
PHYSICAL REVIEW B VOLUME 50, NUMBER 20 15 NOVEMBER 1994-II

Shallow donor impurities in GaAs/Al Ga1 As superlattices in a magnetic field
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A theoretical investigation is presented of the properties of shallow donor impurities in a
GaAs/Al Gaq As superlattice in the presence of a magnetic field directed along the growth axis.
The energy levels of several of the lowest donor states have been obtained as functions of (1) the
well width, (2) the donor position, and (3) the magnetic-field strength. The calculation is based
on a variational approach in which we use a trial wave function with two variational parameters.
This wave function shows exponential behavior in sufficiently small magnetic fields and Gaussian
behavior in sufficiently large magnetic fields. The magnetopolaron eKect on these donor energies is
studied within second-order perturbation theory where a formal summation over all electron states is
performed. The e8ect of band nonparabolicity is also included in order to correctly explain magneto-
optical experimental results at high magnetic fields. Our results are in very good agreement with the
available experimental data in the whole magnetic-field range and for weakly and strongly coupled
superlattices.

I. INTRODUCTION

The problem of shallow donor impurities confined to a
quasi-two-dimensional (Q2D) system has been studied
extensively during the last decade. This has become pos-
sible after the advent of material growth techniques with
dimensional control close to interatomic spacing, such
as molecular-beam epitaxy and metal-organic chemical-
vapor deposition. The transition energies of the donor
states in the low-dimensional systems have been experi-
mentally observed by far-in&ared and intersubband spec-
troscopy, and various theoretical investigations
have been performed in order to understand the na-
ture and properties of these impurities. Since the opti-
cal and transport properties of semiconductor materials
are strongly inHuenced by both these dopant impurities
and the structures of the Q2D systems, the knowledge
of the effect of the confining potential barriers on the
donor states is important. ' Among the most exten-
sively studied Q2D systems is the one consisting of alter-
nating layers of GaAs and Al Gaq As.

Most of the theoretical calculations of the donor
states~o ~s address the single-quantum well (QW) prob-
lem, which has been shown to be a good approxima-
tion for the case of an impurity located near the well

center of a very weakly coupled superlattice, i.e., wide

and/or high barriers and/or wide wells. s 2s Chaudhuri~~

extended the variational calculation in a QW to a three-
well structure. This work was generalized by Lane and
Greene to a superlattice but with a uniform electron
band mass. Helm et al. extended these calculations to
all states with the principal quant»~ number n & 2,
where they included the spatial dependence of the elec-
tron mass. These three studies mere performed in the ab-
sence of any applied field. Recently, we have generalized
them to include a magnetic field which is perpendicular
to the GaAs/Al Gaq As interfaces.

Since polaron effects are present in polar semiconduc-
tors like GaAs, it will have inHuence on the position of the
electronic energy levels. In particular, near the resonant
magneto-polaron magnetic field the electron energies are
modified appreciably. This effect on a &ee electron mov-

ing in a Q2D system has been studied extensively. 24 2@

The case of electrons bound to donors was investigated
by several groups for the QW case~4 ~s and for the su-
perlattice case. In Ref. 19 we have included the polaron
effect and band nonparabolicity in the calculation of the
18 —+ 2p+ transition energies of a donor located at an ar-
bitrary position in the superlattice. The agreement with
the experimental results was reasonably good. Never-
theless, there is still room for improvement, of which the
two major ones are (1) a Gaussian trial wave function was
used, which is not very accurate for the donor energies in
low magnetic fields. ' ' Here a trial wave function will
be used, which was introduced in Ref. 32 for bulk mag-
netodonors, which allows for an exponential behavior in
the small magnetic-field limit; and (2) only three donor
states (1s, 2p+) were included as intermediate states in
the calculation of the polaron correction. Recently, we
found that such a calculation underestimates the po-
laron correction appreciably. In the present work, we

will improve on this limitation by using a formal summa-
tion over all intermediate electron states. Furthermore,
we extend our previous calculation to higher excited
states and explain experimental data on a strongly cou-
pled superlattice which shows a three-level resonance,
and on a wide-well superlattice which shows a four-level
resonance.

