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We present a theory to describe conductance fluctuations in ballistic metallic point contacts. The
theory is based on interference of electron waves backscattered to the constriction of the device. Since
the number of scattering events in a backscattered trajectory is small, the concept of local interference
can be applied to make a first-principles calculation of the interference effect in the framework of wave

optics. In the theory three different limits can be distinguished, depending on whether there is interfer-
ence of remote trajectories, of near trajectories, or of a remote and a near trajectory. Interference of
near trajectories leads to the estimate of Holweg et al. based on the Landauer formula, which for the
amplitude of the fluctuations 5G agrees with the experiments of these authors, but which cannot proper-
ly account for the characteristic magnetic-field scale B,. Interference of remote trajectories, on the other
hand, reproduces the result of Maslov et al. , also based on the Landauer formula, which can explain B„
but which predicts a much too small 5G. Finally, a combination of near and remote trajectories leads to
the proper description of the experimental data. The remote trajectory, which spreads over a region of
the size of the elastic mean free path, controls B, of the fluctuations, while the near trajectory causes a
substantial enhancement of 56 above the value predicted by Maslov et al. Very good agreement with

the experiments is obtained by taking into account enhanced scattering close to the constriction (a likely

effect for the type of contacts studied}, which gives an additional enhancement of 56. In this way, our
theory successfully predicts both the value of 56 and B, in a self-consistent way, lifting previous con-
tradictions.

I. INTRODUCTION

Recently, two of the authors reported studies of con-
ductance fluctuations of three-dimensional (3D) nanofa-
bricated Ag point contacts. ' These aperiodic reprodu-
cible fluctuations were measured either by sweeping the
magnetic field or the bias voltage. In appearance the fluc-
tuations are very similar to universal conductance fluc-
tuations (UCF), which occur in the diffusive transport re-
gime. The point contacts, however, are ballistic devices,
so that the very observation of the fluctuations was quite
surprising. For the devices studied, the fluctuation am-
plitude 5G is about two order of magnitude lower than
that of UCF ( =e /h ), and depends on the parameters of
the point contact. An interesting property of the fluctua-
tions is that the characteristic magnetic-field scale is
given by B,=(h/e)/l„' ' where l, is the elastic mean

free path. So, for the fluctuations observed, the role of I,
corresponds to that of the phase-coherence length for
UCF. Meanwhile, magnetoconductance fluctuations
have also been observed in ba11istic Au and Al point con-
tacts. To demonstrate that the fluctuations are a general
phenomenon in point contacts, we show in Fig. 1 fluctua-
tion traces for Ag, Au, and Al. The ballistic devices from
which these traces were taken, were made using the
nanofabrication process described previously. ' ' A
schematic cross section of a nanofabricated point contact
is shown in Fig. 2.

The explanation for the fluctuations is quantum in-

terference of electron waves backscattered to the contact
by elastic scatterers (impurities) in the electrodes or
"banks" of the devices. ' A simple estimate of the Quc-
tuation amplitude can be made based on the Landauer
formula using an argument of Lee, by assuming that the
conductance fluctuations are determined solely by the
propagating electron channels in the constriction of the
device and that backscattering is dominated by near
scatterers. The experimental fluctuation amplitudes are
in agreement with this estimate. However, there is a
disagreement between the assumptions underlying the es-
timate and the interference loop size deduced from the
experimental magnetic-field scale.

On the other hand, recently Maslov, Barnes, and
Kirczenov have made first-principle calculations, also
based on the Landauer formula, of conductance Quctua-
tions of a defect-free ballistic point contact between re-
mote disordered reservoirs. In this work, also the elec-
tron channels in the scattering surrounding were taken
into account. The result, however, predicts a fluctuation
amplitude about two orders of magnitude smaller than
observed. Thus, the theoretical situation so far can be
summarized by stating that the two existing estimates of
5G are mutually contradictory, and do not completely
agree with the experimental picture. This makes a more
profound analysis of the problem necessary.

In this paper, we present a new theoretica1 approach to
conductance fluctuations in ballistic metallic point con-
tacts, using the concept of "local" interference and taking
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FIG. 1. Panel (a) shows magnetoconductance traces of three
ballistic point contacts made of Ag, Au, and Al. The magnetic
field is oriented parallel to the axis of the devices. Panel (b)
shows the fluctuation traces after subtraction of the back-
ground.

into account both near and remote backscattered trajec-
tories. Local interference (LI) describes interference of
electron waves in the (quasi-)ballistic regime. On the con-
trary, "global" interference applies to diffusive trans-
port, the typical regime of UCF. Since the elastic mean
free path l, is much larger than the contact diameter 2a
and comparable to the thickness of the banks, LI is the
appropriate mechanism for our point contacts. Local in-
terference enables a first-principle approach of the prob-
lem in the framework of general wave optics, providing
an intuitive and simple physical picture, and agrees with
the limit of a small number of scatterers of the model of
Ref. 7. The concept of LI was introduced by Martin to
describe scattering by complex defects. Pelz and Clarke
used the calculations of Martin to interpret l/f noise in
metal films in terms of the mechanism of LI. Mesoscopic
effects in bulk samples due to a generalized type of LI
were discussed by Gal'perin and Kozub. ' Also, for
ballistic point contacts defined in the 2D electron gas of a

2a

200-nm metal
20-nm Si3N4

Si

200-nm metal

FIG. 2. Schematic cross section of a nanofabricated point
contact. The diameter 2a of a typical point contact is in the
range 5-30 nm.

