neutral defect formation energies are
taken from Table III. Vibrational &ee energies are cal-
culated using the general temperature expression, as dis-
cussed in the Appendix, although for the purpose of ob-
taining an analytical expression for the reaction constants
with the primary temperature dependency explicitly dis-

played, we have fit our results for 500'C to the high-
temperature expression, Eq. (A20).

A third contribution to the formation &ee energy
comes from the &ee energy of the mercury in the refer-
ence state, less the electronic energy of the &ee mercury
atom that is contained in the electronic defect formation

tv 04

0.3

0.2

(3 O)

X K. X r

FIG. 1. Calculated phonon dispersion curve for Hg Te.
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TABLE IV. Entropy (S"' ) and energy (U"' ) contribu-
tions to the vibrational free energy in HgTe at 500 C, for the
defect reactions listed in Table I.

The reaction constants for the ionized defects are cal-
culated using Eq. (6) for acceptors and its generalization
for donors. We define

Defect
Vag
VTe

HgT
TeHg

Hgr
TeI

Svib(k
—8.9

9.7
18.7

—18.7
9.5

—9.5

U"' (eV)
—0.20

0.19
0.39

—0.39
0.20
0.20

Kx.. = [X"]= [X"]
~*' exp(zpp —E —. . E')

= Kx.x s~*'exp(zpp —E — . E')
gxx a CL (25)

and

Kx* = [X"]= Kx exp(Eg+'''+Ed, —zP&).
Qxx

(26)

energies. For the vapor, we must include the transla-
tion free energy of the atoms. The chemical potential
for monoatomic mercury in the gas phase is given by the
standard expression from statistical mechanics

p1rs ——kT ln
kT (2zm11skT)

(23)

kT 2 kT "'
P11s g

k'

f —2.09 eV 5
x(1.27 x 10 T )exp] kT (24)

where we have taken g&x —— 1, Fv"~ = ——2.09,
HI

' HI

e = 1.48 x 10zz cm s, and replaced exp( —F"' /kBT) by
exp[ —(—0.2 eV+8.9k~T) lk&T] I soo Dc —1.27 x 10 T
Reaction constants for the eight native point defects con-
sidered in this paper are listed in Table V.

TABLE V. Reaction constants for neutral defects in

Hgo. SCdo.qTe, corresponding to the defect reactions in Ta-
ble I. The vibrational contribution is calculated at 500'C
and St to the high-temperature power-law dependence [Eq.
(A19)] so as to show the explicit temperature dependence.
All calculations in the paper were done using reaction con-
stants with the more exact expression for the vibrational free
energies.

Defect

V~"g

Vx

TCH

Hgl"„

Hg

TeI

TeI

K&x
Hg

K&x
Tc

K~ x
~Te

KT, x
Hg

K~ x
IHg

K~ x
sIT

KT, x
IHS

K
ITe

Reaction constant

=[Vn] =114x10 T &Pn exp(z r)'
= [Hgr ]= 3.03 x 10' T ~ Pnsexp( —„' '

)

= [Hgi ]= 3.03 x 10 T&Pexnps( —
& ~)

= [Tei ]= 7.23 x 10 T ~Pa exp( —„)
= [Tei ] = 7.23 x 10 T ~Pn'exp( —„r)

Combining these three contributions to the reaction
free energy we obtain the reaction constants for each of
the defect reactions. For example, for the neutral mer-
cury vacancy in Hg Te, we obtain

C. Defect concentrations in Hgp. sCdp. gTe

Gibbs's phase rule tells us that for a system of three
components (A, B, and t ) and two phases (zinc blende
solid and vapor) there are three degrees of freedom. In
evaluating the defect concentrations in Hgo sCdo z Te we
have chosen the temperature, the mercury pressure P11s,
and the alloy composition z as these specified variables;
the tellurium and cadmium pressures, the crystal stoi-
chiometry, and the density of the various native point
defects are determined by these conditions.

The reaction constants in Table V are evaluated to de-
termine the concentrations of the various native point
defects as a function of temperature and pressure. The
Fermi energy is determined by requiring charge neutral-
ity. The activation energies for the shallow donor and
acceptor states are taken to be zero; the sensitivity of
our results to this assumption is discussed further below.