In this paper, we report on a calculation of the energy
levels of the donor states (ls, 2p+, 2p„3d+,4f+ ) for
an impurity associated with the lowest two subbands of
a GaAs/Al Gaq As superlattice in an applied magnetic
field which is parallel to the growth axis. The position
of the donor in the superlattice is allowed to be arbi-
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trary. We have included the mass discontinuity of the
electron at the interface and the finite height of the bar-
riers. To obtain the wave functions and the energy levels
of the donor electron in the absence of electron-phonon
interaction, a variational approach is used in which the
trial wave function has two variational parameters. This
function reduces to an exponential at sufficiently low
magnetic fields and to a Gaussian at sufBciently high-
magnetic fields. The eKect of band nonparabolicity is also
included. Polaron correction to these energies is calcu-
lated within second-order perturbation theory. We have
been able to find an upper bound to polaron shifts for
the transition energies in the nonresonant magnetic-field
region by formally including all donor states. For the
18 ~ 2@+ transition in the resonant magnetic-field re-
gion, we use an improved expression for the polaron cor-
rection which was recently proposed by us for the three-
dimensional (3D) donor. This expression is able to give
the correct resonant position in high-magnetic fields, and
the correct polaron shift at zero-magnetic field, although
only a few relevant lowest states are e8'ectively taken
into account. A detailed comparison of the present po-
laron correction with the corresponding results obtained
by using the more accurate treatment of Refs. 33 and 34
shows negligible differences which proves the accuracy of
our approach. We find that both the polaron correction
and band nonparabolicity are important in order to cor-
rectly explain the magnetopolaron resonant experimental
results. Our calculation shows that the highest branch
of the experimental results of Ref. 8 for the 1s -+ 2p+
transition should be described as due to the lifting of
the degeneracies between the 2p+ state and the (3d
+ one-phonon) state, which is consistent with the case
of bulk GaAs. In Ref. 8 these experimental data were
interpreted as due to a resonant interaction between the
2p+ state and the (2p„+one-phonon) state.

This paper is organized as follows. In Sec. II a varia-
tional calculation of the ls, 2p+, 2p„3d+2,4f+s states
of the donor in a superlattice in a magnetic field is pre-
sented in the absence of the electron-phonon interaction.
The polaron correction to the energy levels of the donor
is calculated in Sec. III. An improved expression for this
polaron correction within second-order perturbation the-
ory is presented. A comparison with the experimental
data is given in Sec. IV. Our discussions and conclusions
are presented in Sec. V.

which describes a hydrogenlike atom placed in a su-
perlattice in an external magnetic field, where the vec-
tor potential A is chosen in the symmetric gauge, i.e.,
A = 2B( y,—z, 0), and a uniform and constant magnetic

field B = (0, 0, B) is applied along the growth axis which
is taken to be the z axis of the system, c is the velocity
of light in vacuum, and —e the electronic charge. The
potential of the superlattice is modeled by a periodic
square-well potential

0, —ur/2+ nl & z & tv/2+ nl
Vo, m/2+nI, & z & m/2+5+nl, ,

(3)

with m the well width, 6 the barrier width, l = m + 6
the periodicity, and n = 0, +1, +2, , an integer.
For the GaAs/Al Gaq As interfaces the barrier height
Vo depends on the Al concentration 2; in the barriers,
and is given by 60%%uo of the total energy-band-gap difFer-
ence between GaAs and Al Gaq As: bEs = 1.155z+
0.37z~ eV. The position of the donor electron is de-
noted by r, r = gp2 + (z —zr)2 is the distance between

the electron and the donor center with p = gz + y
being the distance in the zy plane, and (0, 0, zI) is the
position of the donor center. The quantity m,*(z) is the
electron efFective mass, which is difFerent in the two semi-
conductors: for the GaAs wells m /m, = 0.067 (m, the
electronic mass in vacuum), and for the Al Gaq As bar-
riers ms/m, = 0.067+ 0.083z. eo = 12.75 is the static
dielectric constant of GaAs, ss which is taken to be the
same in both materials which is a good approximation
for the GaAs/Al Gaq As superlattice.