GaAs heterostructure the limit of a few scatterers has
been considered, in particular in relation to conductance
quantization and Aharonov-Bohm oscillations (see, e.g.,
Refs. 11—13). However, contrary to remote scatterers
discussed in the present work, in Refs. 11—13, typically
one or a few scatterers inside or in close vicinity of the
constriction are considered, while the effect of scattering
is calculated using methods other than the wave-optical
approach presented here.

This paper is organized as follows. In Sec. II, we will
summarize the estimates of the fluctuation amplitude 56
given in Refs. 1,7. In Sec. III, we will formulate our
theory of local interference in point contacts. The main
result of this section is that a combination of near and re-
mote backscattered trajectories leads to interference
which properly describes the experimental data, both for
56 and 8, . This is demonstrated in two steps. First, it is
found that for a homogeneous distribution of scatterers,
which is assumed in Ref. 1 throughout the device and in
Ref. 7 in the reservoirs, this crucial combination of tra-
jectories gives an estimate for 56 in between the esti-
mates of Refs. 1,7, while B, as a result of the extent of the
remote trajectory has the proper magnitude. Second, we
demonstrate that the plausible assumption of much
stronger scattering close to the constriction than in re-
mote regions (e.g., due to scattering at the boundary of
the constriction) in case of the combination of near and
remote trajectories leads to complete agreement of our
theory with the experimental data. To demonstrate the
universality of the wave-optical approach, we start Sec.
III with showing that the estimates of Refs. 1,7 can also
be obtained as limiting cases of our theory, by taking into
account only near scattering or only remote scattering,
respectively. In Sec. IV we summarize and conclude. In
Appendix A a correlation of interference contributions of
difFerent k modes is discussed, while in Appendices B and
C details are given of the estimates presented in the pa-
per.

II. EXISTING ESTIMATES OF 5G

A. Estimate based on the argument of Lee

The amplitude 56 of the conductance fluctuations in a
ballistic point contact can be obtained' from a
modification of the argument given by Lee to estimate
56 for UCF. The starting point is the Landauer formu-
la'~ for the conductance 6 = ( 2e /h )2 ( t~~, where

~
t & ~

is the transmission probability of an incoming channel a
to an outgoing channel P and the summation is over the
number of channels N =a kz/4 (kF is the Fermi wave
vector). In estimating 56, fluctuations 5

~
t & ~

are con-
sidered, and transmission probabilities

~
~t~ ~

are
transformed to reflection probabilities ~r~~2=1 —

~t &~2

to avoid correlations among transmitted channels. This
gives 56 =(2e /h)N( ~r &~ ), where ( ) denotes ensern-
ble averaging. In this stage, the point-contact properties
are taken into account by noting' that
(6) = 1/R =(2e /h)N ( ~t~~ ) = (1—0.82a/l, )/R, .
Here, R is the point-contact resistance given by the
Wexler formula, ' which takes into account both the
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diffusive part of the resistance and the ballistic Sharvin
resistance R, . The Sharvin resistance is given by
R, '=(2e /h)N. The quantity 0.82a/I, in the expres-
sion for (6) is the total probability that injected elec-
trons are backscattered to the orifice as a result of elastic
scattering. The final result of the derivation is the rms
amplitude of the sample-to-sample fluctuations:

5G =1.6—a e

l, h

with Eq. (1). The fiuctuations traces of Fig. 1 demon-
strate this agreement (see also the discussion in Sec.
III B).

Some comments in relation to Eq. (1) are in place.
First, the number of channels assumed in the Landauer
formula corresponds to the size of the constriction. This
assumption is only valid for the immediate vicinity of the
contact. Second, it is assumed that the transmission
probability ( ~

t & ~ ) follows from the total backscattering
probability. Insight in how this probability depends on
the distance R of the scatterer to the contact can be ob-
tained as follows. The probability of backscattering of an
electron to the contact is of order (o /R2)(a2/R2) ~R
the product of the solid angle at which the scatterer is
seen from the contact (cr is the cross section of the
scatterer) and the solid angle at which the contact is seen
from the scatterer. The total number of scatterers within
radius R is =N;R, where N, is the (homogeneous) densi-

ty of scatterers. So, the total backscatter probability is
(ea /R )N;R =N;Oa /R. This probability is dominat-
ed by scatterers close to the constriction. Taking R =a
and using N;cr =I, ', one recovers a/1, as total back-
scatter probability. As a result of the two underlying as-
sumptions, Eq. (1) is actually limited to interference loops
of size a instead of 1,. Thus, while Eq. (1) is in agreement
with the observed magnitude of the fluctuations, due to
the very way of its derivation there seems to be a con-
tradiction with another experimental fact-viz. that the
characteristic length scale is 1,. The conclusion is that a
new theoretical model is needed, which takes into ac-
count remote scattering at distances /, from the contact.

B. Calculation of Maslov et al.

Remote scattering in a point contact is treated in a re-
cent paper of Maslov, Barnes, and Kirczenov. These
authors calculate 56 of a defect-free ballistic point con-
tact, connected to disordered reservoirs. The type of con-
tact considered by the authors is defined in a 2D electron
gas, but the results can also be applied to 3D point con-
tacts. 56 is calculated from the Landauer formula. The
importance of this study is that in calculating the fluctua-
tions, point contact and reservoirs are not viewed as a
network of classical resistors in series, but are treated on
equal footing. This is necessary, since the magnitude of
the phase-coherence length extends from the constriction
into the reservoirs.