Figure 2(a)—2(c) show the defect concentrations at var-
ious equilibration temperatures. Pressure ranges are
chosen so as to stay within the stability region of the
material. At all temperatures and pressures considered,
the dominant defect is found to be the doubly ionized
mercury vacancy, in agreement with previous interpreta-
tions of experiments;~ our result confirms the generally
accepted experimental observation that the mercury va-
cancy is responsible for the p-type behavior of undoped
HgCdTe equilibrated at high temperatures.

At all temperatures, the second most dominant defect
is found to be the tellurium antisite. The antisite con-
centration decreases more rapidly with Pcs than does
the mercury vacancy, and thus is most important at low
mercury pressures. As does the mercury vacancy, the tel-
lurium antisite defect accommodates excess tellurium in
the lattice, and therefore its presence also shifts the sto-
ichiometry towards the tellurium-rich side of the phase
diagram.

The reason the tellurium antisite concentrations is so
high deserves comment. The tellurium antisite formation
energy is larger than that for the mercury vacancy by 1
eV (Table III). However, as can be seen from Table V,
the pre-exponential factor of the reaction constant for the
tellurium antisite is enormous. The large pre-exponential
factor results &om the large phase space factor (entropy)
gained by creating two &ee mercury atoms compared to
that lost by elimination of a formula unit. In contrast,
the mercury antisite density is low, despite the fact that
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its formation energy is quite small; this again is a result of
the pre-exponential factor that in this case is very small.
Thus it is clear that one must be cautious in deducing the
relative populations of the various defects based on the
electronic contributions to the defect formation energies
alone.

While the tellurium antisite is never found to be the
dominant defect controlling the doping under equilibrium
conditions, it can introduce significant compensation at
low mercury pressures. Moreover, the diffusion coefB-
cient of the antisite is expected to be quite small be-
cause the diffusion of an antisite will necessarily involve
at least one additional point defect, such as the mercury
vacancy or the tellurium interstitial. Thus the tellurium
antisite may not reach equilibrium densities for the times
and temperatures corresponding to the low-temperature

( 250'C), high-mercury-pressure anneals typically em-

ployed to reduce the mercury vacancy density. If tel-
lurium antisite densities are in fact equilibrated at a tem-
perature at which the antisite diffusion effectively stops
during cool down &om the growth temperature, then the
antisites may be frozen in at higher, nonequilibrium con-
centrations. If such a freezing in of nonequilibrium anti-
sites does occur, the tellurium antisite may in fact be the
"universal" residual donor observed in densities of 10
cm in material subjected to a low-mercury-pressure,

high-temperature anneal, although it is not clear why, for
example, the frozen-in density of antisites mould be the
same for LPE material grown from both mercury- and
tellurium-rich melts. The tellurium antisite may also be
the defect responsible for the n-type carrier concentra-
tions in as-grown MBE material, which is believed to
be grown on the tellurium-rich side of the phase diagram
where antisite populations are highest.

Annealing strategies for reduction of the tellurium an-
tisite densities can be developed and may be important if
the antisite is the residual donor. Consider, for example,
a two-temperature annealing process in which a first an-
neal is done under mercury-saturated. conditions, but at
the lowest temperature for which the antisite is able to
equilibrate in reasonable times. This anneal would serve
to lower the antisite densities as much as possible. A sec-
ond anneal would be much like that currently employed,
that is, at 250 C under mercury-saturated conditions
and would serve to anneal out the mercury vacancies,
leaving the antisite densities effectively unchanged.

At 500'C mercury interstitials are present at levels
10 —310 cm and at no temperatures are present at lev-

els high enough to significantly compensate the mercury
vacancies, much less to turn the material n-type under
equilibrium conditions. Unlike the tellurium antisites,
the mercury interstitials are relatively fast diffusers, and



50 FIRST-PRINCIPLES CALCULATION OF NATIVE DEFECT. . . 1529

1020

[h']
1018

[TeH'sl
—10«Z0
I-

1014

Z

Z 1p12
0
O

U 10'0

C3

108

[Hg)
[Te~ l. [Te~ ]

[TeH, )
[HgiHS]

[e]
~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~~'
~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ g ~ ~ ~ ~
~ ~ ~ ~ ~

~ g ~ ~ g ~ ~ ~ ~ ~ ~ ~

~ II ~ ~ g[ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

j
~ ~ ~ I ~

Tc;j~
l

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ g ~
I1O6

0.1

MERCURY PRESSURE (atm)

10

FIG. 3. Defect concentrations for the 500 C anneal after
quench cooling to 77 K.

thus it is unlikely that nonequilibrinm densities of inter-
stitials will be &ozen in. The mercury interstitial densi-

ties that we predict are in quantitative agreement with
those needed to explain the diffusion in Hgq Cd Te
in the process simulator developed by Melendez and
Helms. There is some uncertainty in the quantitative
predictions of the mercury interstitial densities reported
here because of the neglect of the alloy effects that we ex-
pect to be more significant than for the mercury vacancy
and tellurium antisite. Although this correction will be
largest for the mercury interstitial surrounded by four
mercury first neighbors, it should also be significant for
the interstitial surrounded by four tellurium first neigh-
bors because of the six cation second-nearest neighbors,
which are only slightly more distant than the first neigh-
bors.