In Eq. (1), Hr,o is the LO-phonon Hamiltonian which
is given by

Hr,o = ) Fuu;
~
a-aq+ — ~,

11
q (4)

Hi = ) (Vq aq e q" + V- a eq ),-
q

(5)

where a (aq) is the creation (annihilation) operator of
a LO phonon with momentum hq and energy Ruq. For
GaAs we take ~q ——)kuL~ ——36.75 meV independent
of the phonon momentum at T = 4.2 K which is the
considered experimental region. sq

The electron-phonon interaction in Eq. (1) is given by

II. VARIATIONAL CALCULATION
where

2

Within the framework of an efI'ective-mass approxima-
tion and neglecting electronic spin, the total Hamiltonian
for a single conduction-band electron in a superlattice
coupled to a Coulombic impurity and interacting with
longitudinal-optical (LO) phonons is given by

H =H, +HLer+Hi,
where H is the electronic part

2
J-+-A — +V z, 2

with 0 the system volume, and

ez m (1 15
2hlapL~ (e~ ep j

the standard Frohlich coupling constant, and e the high
frequency dielectric constant of GaAs. In our calculation
we take o. = 0.068, being the value for GaAs. Further-
more, we take only the interaction with 3D-bulk GaAs
phonon modes and in so doing we neglect the effect of
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the structure of the superlattice on the phonon modes.
Because the magnetic 6eld is applied along the growth

axis, it is convenient to discuss our problem using cylin-
drical polar coordinates (p, P, z) in which the electronic
Hamiltonian 8, can be reduced to the following form:

m t', . 8 1, zl 2
H, = —

~

V' +ip — pp—
~

——+ V(z), (6)m(z) q 8P 4 ) r

sin(k z), Izl & to/2
B2 cosh(k&z), tu/2 & z & to/2 + b,

with the energy E~ ~/~ given by

where the effective Bohr radius in GaAs, ao
hzeo/m ez = 100.7 A. , is taken as the unit of length,
the efFective Rydberg R' = e /2eoao ——5.61 meV as the
unit of energy, and p is a dimensionless measure of the
magnetic field, p = e/tB/2m cR' = 0.154B (T). Notice
that the magnetic quantum number m of the donor state,
which is connected to I., = ifi(—8/8$), the z component
of the angular momentum operator, commutes with the
total Hamiltonian. Thus m is still a good quantum num-
ber for all magnetic-field strengths. For the states of the
donor located at the well or barrier center the z-parity
quantum number p is also a good quant»m number. But
the other 3D equivalent quantities such as the principal
quantum number and the angular quant»m number are
no longer good quant»m numbers.

The Schrodinger equation with the Hamiltonian H,
cannot be solved exactly. A variational calculation for
the 1s, 2@+, 2p„3d+2, and 4f+s states of the donor
will be given. Since in general the electron energy re-
lated to the superlattice potential is much larger than
the Coulomb energy, one can explicitly factor out the
associated subband solution of the one-dimensional su-
perlattice potential &om the wave function of the donor.
Therefore, the variational wave function of the donor
state can be written as the product of two functions

k ms k tU kgb'

ksm q 2 ) q2)
The coefBcients k, k~, Bq, B2 of the wave functions

f~ i,, (z) are determined by the current-conserving bound-
ary conditions at the interfaces, which implies that
both f~ I, (z) and [1/m,*(z)][8'i,, (z)/8z] are continuous
across the interfaces which results in

k = QE~I, kt, ——

and

cos(k to/2) sin(k ur/2)

cosh(kbtU/2)
'

cosh(knur/2)