The main result of Ref. 7 for the "dilute" regime (when
the size of the reservoirs is smaller than the elastic mean
free path) is 56=(n/N)e /h, where n and N are the
number of propagating channels in the constriction and

in the reservoirs, respectively. Translating this to our 3D
point contacts, we get 56=(a /l, )e /h, where N was

taken as kzl, . This result is two orders of magnitude
smaller than observed experimentally. The reason is that
the probability for an electron to return to the orifice
from the remote region is very small. This result of Ref.
7 and the conclusion of Sec. II A lead us to the formula-
tion of a theory of local interference of electron waves

which includes both remote and near scattering.

III. WAVE-OPTICAL APPROACH
TO LOCAL INTERFERENCE

The wave-optical approach to local interference to be
presented in this section starts from the assumption of a
homogeneous distribution of elastic scatterers and from
an arbitrary number of such scatterers involved in trajec-
tories which take part in the interference. It turns out
that to describe the conductance fluctuations due to local
interference only three types of combinations of backscat-
tered trajectories, involving at most two scatterers, need
to be considered. These types of combinations are (i) two
remote trajectories, (ii) two near trajectories, and (iii) one
remote and one near trajectory. For a homogeneous dis-
tribution of scatterers, however, these combinations do
not lead to agreement with the experimental data. Such
an agreement is found by taking into account enhanced
scattering in the constriction region, again for the com-
bination of one remote and one near trajectory. This sit-
uation is equivalent to a shorter elastic mean free path in
the constriction region and characterizes the special
scattering conditions in our point contacts, as discussed
in detail at the end of this section.

A. General formulation

To describe local interference of electron waves for the
point-contact situation, we consider trajectories starting
at the orifice and returning to it after several elastic-
scattering processes. The initial states gz(0) in the con-
tact region are the wave functions of the ballistic prob-
lem. In the experiments' ' the inequality ka »1 is
satisfied, so that the initial states are described very accu-
rately by plane waves of wave vector k. At large dis-
tances from the orifice, however, the states are not plane
waves due to diffraction at the orifice. ' As a result of
difFraction, considerable phase differences can occur be-
tween waves arriving at point R from difFerent positions
at the orifice. For R & Rd =—ka diffraction can be
neglected, ' so that for each k one deals with a "geome-
trical beam'* of constant width 2a in the direction of k.
For this range, the wave-function amplitude is the same
as at the orifice, i.e., ~fz(0)~. At distances R &Rd
diffraction should be considered, so that the wave func-
tion amplitude decreases according to

ka

The divergence angle of the diffraction cone is = 1/ka, so
that in this range the beam width increases by a factor
R /ka with respect to its geometrical size. This corre-
sponds to the main diffraction maximum. For directions
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far from k, which corresponds to the side di8raction
maxima, one obtains

(3)

For the point contacts we consider, Rz is about 1000 nm.

Since the thickness of the banks is 200-250 nm, we are
always in the range of the geometrical beam.

To calculate the amplitude of the fluctuations, we start
from the expression for the interference contribution to
the backscattered current, relative to the incident
current:

fd r[Pz &(r)VQ& &,(r) gz ~—(r)VQ& ~ (r)]
k=k~

na g kg~(0}
k=kF
k„)0

Here, the vector r (r a) is the 2D radius vector in the plane of the orifice. The functions Pz &(r) and gz &.(r) are wave

functions at the orifice, which result from backscattering (denoted by b and b') along any possible backscattered trajec-
tories, i.e., along trajectories involving any possible number of scatterers:

Pq(Rg }F,Fz F„exp[ik ( I Rz —Rg I+ IRz —Rzl+ ' ' ' + Ir —R, I }]
(5)

In Eq. (5) R„Rz,. . . , R„arescatterer coordinates, F„Fz,. . . , F„arescattering amplitudes, which are taken as
F=(o/4')'~ for all scatterers, and the summation {n] is over all possible numbers of scatterers n involved in the
backscattered trajectories. In Eq. (5) we assume that the spacing between successive scattering processes does not
exceed 1,. Figure 3 schematically depicts three possible backscattered trajectories, involving one, two, or three scatter-
ers.

From Eqs. (4},(5}one obtains the following expression for W;„dueto trajectories involving n and n scatterers:

Wg(R), Rz, . . . , R„;R).,Rz, . . . , R„).
k=k (n) fn')

Here, 8'k is given by

Wv(Ri Rz&' ' ' &Rn Rl' Rz~ R )
' (n+n')/2

IfdRi)llfdRi )I

(6a)

k=kF

cos[k(IRz —Rgl+ ' ' ' Ir —R, I IRz —R& I

' ' ' Ir R, I)+k (R~ —R~. )]

r —Rn r —R ~n
X e). +

Ir —R, I Ir —R„I

(6b)

As before, {n ] and {n'] in Eq. (6a) run over all possible numbers of scatterers n and n' involved in the trajectories. e,
is a unit vector in the positive x direction normal to the plane of the orifice (see Fig. 3}. In deriving Eq. (6b) only the
dominating contribution of the exponential of the spherical waves to the gradients was retained.

Since the average of W, , over defect positions vanishes, the magnitude of the conductance fiuctuations should be ob-
tained from the mean quadratic interference contribution:

Here, the ensemble average ( W;„,} is given by

( W;„,}= g g J dR, dR„dR,. . . . dR„N"+"'W„(R„.. . , R„;R,.. .R„.) .