The mercury antisite and the tellurium vacancy and
interstitial densities are all quite low, never exceeding

10 cm at 500'C. The corrections to these predicted
densities may be sizable because of alloy effects, but such
corrections should not significantly impact the densities
of the mercury vacancy and tellurium antisite.

Figure 2 shows the defect concentrations at the tem-
peratures at which equilibration takes place; in Fig. 3 we

show the defect concentrations for material equilibrated
at 500 'C, then quench cooled to 77 K. We have assumed
that the total defect concentrations are &ozen in during
the quench, for example, [VHs]~

' = [VH ]+[VH ]+ [VH' ]
is constant, but that the electrons and holes are allowed
to reach a new equilibrium corresponding to the low tem-
perature. Figure 4 shows the low-temperature hole con-
centrations for such quench-cooled materials as a func-
tion of PHz and T „„,b compared with the experimen-
tal results of Vydyanath. The agreement of our theo-
retical results with the experiments is remarkably good
considering that our calculated results are obtained al-
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FIG. 4. Hole concentrations at 77 K for material equili-
brated at various high-temperature annealing conditions. Ex-
perimental results taken from Ref. l.

Hg ~ VH'z+ 2h'+ Hg~~ Qf (27)

we see that [VH' ] [h']2 oc [VH' ]s oc PH
The discrepancies between theory and experiments

may be due to a number of factors. First, both uncer-
tainty in the quenching efBciencies and analysis of the
Hall data may account for some of the discrepancy. There
are also a number of uncertainties in the theoretical cal-
culation that may account for the discrepancies. These
include uncertainties in the electronic and vibrational de-
fect formation free energy, the ionization energies of the
defects (which were assumed to be zero in the above cal-
culations), alloy effects, and finally the uncertainties in
the intrinsic reaction constant. These are discussed in
turn below.

First it is interesting to examine the sensitivity of our
predictions to the accuracy of electronic and vibrational
defect formation &ee energy. In Fig. 5 we have recalcu-
lated the 77 K hole concentrations as a function of the
annealing temperature with the electronic contribution

most entirely from first principles. Moreover, there is a
significant uncertainty in the quenching eKciency of the
experiments; thus exact agreement with the experiments
is not a valid criterion for testing the accuracy of the
theory.

Prom Fig. 4 one can see that for the higher anneal-
ing temperatures our calculations predict a different de-
pendence of hole concentration on the mercury pressure
than is experimentally observed. The lower slopes for
the theory result from our finding that the material is
extrinsic at the higher temperatures. If the material is
intrinsic when equilibrated as the experiments indicate,
then [VH' ]i,q oc PH, as can be obtained from Table V,
with p~ independent of [VHs]. However, if the xnaterial is
extrinsic when equilibrated, that is, with [h'] = 2[VH' ],
then from the reaction
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FIG. 5. Hole concentrations at 77 K for material equili-
brated at various high-temperature annealing conditions, cal-
culated with the electronic formation energy for the mercury
vacancy increased by 10%%uo and a rigid upward shift of the
hole concentrations by a factor of 2.2. This 6gure is meant to
demonstrate the sensitivity of our results to small changes in
our calculated parameters. As discussed in the text, similar
qualitative changes in our results can be seen by modifying
the intrinsic reaction constant.

to the mercury vacancy formation energy increased by
10% and a rigid shift upward in our results by a factor of
2.5; such small changes result in better agreement with
experiments. The corrections to our calculated mercury
vacancy and tellurium antisite formation energies due to
alloy effects have not yet been included in these calcu-
lations and are expected to be in the range of tenths of
an eV, as discussed in Sec. IIC, and thus may account
for the magnitude of correction used in this example.
Preliminary estimates for the corrections for going 6..om
the 16-atom to the 32-atom supercell are 0.1 eV for the
cation vacancy and the tellurium antisite as well. Finally,
3ahn-Teller relaxation energies have not been included
in the present work and they may modify the electronic
formation free energies. An increase in the effective vi-
brational frequencies [&u in Eq. (A20)] can account for
an upward shift in the densities. Such an increase may
arise kom differences between the neutral and ionized de-
fect vibrational free energies and, perhaps, anharmonic
effects that may be large at defects such as the vacancy
where an atom is missing from the lattice. Thus we see
that our calculations agree with the experimental data
approximately to within the known uncertainties of the
theory.