The wave functions which correspond to the edge solu-
tions of the two lowest subbands of a GaAs/A1Q 3Gao 7As
superlattice are shown in Fig. 1 for to = 75 A. and b = 25
A. . We notice that (1) the first subband has even z par-
ity, and has no node for the lower edge (k, = 0, solid
curve) and one node for the upper edge (k, = 7r/t, dashed
curve), while the second subband has odd z parity, and
has one node for the lower edge (k, = 7r/l, dotted curve)
and two nodes for the upper edge (k, = 0, dash-dotted
curve); (2) the electronic states in the first subband have

where f~ I, (z) is the lowest-energy-edge solution of the
jth subband of the one-dimensional superlattice, which
has momentum hk, and energy E~ I... and is periodically
repeated in the z direction, i.e., f~ i, (z) = e'"*"'f~ i, (z+
nl) with n an integer. The j = 1,3, 5, . . . subbands
of the superlattice are built from the hybridization of
the isolated well eigenstates which are even, while the
j = 2, 4, 6, . . . subbands arise &om hybridizing the odd
eigenstates of the isolated wells. The lowest-energy edges
of the subbands are given by k, = 0 for j = odd and by
k, = 77/t for j = even. Thus, for the lower edges of the
odd-number subbands one can write

C5 0Z:
Q3
Kl

(f)

I I I I

cos(k z), i
z

i
& to/2

Bi cosh(kgz), to/2 & z & 78/2+ b,

with the energy E~ 0 given by

/
Vo

s I

50
z (A)

100 150

t'k u)) . t'kgb)
cos sinh

I, » E2)

k&m i, 2) q2y
while for the even-number subbands one has

FIG. 1. The subband wave functions corresponding to
the energy miniband edges of the two lowest subbands of
a GaAs/Alo sGaQ 7As superlattice with well width 7o = 75
A and barrier width b = 25 A. The position of the latter is
indicated by the shaded area. The lower and the upper edges
of the 6rst subband are given by solid and dashed curves,
and those of the second subband by dotted and dash-dotted
curves, respectively.
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their maximum probability density at the well center,
while those in the second subband have it near the barri-
ers; (3) the even z-parity states of the donor under study
(1s, 2p+, Bd+, 4f+s) should be associated with the lower
edge [fi 0(z)] of the first subband, and the odd z-parity
2p, state with the lower edge [f2 ~i(z)] of the second
subband; and (4) the presence of the barriers lifts the
degeneracy between the 2p+ and 2p, states at B = 0.
The xnagnetic Geld will further lift the degeneracy be-
tween the 2p+ and 2p states.

The second part Q(p, P, z —zI) of the wave function @
describes the localized part. For the wave function of the
donor in a superlattice we take the following form:

III. POLARON CORRECTION

The GaAs/Al Gai As superlattices under investiga-
tion are weakly polar material and as a consequence the
energy levels of the electron are influenced by the po-
larization of the medium around the electron. This is
described as a polaron correction to the energy of the
ith [i = (j, m, p)] state of the donor which we calculate
within second-order perturbation theory

—f . ( ) Iml zm$ —qp —(Qp +(z—zi) (9)
'$ p

where rj and ( are two variational parameters. Apart
from the superlattice miniband wave function fz i, (z) the
above form is similar to the one proposed in Ref. 32 for
3D magneto-donor states. The difFerent states are indi-
cated by the three quantum numbers (j,m, p) as follows:
1s(1,0, 0), 2p+(1, +1,0), 2p, (2, 0, 1), 3d+2(1, +2, 0), and
4f+s(1, +3,0). The above mentioned states are orthogo-
nal to each other by construction and have the same sym-
metry (for zI = 0) as the corresponding 3D hydrogenic
states. For low magnetic fields these functions reduce to
exponential (i.e. , g ( () and to Gaussian at sufficiently
high-magnetic fields (i.e., r) ) (). The two variational
parameters (rI, () for each state, e.g. , the (j,m, p) state,
are determined such that they minimize the unperturbed
energy of this state