In Eq. (8) the density of scatterers N, is supposed to be
homogeneous, as in Sec. II A. Further, the interval of in-
tegration over positions of the initial scatterers at R& and
R& is [0,1,], which depending on the relative magnitude

of R& and l, can include both the geometrical beam re-
gion (R „R,. (R&), where Igz(R)l = If&(0)l and

f dR( )~ fma dR( . ), and the main difFraction
maximum region (R &,R &

)Rz), where according to Eq.
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(2) I@g(R)I= I@)(0)Ika'/R and where f dR( . . )

~fR dR dQ( ). In the last case, R is limited to a
diffraction cone of solid angle 1/(ka), which determines

f 1Q. Integration over positions of other scatterers can
obviously be converted to fR dR d Q( . ), which is
limited to a half space. From further analysis of Eqs. (6),
(8), it can be concluded that (i) for trajectories with more
than one scatterer the main contribution to ( W;„,)
comes from remote scatterers at distance l„and (ii) addi-
tion of a scatterer to such a trajectory does not contribute
to ( W~~„,), since it leads to an additional factor
N, cr J R; dR;dQ/~R~ —R;~ =1 (where it was used that

l, =1/N;0 ).
The definition of the magnitude of the conductance

fluctuations given in Eqs. (7), (8) supposes that the contri-
butions of different k modes propagating through the
contact are uncorrelated. Actually, some correlation of
the contributions of different k modes exists for a special
choice of the trajectories. In Appendix A it will be
shown, however, that this correlation is of no importance
in our case.

One might expect that the main contribution to
( W;„,) comes from "diffusive" trajectories with many
scatterers (as for UCF). For the point-contact situation,
however, the importance of such trajectories is reduced
as a result of their small return probability. Apart from
this, for ballistic point contacts the contribution of long
trajectories is suppressed by inelastic processes, due to
the nonzero temperature or an applied bias.

B. Limit of a small number of scatterers:
Combination of near and remote backscattered trajectories

The arguments at the end of the previous section allow
us to reduce the problem "in zeroth order" to that of tra-

X Wk(R), R2;R)„R2.) .

Further, the integration over r in Eq. (6b) reduces to

cosI k[ ~r —Rz~
—

~r
—R2.~+ I'(R&, R2, R, , R2.)]]

/r —R, //r
—R, f

X e).
r —R r —R2 + 2

r —R2/ /r —Rz [

(10)

Here, I (R&,R2, R, R2. ) includes the r-independent terms
of the argument of the cosine. It can be shown (see Ap-
pendix B) that only in two special cases the integral Eq.
(10) takes a substantial value. These two cases occur ei-
ther when the straight line connecting R2 and Rz hits the
orifice, while R~;„=min(R z, R z. ) (Rd, or when both R2
and R2.(R2,R z & Rd ) are inside the same diffraction cone
(see Fig. 4). The value of the integral for the two cases is
summarized by

2 2

In the experiments Rd exceeds I„sothat the relevant sit-
uation is defined by R, ,R, R2,R,. (Rd. For this situa-
tion, we obtain the fluctuation amplitude (see Appendix
C)

jectories involving at most two scatterers, which is the
smallest number necessary to form a loop of area =I,
with the starting and ending points in the constriction re-
gion. First, we analyze the case that both trajectories
forming the loop each involve two scatterers. This means
that in Eq. (6a), we only consider the term with
n =n'=2:

( W;„)= g fdR, dR~dR, dR2N,

e&

2 2

SG=Q&W',„,&G=, ', '„,
e

(12)

FIG. 3. Typical backscattered trajectories relevant for in-
terference. The shaded area to the right of the orifice is the
transmitted geometrical beam. Trajectory (1) represents near
scattering involving one scatterer in the constriction region,
while trajectories (2) and (3) are rernoted backscattered trajec-
tories involving two and three scatterers, respectively. For tra-
jectories (2) and (3), the typical distance between successive
scattering events is I„while the first and last scattering event is
also within a distance I, of the orifice.

where in addition to the contribution of the transmitted
electron flux (to which the description was limited so far}
also the contribution of the incident electron Aux has
been taken into account (see Appendix C). The estimate
Eq. (12) is identical to the one discussed in Sec. II B. This
is as expected, since Eq. (12) was derived for the same
ballistic situation as assumed in Ref. 7: a clean near re-
gion and a low density of scatterers in the diffusive re-
mote region. Since two remote trajectories are involved
in this estimate, the corresponding B, value has the prop-
er magnitude.

Another possibility to be considered is that one trajec-
tory includes two scatterers, while the other includes only
one scatterer, i.e., n =2,n'=1. In this case, R& should be
in the common volume of the geometrical beam and the
cone from R2 towards the orifice. This means that the
single scatterer should be relatively close to the constric-
tion. In the estimate for 5G, this is expressed by taking
the interval of integration for R, as [O,a] along the
direction of the geometrical beam. As a result, one ob-
tains for 56 a gain of a factor (l, /a}'~ with respect to
Eq. (12), resulting in (see Appendix C)
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TABLE I. A summary is given of combinations of backscat-
tered trajectories giving rise to conductance fluctuations due to
interference of electron waves. Prefactors of 5G were omitted.
The dashed constriction region in the lower right geometry indi-
cates enhanced near scattering.

No. of scatt.
traject. 1

2
(remote)

1

(near)
1

(near)
1

(near, enh. )

No. of scatt.
traject. 2

2
(remote)

2
(remote)

1

(near)
2

(remote)
FIG. 4. The two special situations are depicted, which con-

tribute to the interference effect. In scattering geometry (a) the
straight line connecting the last scatterer of the two trajectories
hits the orifice, while R;„&Rz.The top angle of the cone ex-
tending from R;„towards the orifice is (kR;, )

' . In scatter-
ing geometry (b) the two last scatterers are outside the sphere of
radius Rq and inside the same diffraction cone.