Our results are also very sensitive to the intrinsic reac-
tion constant, which in turn depends sensitively on the
band structure and its temperature dependence. HgCdTe
is known to be anomalous in that its band gap is found
to increase with temperature at room temperature and
below, and although there is no experimental informa-
tion on the temperature dependence of the gap at higher

temperatures, we have assumed that Eq. (21) extrapo-
lates to higher temperatures. In addition, as discussed
above, we have assumed a parabolic valence band, but a
linear variation of the conduction band, with the slope
chosen to agree with the intrinsic carrier concentrations
[with the energy gap given by Eq. (21) at temperatures
below 400'C]. While this fit is quite good for the temper-
ature range over which it is fit (&om 77 K to 400 K), the
reliability of K&„at 250'C and above for which we have
presented our defect density predictions is unknown. To
demonstrate the sensitivity of our results to the intrin-
sic reaction constant we have calculated the 77 K tem-
perature hole concentrations with the conduction band
density of states increased a factor of 10 and have found,
except at the very highest temperatures, that the cal-
culated hole concentrations vary as PH, indicating in-
trinsic behavior at the annealing temperature and result-
ing in better agreement with experiments. Because our
results depend sensitively on the intrinsic reaction con-
stant, it is essential to establish a reliable prediction of
its value at the annealing and growth temperatures where
equilibration of the defect densities takes place.

We have suggested that nonequilibrium densities of tel-
lurium antisites may be the residual donor, but they may
also be important SRH recombination centers. It is ex-
perimentally observed that the residual donor does not
freeze out even for samples cooled to 4 K, and therefore
its Grst ionization state must resonate in the conduction
band. A SRH recombination center in Hg~ Cd Te with
z = 0.22 lies 25 meV below the conduction band edge,
has a larger capture cross section for electrons than holes,
and typically has a density smaller than, but compara-
ble to, the residual donor density. The properties of the
antisite are consistent with such a level: it is a donor;
although we have assumed here it is a single donor, it is
likely that a second donor level is present in the gap and
may be ionized at the high processing temperatures; and
the 6rst ionization level may be resonant in the conduc-
tion band, although we are unable to resolve this in our
present calculations with certainty. A more quantitative
prediction of the ionization levels of the antisite is needed
to correlate it with a SRH center.

A technologically important step in making ir detec-
tors from Hgq Cd Te is a low-temperature mercury-
saturated anneal that is done to reduce the mercury va-

cancy concentrations. In Fig. 6 we show the defect con-
centrations for material annealed at various temperatures
along the mercury-saturated side of the phase diagram.
In such mercury-saturated anneals, if equilibrium can
truely be reached, then the mercury vacancies will cer-
tainly be the dominant defect, with the tellurium antisite
density being negligible. However, as discussed above, it
is unlikely that equilibrium densities of antisites will be
achieved at these relatively low temperatures.

The above analysis of defect concentrations can be re-
peated for a number of different situations. For example,
we can calculate the native defect densities with a donor
or acceptor impurity present. At the high growth tem-
peratures, the impurity concentrations would have to be
comparable to the vacancy concentrations to modify the
high-temperature vacancy concentration. We can also re-
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peat the above calculations for reference state other than
the mercury vapor. For example, in HgCdTe tellurium
precipitates are known to form as a metastable state upon
cooling &om high growth temperatures. In the vicinity
of a precipitate, the native defect populations will be
in local equilibrium with the tellurium solid and defect
concentrations for this reference state can be calculated.
Because this constitutes a nonequilibrium situation, on
must address diffusion rates to assess the extent of the
modified defect atmosphere about a precipitate.

VI. SUMMARY AND CONCLUSIONS

We have made quantitative predictions of the native
point defect densities in Hgp 8Cd02Te as a function of
temperature and pressure and find good agreement with
the available experiments. We have substantiated the
claim that the primary defect is the mercury vacancy
and have identified the tellurium antisite as an impor-
tant secondary defect. A first-principles approach was
used for most of the quantities calculated, with the only
significant empirical data being those needed to obtain
the temperature-dependent intrinsic reaction constant.