(10)

In the variational calculation one only needs the states
with m & 0 since

which is different from that in a 3D system where the ef-
fective mass of the electron is constant (i.e., A = 1). The
factor, A(4') = (elm /m,'(z)l@)/(4'l4), appears in Eq.
(11) since the efFective mass of the electron is different
in the well material, GaAs, and in the barrier material,
Al Gaz As. This results in the fact that the energy
difference between the 2p+ and 2p states is no longer
equal to her, (i.e. , 2p), where ~, = eB/m c is the cy-
clotron resonant &equence for a noninteracting electron
in GaAs.

We also tried to improve our theoretical results by in-
cluding the subband structure of the superlattice into
the donor wave function (9). Explicitly, f~ „yi(z)was
replaced by a linear combination of fz i, (z). We found
that this did not lead to any significant ixnprovexnents
in the donor energy for the superlattices studied in the
present work. For the 18 —+ 2p+ transition energy dif-
ferences were found which are less than 0.03R* in the
magnetic-field region 0 ~ 25 T.

where 6; = 0 for all states in the polaron nonresonant
region which corresponds to Rayleigh-Schrodinger per-
turbation theory, and 42p+ La~sEE2p+ laelLE]p for the
2p+ state which corresponds to the improved Wigner-
Brillouin-perturbation theory. 2s'ss lili;; q) describes a
state composed of a donor electron with unperturbed en-

ergy Eo and a LO phonon with momentum hq = h(q~~, q, )
and energy ~q.

In Fig. 2 the numerical results for the eighteen matrix
= p-l(@i;qlIIll@'; )l, i

(R'), for a donor located at the well center (zr = 0 A. ,
solid curves) of the superlattice with x = 0.25 and i' =
b = 100 A. are presented as a function of the magnetic
field. The corresponding results of the diagonal matrix
elements for the barrier-center donor (zI = 100 A.) are
also plotted and shown by dotted curves in the left figure
for comparison. Notice that (1) all the values of these
matrix elements increase with increasing magnetic field,
which is due to the fact that increasing the magnetic
field will bind the electron nearer to the donor center
and increase the overlap of the wave functions; (2) the
diagonal HI" matrix elements [Fig. 2(a)] are larger than
the others [Figs. 2(b) and 2(c)], and the less localized
states have sinaller values; (3) the value of the matrix

~ ~ J

element Hl" is smaller when the two states (i, i') have
a large difference in magnetic moment and/or energy;
(4) there are some crossings of the curves, which are a
consequence of the different dependence of the width of
the state on the magnetic field. For instance, the crossing

of the HI" ' " and HI"" "' matrix elements at p
1.6 is due to the fact that the width of the 2p+ state
with larger magnetic moment decreases with increasing
magnetic field xnore rapidly than that of the 2p, state
which has zero-magnetic moment; (5) the effect of the
electron-phonon interaction on the well-center donor is
stronger than on the barrier-center donor as the width
of the donor states is an increasing function of the donor
distance from the well center (see Fig. 3 of Ref. 19); and
(6) the polaron effect on donor states in a Q2D system
is stronger than in bulk material (see Fig. 4 of Ref. 31)
due to the confinexnent &om the barriers.

It is possible to evaluate Eq. (12) approximately and
to perform the sum P,, formally such that one needs to
know only a few relevant states in order to calculate the
polaron shift to the energy levels of the well- and barrier-
center donors. ' Using the method, which is described
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FIG. 2. The values of the
electron-phonon transition ma-

~ ~ I
trix elements, HI", in units of
(R'), are plotted as a function
of the magnetic Seld p for the
well-center donor (solid curves)
in a superlattice with x = 0.25
and tv = b = 100 A. As a
comparison those of the diago-
nal matrix elements for the bar-
rier-center donor are also given

by the dotted curves in the left
6gure.
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in detail in Ref. 31, with the approximation m = mb
we found the following approximations to Eq. (12). The
first one is