5G(e'/h)

B,( T)

'2
a

h/e
l2

a
l,

' 3/2

h/e
l2

a
l,

h/e
a 2

a a
le le, c

h/e
l~

' 1/2

' 3/2
a e

2 1, h
(13)

geometry
of

traject.

~3 a ae
' 1/2

2 l, , l, h
This estimate for combined near and remote scattering is
still smaller by a factor (a /I, )'i than the experimentally
observed 56. Since there is one remote trajectory in-
volved, the B, value corresponding to this estimate has
the proper magnitude.

As an obvious further step, we consider the case that
both trajectories involved in the interference contain one
scatterer (i.e., n =n'=1). This provides an even larger
gain of a factor (1,/a) with respect to Eq. (12). In Ap-
pendix C we derive for this situation

2 2 a e56=
7 I, h

(14)

This result derived for backscattering controlled by only
near scatterers is identical to Eq. (1) derived in Sec. II A
from the Landauer formula. The inadequacy of the
magnetic-field scale corresponding to this estimate to ex-
plain the experimental results was already discussed in
Sec. II A.

In our local interference model presented up to here, a
homogeneous distribution of scatterers was assumed
throughout the point contact. However, it is likely that
enhanced scattering will occur in the constriction region
as a result of strain due to thermal stresses and as a result
of boundary scattering. In Eq. (8) this inhomogeneous
scattering can be taken into account as an increased
effective defect concentration N;, in the immediate con-
striction region, corresponding to a mean free path l, ,
around the constriction which is smaller than in the
banks. This is not contradictory to the high-quality
point-contact spectra which can be taken from the de-
vices, " since in many cases this does not indicate more
than that the ratio l, , /a has a value larger than two or
three, ' ' while no information about the real defect con-
centration can be obtained. For the case n =2,n'=1 the
introduction of the quantity N;, leads to a gain of a fac-
tor (I, /al, , )'i compared to Eq (12) (see A. ppendix C).
So, for 56, we get

TABLE II. Characteristics of the conductance fluctuations
of Fig. 1. Entries in the table are the contact resistance R, the
contact radius a, the elastic mean free path l, of the banks, the
experimental (theoretical) values of the fluctuation amplitude
5G,„~(,h ), and, finally, the experimental (theoretical) values of
the characteristic field scale B, p(th ).

Contact (0) (nm) (nm) (e /h) (e /h) ( T) (T)

Ag
Au
Al

11 5.8 240 0.023 0.021 0.13 0.08
7.5 7.0 190 0.029 0.032 0.29 0.13

16 3.3 48 0.024 0.060 0.13 2.0

Again, because one remote trajectory is part of the in-
terference loop, the 8, value corresponding to this esti-
mate has the proper magnitude. One expects that l, ,
scales with a(l, , )a), so that Eq. (15) efFectively is the
same estimate as Eq. (1). The upper estimate for 56 re-
sults for I, , =a. This will, for instance, hold in case of
efFective boundary scattering, which can easily occur.
The reason is that the actual constriction geometry will
always deviate from a hole in an insulating layer of zero
thickness, in spite of marginal breakthrough of the ni-
tride membrane during etching (see also Ref. 5). In Table
I, we summarize the estimates for 56 and B, for the vari-
ous cases discussed in this section.

Quantitatively, if we assume enhanced scattering in the
constriction region for the point contacts of Fig. 1

(I, ,=a ), Eq. (15) leads to the estimates 56,h compiled
in Table II, which also gives other characteristics of these
devices. As can be seen from the table, the theoretical es-
timates are in very good agreement with the experimental
values. As a further support of our theory, we mention
that experiments on Ag, Au, and Al point contacts, '

including those of Fig. 1, show that 56 indeed scales with
a/l„while the product B,l, in units h /e is a constant of
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order unity.
In our considerations of the fluctuations so far, the

characteristic field scale B, was directly estimated from
the typical loop size for each specific combination of tra-

jectories. A more formal way is to derive 8, from the
correlation function of the fluctuations, which is defined
as F(bB)=(W;„,(B)W;„,(B+AB)). For the relevant
case n =2, n

' = 1,F( hB ) is proportional to

4(R„R~)
cos y(R„R2)+2m.

h/e
J dR, dR,

4(R),R~) EC (R„R~)
cos y(R&, R2)+2m +2~

h/e h/e
(16)

mhBR )R2
F(b,B)~f dR& f dR~cos

0 0 h/e

h/e S.
mhB

mhBl,

h/e
(17)

where Si(x) is the sine integral, obeying Si(0)=0 and
Si(x —woo)=m/2. The characteristic field scale of the
fluctuations is defined as the field B, for which
F(B,)=F(0)/2. From Eq. (17), it can be found that
B,=1.2(h /e) /„Iin agreement with our previous con-
clusions. ' ' From Table II we observe that for the Ag
and Au point contacts B, ,„pand B~ togo agree well. That
for these contacts B, ,b„is somewhat low may be due to
loop areas being smaller than R,Rz/2 and the plane of
the loops not being perpendicular to magnetic field. For
Al B, ,„„

is high, consistent with 5G,b„being relatively
high. The origin of this discrepancy is not clear, but it
may be due to the value pl, =4X10 ' 0 m used in cal-
culating a and l, of the Al contact. The literature values
of pl, cover a wide range, and choosing pl, in the upper
part of this range would give a better agreement. In Fig.
5, the theoretical function F,b„given by Eq. (17}is com-
pared with the experimental function Eexp of the 11-0 Ag
point contact. As can be seen from the figure, F,b glo-
bally has all the features of F,„.In detail, however,
there are some difFerences, the most salient difference
occurring for EB (B,. In this range, F,„(thought to be
symmetric around b,B =0) is like a sharp peak and is
clearly smaller than F,&„. We speculate that this
behavior of F,„,which has also been found for several
other contacts, arises from an additional contribution of
interference loops which involve more scatterers than the
simple loops which lead to Eq. (17) and which thus lead