Although we predict the undoped material to be always

p type, refinements in our calculations may show that the
antisite may dominate in the low-mercury-pressure re-
gion and turn the material n type by a native defect; our
current accuracy is not suKcient to establish this. While
most anneals of technological importance are done under
mercury-saturated conditions to reduce mercury vacancy
concentrations, exploration of the tellurium-saturated re-

gion where we predict the tellurium antisite densities be-
come comparable to those of those of the mercury va-

cancy may help confirm the presence of tellurium anti-
sites.

A second means to explore the presence of tellurium
antisites and their relationship to the residual donor is
through a careful set of experiments using two temper-
ature anneals, as discussed above. Because we do not
know the temperature at which diffusion of tellurium ef-

fectively stops, the temperature of the first anneal would
have to be varied, as would the annealing time; the mer-

cury pressure could also be varied, although mercury-
saturated conditions are those one would eventually want
to employ. The identification of the tellurium antisite
as the residual donor can be made if the donor densi-
ties in identically grown material were found to differ af-
ter the second anneal (using the standard conditions for
a mercury-saturated low-temperature anneal) depending
on the conditions of the first anneal. A quantitative anal-
ysis of this experiment would be quite difficult because,
in addition to uncertainties in the temperature at which
the tellurium antisite equilibration stops, if the tellurium
antisite diffuses via a vacancy mechanism, the diffusion of
the antisite will depend on the concentration of mercury
vacancies present during the first anneal.

It would also be useful to perform high-temperature
annealing as was done by Vydyanath, but instead of
quenching to 77 K and having to address the issue of
quenching efBciency, follow the anneals by Hall analysis
at the anneal temperature. Recently, an attempt at such
an experiment was made by Wienecke et al. , although
an analysis of such an experiment requires knowledge of
the high-temperature intrinsic reaction constant.

1.6 1.8
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term runs over only those bonds connected to a common
atom.

For a nonionic material, the normal modes for the dis-
placement of the atoms are determined by solving the
equation of motion for the lattice cast in the usual man-
ner in terms of the three-dimensional eigenvalue equation

APPENDIX: VIBRATIONAL ENTROPY
OF POINT DEFECTS IN SEMICONDUCTORS

As discussed by Keating, we assume the elastic en-

ergy for a zinc blende structure can be written as

ur u = D'(k)u.

Here D'(k) is the (elastic) dynamical matrix and

(A2)

(A3)

(A1)

where i and i' sum over all bonds, A(r, r; ) = i,i; —r~r~. .
with r and r~ the bond vectors connecting adjacent atoms
in the distorted and equilibrium lattices, respectively.
For first-neighbor interactions, the sum in the second

is the polarization vector of the normal modes, where u;
is the displacement vector of the ith atom. For the zinc
blende lattice there are two atoms per unit cell, so i = 1
or 2.

In terms of the elastic constants, Cqq and Cq2, the dy-
namical matrix for the valence force field model is given
by

D'(k) = r SdC11
y~3m,

l Ss(k) + 2d(Cqy —Cps)s (k) ~/ +3m1mg

2QC12 Slk) + 2d(Cqq —Cq ) s(Ies),
+3m1m~ g3m1m2

SdCy1 I )yam~

(A4)

84 83
S = S4 Sy 82

S3 S2 8].
(A5)

with

(Z.q ik d1, ik dq ) ik d3 ) ik d4 (A6a)

fl h &k d1 i ik'dg ik d3 ik d482~a; j ——e (A6b)

where d is the equilibrium bond length, mq and m2 are
the masses of the two atoms in the unit cell, I is the 3 x 3
unit matrix, and S is given by

The d~ are the vectors connecting atom 1 to atom 2 in
the unit cell and are given by di ——

4 [111],d2 ——4[111],
ds —— 4[111], and d4 —— 4[111], where a is the lattice
constant.