(13)

which is only valid for (i) the nonresonant states, and (ii)
the states such that E,, —E,. &( ~g~ in low-magnetic
fields, and E,, —E, &( ihuL~ or E,, —E, & 0 in high-
magnetic fields, for which we take 6; = 0. In the case of
the ground state we can prove that Eq. (13) is an upper
bound to the polaron correction (12). For the 2p+ state
we follow Ref. 31 and find

)- )-)- 'I( ' ql rl *"o)I'(;—,' -q')'
(huLo + Eo —Eo —4 )(hurLo + q2)2

(14)

This expression has the following desirable properties:
(1) at p = 0 the polaron correction to the 2p+ state
is identical to the one of the 2p state, which is due
to the fact that in this limit both states are identical;
(2) for p & 0 IAE2~+ I

is larger than lb,E2„-
I

since the
former is related to the second (N = 1) Landau level
of the free electron, and the latter to the lowest (N =
0) Landau level; and (3) at resonance it is able to give
the correct resonant position since we have included the
relevant resonant states in the sum P, ,

We have examined the accuracy of the above expres-
sions Eqs. (13) and (14) by comparing their numerical
results with those obtained from the method used by
Cohn, Larsen, and Lax for the polaron corrections to
the 18 —+ 2p+ transition energies as a function of the
magnetic fields up to 25 T in the 80 A/9 A superlat-
tice. A comparison was also made between the method
of Ref. 33 and the one used in Ref. 19. We found that for
the 18 ~ 2p+ transition energies the difFerences are less
than 2 cm and 4 cm for the present approach and

the one of Ref. 19, respectively.
We depict in Fig. 3 the unperturbed energy levels of

the ls, 2p+, 2p„3d 2, and 4f s states (dotted curves)
together with the same ones shifted over a LO-phonon
energy (dash-dotted curves), and the energy levels in-
cluding the polaron correction (solid curves) for a well-
center donor in a superlattice with x = 0.23, m = 450
A. , and b = 125 A. , where the polaron correction is calcu-
lated by using Eq. (14) for the 2p+ state, and Eq. (13)
for the others Notice .that (1) for not too large mag-
netic fields the polaron correction shifts the energy levels
to lower energy, and these shifts increase with increas-
ing magnetic-Beld strength; and (2) at resonance (i.e.,
E~ + ——E, + hcuLo for i g 2p+), there is a crossing of the
unperturbed levels. The electron-phonon interaction lifts
this degeneracy, and leads to a splitting of these energy
levels; (3) the rapid increase of the polaron correction to
the 2p+ state (see the lowest branch) for p & 1.5 is a
result of the fact that this state is moving close to reso-
nance; (4) since the 2p, state is higher ( 1R') in energy
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FIG. 3. Energy levels of a donor at the well center of the su-
perlsttice with z = 0.23, ui = 450 A, snd b = 125 A as s func-
tion of the magnetic field with (solid curves) snd without (dot-
ted curves) the electron-phonon interaction. The dash-dotted
curves are the energy levels of the unperturbed states shifted
by a LO phonon.

FIG. 4. The 18 ~ 2@+ transition energy as a function of
the magnetic Seld for a well-center donor in a strongly-coupled
GsAs/Alp. SGso.qAs superlsttice with w = 80 A snd 5 = 9
A. We show our theoretical results for the following cases:
(s) without the polsron efFect for s parabolic band (dashed
curve); (b) with the polsron correction (dotted curves); snd
(c) including the eKects of polsron snd band nonpsrsbolicity
(solid curves). The dash-dotted curve indicates the result for
the QW case without any correction. The experimental data
(solid dots) sre from Ref. 9.

than those of the other states, with the exception of the
2p+ state, we do not expect it to be so important as the
others in the process of the resonant polaron splitting.
This is consistent with the SD case, si and is important
in the interpretation of the experimental results of Cheng
et al.s In fact, the energy levels of the donor in this super-
lattice should be similar to those in bulk GaAs because
of its very wide wells.