Here, y(R&, R2} is a phase at B =0 and 4(R&,Rz) is the
magnetic flux through the loop formed by the positions of
the scatterers and the orifice, which for the large spatial
scales in question can be considered as a point. To make
a rough estimate of F(hB), we transform coordinates as
in Appendix C, take as the upper integration limit for R

&

and R2 the elastic mean free path I„make the approxi-
mation

~ R&
—R2 ~

=3l, (see Appendix C) and
4 =BR

& R 2/2 and rewrite the product of cosines to a
sum of cosines [noting that the resulting integral with

y(R&, Rz} in the argument of the cosine vanishes]. So we
obtain

6x10 4

4x10 4

C4
Q)= 2x104

Q3

U

-2x10 40
I

0.4

AB (T)

l

0.8

FIG. 5. The solid line is the correlation function of the fluc-

tuations of the 11-Q Ag point contact of Fig. 1. The dashed line

is the theoretical function given in Eq. (17), which was made to
coincide with the experimental function at hB =0 and at
bB =B,.

to smaller characteristic field scales. The effect of such
loops will be discussed elsewhere.

The key results of this section, Eqs. (15), (17) and the
property that the corresponding B,=1.2(h/e)//„ have
been derived in the framework of a qualitatively new
physical picture, which gives a consistent description of
the fluctuation amplitude and the magnetic-field scale.
Ingredients in the physical picture which are new com-
pared to those of Refs. 1, 7 are (i} a wave-optical ap-
proach to local interference, (ii} both near and remote
scattering, (iii) interference due to the combination of
near and remote backscattered trajectories, and (iv)
enhanced scattering strength near the constriction.

The local-interference theory of the conductance fluc-
tuations described above has several important advan-
tages. First, being transparent and straightforward, it
provides a simple physical picture, but nevertheless has
the versatility to take into account many details (such as
interference of waves propagating along different types of
trajectories or a nonhomogeneous distribution of scatter-
ers) which are not so easy to describe by more formal
procedures. Second, it provides the necessary ingredients
for numerical simulations of quantum interference in

ballistic metallic point contacts.
To conclude this section, we note that the magnetocon-

ductance in addition to the fluctuations also demonstrates
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a systematic behavior: a positive magnetoconductance
for fields up to several Tesla and a negative magnetocon-
ductance beyond this range. For the traces in Fig. 1(a)
this effect is most pronounced for the Au point contact.
It can be shown that the negative magnetoconductance is

due to bending of classical electron trajectories in the
contact region, while the positive magnetoconductance
possibly arises from weak localization involving, in par-
ticular, interference of remote and near trajectories. We
will discuss these phenomena in more detail elsewhere. '

IV. SUMMARY AND CONCLUSIONS

In summary, we have developed a theory for conduc-
tance fluctuation in ballistic metallic point contacts, using
general wave optics to describe the propagation of elec-
trons in the devices. In our approach, the conductance
fluctuations originate from local interference of electron
waves elastically backscattered to the constriction. Due
to the "diffusivelike" nature of the electron paths, only
backscattered trajectories involving at most two scatter-
ers need to be taken into account.

As limiting cases of our theory, we can reproduce the
estimates of 56 of Refs. 1 and 7, which demonstrates the
universality of our approach. These estimates, however,
which are mutually contradictory and do not properly
describe the experiments of Refs. 1,2,4, were derived ei-
ther for dominating near scattering or for dominating re-
mote scattering, respectively. In real devices, on the con-
trary, both near and remote backscattered trajectories
simultaneously play a role in the interference. By com-
bining these two types of trajectories and by making the
additional assumption of enhanced scattering in the con-
striction region (of which the origin probably is boundary
scattering), we find very good quantitative agreement
with the experiments, both for 56 and B„thus lifting the
previous contradictions. This agreement is achieved by
calculating the enhancement of 56 (compared to the case
of only remote trajectories ) due to the larger return
probability of trajectories confined to the near region,
while backscattered trajectories spreading out to the re-
mote regions are responsible for the magnetic-field scale.

The property that the fluctuation amplitude depends
on the local elastic mean free path can, in principle, be
used to probe the scattering strength close to the con-
striction, for example by deriving l, , as a fit parameter.
In this way it is possible to obtain information on the ac-
tual contact realization which is not accessible using oth-
er methods.

In spite of the larger return probability of near trajec-
tories, we find that the most probable loops contributing
to the effect involve one remote trajectory. This also
means that the fluctuation amplitude will not be larger at
higher inagnetic fields (where smaller loops are probed),

APPENDIX A

As discussed in Sec. III A, there exists a correlation of
contributions of different k modes for a special choice of
the trajectories. This can be demonstrated by considering
pairs of trajectories (inside the half-sphere of radius Rd )

which, apart from the condition that the line connecting
the last scatterers at R„and R„.should hit the orifice,
also obey this condition for the initial scatterers at R&
and R&.. This condition for the relative positions of the
last scatterers is just the general condition to provide a
substantial contribution to the interference (see Appendix
B). The condition for the relative positions of the initial
scatterers clearly is stronger than the simple condition of
being in the same geometrical beam and implies a reduc-
tion of the phase volume available for the initial scatter-
ers. Initial modes k and k' parallel to, respectively, the
lines connecting R&,R&. and R„,R„satisfy the relations

and

k.(Ri —Ri. ) =k ~Ri —Ri.~a(R&, R&. )

k' (R„—R„)=k')R„—R„~a(R„,R„),

(Ala)