While short-range elastic forces are described within
the valence force field model, in crystal with an ionic con-
tribution to the bonding, Coulomb interaction must also
be included in the dynamical matrix. The long-range na-
ture of the Coulomb interaction complicates the problem
considerably. Using a pairwise point-charge model of the
Coulomb interaction, the Coulomb dynamical matrix is

given by "

n:., (~, ~'lk) = — -- )-y...(« lo)

and

l7 h ik.d1 ik dg ~ ik d3 ik d483(,~) ——e (A6c)
+ '

P (rr. 'lk), (A7)

r7S zkd1 ikdg xkd3+ ikd484~aj = e (A6d) where

G+ kl exp(iG[x(r) —x(K')]).
4P )

(K, rc'lk) = —" " P ~ x ) II (vP[x(l, K) —x(l', K')])e*"'~ &'")
%60 )I

q„q„.(G+ k) (G+ k)+ exp
voeo - IG+ k

G

(A8)

In the above equation / and r label the unit cell and
basis atoms, o. refers to the Cartesian component, q„ is
the efFective charge, x(r, l) = x(K) + x(l) is the posti-
tion vector of the rth atom in the lth unit cell, G are

the reciprocal lattice vectors, v0 is the unit cell volume,
eo is the permitivity constant, and P is a (numerically
determined) measure of the Gaussian charge distribution
used in the Ewald summation. II (y) is given by the
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integro-differential expression

II.,..(y) =
~

— exp( —x')dz
~

.
+By yp gy

(A9)

where p(a2) = TrO(u2). We are interested in the change
in the vibrational entropy upon formation of a defect, in
which case we replace p by Dp to obtain

The full dynamical matrix is given by the sum of the
Coulomb and elastic contributions

fur rh'u) lS"' = 2ka b,p(a) ) coth
i

o

D(k) = D'(k) + D'(k). (A10)

G (u) ) =
2

f e(~' )—o(~ ) g )
47 —CcP

min

2 2

+ 8((u )ln(E~ ~max ~~) (A11)

where the singularity in the integral has been explicitly
removed. The change in the total density of states when
a defect is introduced into the crystal can be deduced
from Dyson's equation to obtain

60(v ) = —Im ln{det[1 —G (v )V]), (A12)
7I B(a!

where V is the perturbation potential. In the present
case we use a strictly site-diagonal perturbation potential
corresponding to the mass change due to the introduction
of an isolated defect.

The partition function for the phonon system in the
zinc blende lattice is given by

(1 —exP (e &) j
(A13)

where ~; are the normal modes of the system. The to-
tal vibrational entropy of the system is obtained from

St 't
&

——
&& (ka TlnZ), which gives

In the present problem we are interested in calculating
the change in the vibrational &ee energy of the crystal
lattice due to the creation of a defect. This is done using
the Green's function, which is most conveniently calcu-
lated in terms of the density of states of the phonon sys-
tem. For the ideal crystal without a defect, a Brillouin
zone integration is done to calculate the phonon density-
of-states matrix O, from which the Green's function can
be calculated via

( hu—ln 2sinh ~d~.
(2kaT ) J

(A16)

Similarly for the vibrational energy, we use the relation-
ship U"' =

p(z/J lp) lnZ to obtain

ihu ( ho2 lU"' = 2 hp(ur ) coth
~ ~

used~, (A17)
2 (2kaT)

with the change in the vibrational &ee energy F '
Uvib 2 gvib

While the calculation of the vibrational terms in this
paper was done using the general expressions above, it
is interesting to examine the expression for the Bee en-

ergy in the high-temperature limit, which is appropriate
for high growth and processing temperatures, and to ex-
amine the explicit temperature dependence of this term.
In the high-temperature limit Rum~„(& k~T and F '

reduces to

f her iF"' —2kaT ln
i

p(td)(ud(u.
p (kaT)

(A18)

This integral can be shown to be equal to

( hu iF ' =kaTn ln~
(kaT)

(A19)

where n is the number of phonon modes created or
destroyed in the defect reaction of interest and 2 is an
appropriately weighted frequency. What enters the cal-
culation of the defect concentrations is exp( —F"' /bk Ta),
which reduces to

kaT) i hu )
(A20)

in the high-temperature limit. For the defect reactions
in Table I we obtain

St"'t» ——) kaln —sinh
2 E2kaT)

fun; ( Tuu; &'coth
/2T E2kaT)

(A14)

' -3 VHg
3 V~,
6 HgY,'-6T.
+3 Hgr

, —3 TeI .

(A21)

We convert the sum to an integral by the replacement

) M p(td)Ckd = 2p(hl )Q/d(d
0 0

We will use this simple power-law dependence of Eq.
(A20) to extract a simple power-law temperature depen-
dence of the reaction constants.
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