IV. COMPARISON WITH EXPERIMENTS

In this section we will compare our theoretical results
to available experimental data. In Ref. 19 many experi-
mental results have been very well described, although
(1) the Gaussian wave function was invoked for the
variational calculation, and (2) only three donor states
(1s, 2@+) were included in the polaron correction. The
reason is that all the experiments mentioned there were
done in the weakly-coupled superlattices, and the results
were only for the low-energy transitions, and/or two- and
three-level resonances.

First, we consider the donor in a strongly-coupled su-
perlattice. Recently, the 1s ~ 2p+ transition energies of
the donor located at the well center of a superlattice with
x = 0.3, ui = 80 A. , and b = 9 A were observed. A three-
level resonance was found. These results are plotted in
Fig. 4 as function of the magnetic field, and shown as the
solid dots. The calculated results (dashed curve) without
polaron correction can not explain the higher branches

of the ls -+ 2p+ transition, although they are in rea-
sonable good agreement with the experimental results in
low-magnetic fields. As a reference the theoretical results
for the case of a QW with well width ui = 80 A are also
indicated by the dash-dotted curve, which overestimates
greatly the transition energy. Therefore, the theory of
a single-quantum well does not work at all here. The
present results including polaron correction are given by
the dotted curves. Notice that (1) the polaron effect in
lower magnetic fields (8 ( 15 T) is very small, and shifts
the transition energy to higher levels. In this region the
polaron correction to the ground state is larger than to
the 2p+ state; (2) at resonance a three-level resonance
is found, which is due to the energy splitting of the 2p+
state and the ~@i» q) and ~4'q~-, q) states; and (3) the
agreement between theory and experiment is only good
in the low-magnetic-field region. It becomes unsatisfac-
tory for all the three branches at higher magnetic fields,
where the efFect of band nonparabolicity on the energy
of the donor electron becomes important.

Band nonparabolicity is included using the standard
Kane model

E., = ' -1+ 1+Eg ( 4E~
2 s )

(15)

where E „and E„are the donor energies with and
without the efFect of band nonparabolicity, respectively,
E~ = 1.52 eV is the band gap of GaAs. This expression
has been used successfully to describe band nonparabol-
icity both for &ee electron cyclotron resonance in GaAs
heterostructures and for the donor transition energy
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FIG. 5. Energies of the 1s —+ 2p+ transition vs the mag-
netic field for a donor located at (a) the well center, and (b) at
the barrier center of an x = 0.23, io = b = 100 A. superlattice.
We show our calculated results including polaron correction
for the cases including band nonparabolicity (solid curves)
and for a parabolic band (dotted curves). The experimental
data (sohd dots) are from Huant and co-workers (Refs. 3 and
6).

in bulk GaAs. The results for the 18 ~ 2p+ transi-
tion energies including the polaron correction and band
nonparabolicity are given by the solid curves in Fig. 4.
Now our theoretical results are in very good agreement
with the experimental data. It is apparent that the e8'ect

of band nonparabolicity decreases the transition energies
because it diminishes the energy of the excited state more
than that of the ground state. Although there is good
agreement, we notice that at resonance (8 = 20 T) the
experimental splitting, i.e. , the difFerence between the
lowest two branches, 6 = 21 cm is slightly (16'Po)
smaller our theoretical result 6 = 25 cm i. It is not
clear if this is due to an experimental inaccuracy or an
inaccuracy in our theoretical model.