(A lb)

where a(R;,R;.}=sgn[e,.(R;—R,')] indicates the order-
ing with respect to the orifice of the scatterers at R;,R;..
The correlation can be identified by considering the
cosine in the integrand of Eq. (6b). The integration over
r in Eq. (6b) reduces the contribution of the cosine to its
value corresponding to a slow variation of the phase
k (

~
r —R„~—~

r —R„~). Consequently, we can write

k(Ir —R, I

—Ir —R„I) =kIR„—R„la(R„,R„). (A2)

If Eqs. (Al), (A2) hold it follows that traversal of trajec-
tories (R„R2,. . . , R„)and (R, , R2.. .R„.) by a wave
related to initial mode k yields the same value of the
cosine as traversal of the same trajectories traversed in
the opposite direction by a wave related to initial mode k'
(k'=k =kF ). This correlation is obviously related to the
well-known contribution of the particle-particle (Cooper)
channel to UCF. In this sense, the contribution given
by Eq. (8) in Sec. III B arises from the particle-hole chan-
nel. The contribution of the particle-particle channel is
given by

not even at the fields corresponding to loops confined in
the contact region. This agrees with the experimental re-
sult. ' '4
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As a result of Eqs. (Ala), (Alb) the phase volume avail-
able for the initial and last scatterers is restricted accord-
ing to the inequalities

Ik (Ri —R, ) —kIRi —R, l~(Ri, Ri )I «~ (A4a)

and

Ik' (R„—R„') k'IR„—R, la(R„,R, I
«~ (A4b)

which allows the wave vectors k and k' to slightly deviate
from being parallel to the vectors R&

—R&. and R„—R„.,
respectively. It can be shown, by applying phase volume
arguments of the type also used in Appendix 8, that Eqs.
(A4) leads to a reduction of the total phase volume for
the initial and last scatterers by a factor =(ka) com-
pared to the situation for the particle-hole channel.
However, in Eq. (A3) there is an additional summation
over the modes k' for each given mode k, which gives an

additional factor =(ka) . As a result, for the special
pairs of trajectories defined by Eqs. (A4), the contribution
of the particle-particle channel is equal to that of the
particle-hole channel, and it thus doubles the mean quad-
ratic fluctuation amplitude. However, due to reversed or-
dering of the scatterers for the particle-particie channel,
the magnetic flux contribution enters the arguments of
the cosines in Eq. (16) with opposite signs, so that the
contribution of this channel is already suppressed at a
moderate field, as is also known for UCF. Since in the
experiments the applied fields are much larger than this
field, we have not taken into account the contribution of
the particie-particle channel to the fluctuation amplitude.

APPENDIX B

In this appendix, we derive Eq. (11)of Sec. III B. As a
starting point, we repeat Eq. (10):

cosjk[lr —Rzl —Ir —Rz I+I (Ri Rz Ri' Rz')]l r R2 r R2'I= dr ~ +
Ir —Rzllr Rz I Ir —Rzl Ir —Rz I

(81}

In general, the cosine in the integrand of Eq. (81) is a
rapidly oscillating function of r across the area of the
orifice. This consequently causes the integral to average
to a small value. In two special cases, however, a sub-

stantial part of the orifice is an area of virtually constant
phase difference for waves emitted from R2 and R2, so
that the cosine varies slowly in that part. These two
cases occur (see Fig. 4} either when the straight line con-
necting R2 and R2. hits the orifice, while R
=min(Rz, Rz. ) &Rd, or when both Rz and Rz.
(Rz, Rz &Rd) are inside the saine difFraction cone. In
the former case the area of constant phase is given by the
intersection with the orifice of a cone having its top at
R;„.This cone is defined by

Z(r —R;„,R;„—Rz ) ~ 1

kR min

(82)

where l(a, b) denotes the angle between the vectors a and

b. The available phase volume for R;„is inside the solid

angle n.a (1/Rz —1/Rz. ), which is determined by the

cone extending from R,
„

to the orifice (R,
„

is the

longer vector of Rz, Rz }. In the latter case the whole

orifice is an area of constant phase. The question what is
the phase volume for R;„,subject to the condition that
the path difFerence Ir —Rzl —lr —Rz. l

should be virtually

constant across the whole orifice, is equivalent to the
question, what are the possible directions for waves emit-
ted by the orifice in the direction of R,„,such that they
also arrive in phase at R;„.From diffraction theory, it is

known that these directions are inside a diffraction cone
of solid angle 1/(ka) centered around the direction of
R,„.For the value of the integral given in Eq. (Bl),
these considerations lead to

I=— min(Rd, R;„),1 m

2 2

(83)

for R;„&Rd,

and

1
for R;„)Rd.