Huant and co-workers have measured the 1s ~ 2p+
transition energies of donors located at the well center
and the barrier center of a superlattice with x = 0.25
and io = b = 100 A which is a weakly-coupled superlat-
tice. A two-level resonance for the well-center donor was
found, which is due to a resonant interaction between
2@+ and the ~@i„q).We compare these measured re-
sults (solid dots) to our theoretical results in Fig. 5. It
is found that our calculation (solid curves) can describe
very well these experimental data if the efFects of po-
laron and band nonparabolicity are included. However,
we would like to mention that &om Fig. 9 of Ref. 19
one can see that the Gaussian wave function is already a
good approximation to describe the donor states in this
system, although here we found a little improvement of
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the theory which is under 1/0.
Recently Cheng et al. were able to observe a four-

level resonance of the 18 m 2p+ transition of the donor
at the well center of a GaAs/Alo 23Gao 77As superlattice
with io = 450 A and b = 125 A. ,

s and also a six-level
resonance of this transition in bulk GaAs. The exper-
imental results for the 3D case have been satisfactorily
explained in Ref. 35. The experimental results for the su-

perlattice case are plotted in Fig. 6 by solid dots. A good
agreement is found between theory and experiment over
the whole magnetic-Geld range. Cheng et al. have ar-

gued previously that the highest branch of the resonance
is &om the resonant I 0-phonon interaction between the
2p+ and the ~iIi2~, j) states due to that the energy level

of 2p, is closer to that of 2p than those of the other ex-
cited states. But we found that is not true for the present
situation. Notice that (1) the "interaction energy gap"
between the highest two branches of the experimental
results is about 0.5R', while the minimum energy dif-

ference of the 2p, and 2p states from our calculation
is about 0.8R' at p = 0.0, and (2) the energy levels of
3d and 4f are lower than that of 2p, in the whole

magnetic-field region (see Fig. 3), which indicates that
these two states are more important than 2p . Our cal-
culation, as in the 3D case, shows that the highest branch
of the experimental results should be attributed to the
lifting of the Ez + and 83& 2+Rue, o degeneracy, instead

2p
of E2„andE2, + ~r,o.

V. DISCUSSION AND CONCLUSION

Using a variational approach we have investigated
the energy levels of shallow donor impurities in

FIG. 6. The 1s ~ 2p transition energies as a function of
the magnetic field for a donor at the well center of the super-
lattice with z = 0.23, io = 450 A, and b = 125 A.. The results
are shown with (solid curves) and without (dotted curves)
band nonparabolicity, and compared to the experimental data
(solid dots) from Ref. 8.
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GaAs/Al Ga~ As superlattices in the presence of a
magnetic field along the growth axis. The position of
the donor in the superlattice can be chosen arbitrary.
The electron-LO-phonon correction to these energy lev-
els was included within second-order perturbation theory.
We find that the polaron effect decreases the energy of
the donor state in low-magnetic fields, and leads to a res-
onant splitting of the energies at high-magnetic fields. In
order to correctly describe the experimental results the
efFect of band nonparabolicity on the donor states must
be included which turns out to be important at high-
magnetic fields. Furthermore, the present study shows
that (1) the single-quantum-well theory is not a good
approximation for the strongly-coupled superlattice, and

(2) the Gaussian wave function gives satisfactory results
for the weakly-coupled superlattice with not too wide
wells. Our calculation, without any Btting parameters, is
in good agreement with the available experimental data.

In discussing the experimental data, we found that
there are still two small discrepancies (see, e.g. , Fig. 4):
(i) below the LO-phonon energy the experimental results
are just above the calculated results including the ef-
fect of band nonparabolicity, but below the results for
a parabolic conduction band. This may indicate that the

e8'ect of band nonparabolicity is slightly overestimated;
and (ii) the gap at the anticrossing point is theoreti-
cally slightly overestimated as compared to experiment.
Nevertheless, we know that in this energy region one is
in the reststrahlen band of GaAs and the radiation is
strongly absorbed by the lattice. We found no direct ev-
idence for the interaction of the electron with nonbulk
LO phonons, even in the case of the strongly-coupled
superlattice. This may indicate that the polaron effect
due to the nonbulk LO phonons has the same magni-
tude and effect as the one &om bulk LO phonons in the
GaAs/Al Ga~ As superlattices discussed in the present
work.
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