2n(ka)
(84b)

In situations other than the special cases the rapid oscil-
lations of the integrand average to zero, except in a nar-
row band at the circumference of the orifice. For the nar-
row band, one finds from statistical arguments,

a 1 1

&2&z «&« (85)

The square of the ratio of estimates Eq. (83), (85) yields a
factor (ka) min( l,R;„/Rd). This factor multiplied by
the reduction factors in Eqs. (84a), (84b) equals

which is Eq. (11)of Sec. III B. In Eq. (83), we have omit-
ted the numerator of the integrand, being the value of the
cosine in the area of constant phase dimerence, and the
factor involving scalar products with e„which factor is a
slowly varying function of r. For our purpose this omis-
sion is justified, since these functions enter Eq. (9)
squared, so that a weighing is carried out by a function of
efi'ective value of order unity. The restriction of the
phase volume for R;„obviously leads to a decrease of
the phase volume of trajectories contributing to Eq. (9),
since it restricts the integration over the coordinate of the
last scatterer in each arm. The restriction leads to a
reduction of the integral Eq. (9) by a factor

1
(84a)

R2
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ka (1 R—„/R ) /2 for R, &Rd or ka/2m for
R „)Rd. The latter result certainly is much larger than
unity, while the former result, in general, also will be
larger than unity, except in the case R „/R,„=l.
Realizations for which this occurs are rare, in view of the
average distance between the scatterers and the condi-
tions imposed on their relative positions. So, in general,
the decrease of phase volume described by Eqs. (B4) is
strongly compensated for by the magnitude of the in-
tegral given in Eq. (B3). Thus, pairs of trajectories lead-
ing to the estimate given in Eq. (B3}make the dominant
contribution to the effect. This also holds for cases other
than n =n'=2 (see Appendix C).

0 2

8'I, = 8~'~' y ly„(o)l'
F

lf&(R|)lip&(R|.)lI(R|,Rz, R|., Rz. )
X (Cl)

tered into a k mode of the constriction, which subse-
quently is transmitted. The contribution of the incident
flux to ( W;„,) is equal to that of the transmitted flux, so
that in this appendix ( W;„)has a magnitude which is
twice that of Eq. (8).

We start with the case that both trajectories involve
two scatterers, i.e., n =n'=2 F.rom Eq. (6b), we have

APPENDIX C

In this Appendix, we make the estimates of the fluctua-
tion amplitude 56 presented in Sec. III B. To this end,
we first note that according to Eqs. (4), (8) ( W;„,) origi-
nates from backscattering of electron channels initially
transmitted through the orifice. However, one can also
consider the complementary problem of elastic scattering
of the electron flux incident towards the orifice. In a way
similar to that of the transmitted flux, this gives an in-

terference contribution to the current through the con-
tact, which is independent of the contribution of the
transmitted flux. This contribution results from interfer-
ence of waves which after one or more collisions are scat-

where I(R„Rz,R, Rz ) is the integral given in Eq. (Bl).
Equation (C1) can be reduced by noting that
lf~(R|)l=lg~(R|.)l=lg), (0)l for Ri,Ri. &R~, while

z 1 =a kz/4 and according to Eq. (B3)
F

I(R„Rz,R, Rz. )=1/(kRz. ) for the choice Rz=R
So we get

0' 7r

lR.,—R, llR, .—R, lZz,
(C2)

Since for the case of local interference discussed here, one
has R „R2,R, R2. &l„the upper limits of the integrals
of Eqs. (8), (9) are set to I, . Thus, by combining Eq. (9)
and Eq. (C2), it follows

(W;„,)=2 g f dR, dRzdR|dRzN; Wz(R„Rz,R, Rz)
k=kF

1 ~&=ie dRi &| =I, dRi &z=I, &z, =i, dRz,

8n."1 a k4 ~"i=o lR, —R l' ~1=o lR, , —R, , l' ~&=o a, =~, gz,dRz (C3)

To arrive at Eq. (C3), it was used that the summation over k states at the Fermi surface again just yields the number of
channels propagating through the contact. We proceed by making the approximation l Rz —R, l

=
l Rz —R, ,

l

=3l, (which corresponds to an average of these quantities over a sphere of radius I, }and by transforming to spherical
and cylindrical coordinates. Actually, for the integration over positions R, and R,. elliptical coordinates should be
used. However, the difference between the two types of coordinates is only pronounced for k directions far from the
axis of the point contact, which justifies our choice. From Appendix B, we use J dQz=ma (1/Rz —1/Rz. )z. Finally,
we get

dRi i, dRi I

4l, k 0 lRz —R
l

0 lRz —R

3l, 3l, l,
4l4~4

6 a 16
256 I, (ka)

From this we find, using Eq. (7)

~2 e2

8 l'h

(C4)

(C5)

The next case to consider is n =2,n'= 1. For the choice R &. =R;„,we get

8~'" 7T8'k =
(4m} na k

(C6)
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( W,'„,)=2 g f dR)dR, dR, N,'Wk'(R„R~;R,. )
k=k F

1 dR) ~~ =I dR2
2~'/, 'a'k' fan =o si=o ~R,—R, ~' ~~=&, g'dR)

As discussed in Sec. III B, the requirement that the line
connection R, and Rz should hit the orifice, can to a
good approximation be taken into account by integrating
R, over the interval [O,a] along the direction of the
geometrical beam. Again changing the integration vari-
ables, we get

(W,'„,)=
2m/ a k 0 ~Rz

—R~

(Wi„,)=2 g f dR, dR, N~Wj~(R, ;R, )

R(=le R), =l~ dRi,
m'/'a'k4 f )=' dR,

l

f RidR, f dR,
/, a k

2 a 16 le 33
ln

48 / (ka) a 18

1 1

R,2

(C11)

XdRz f dQz

3l,
(/, a —

—,'a )2m
2ir/, 3a k /,

3 a 16
16 /3 (ka)

(C8)

To arrive at the last expression of Eq. (Cl 1), we have lift-
ed the divergency of the integration over R

& by introduc-
ing "by hand" the contact radius a as the lower integra-
tion limit. This seems a logical choice, since for our ex-
periments the radius is in the range (0—0. 16)/„as re-
quired by the last factor in Eq. (Cl 1},and since it is not in
contradiction with the homogeneous distribution of
scatterers assumed for this case. Since in the experiments
[ln(/, /a) —

—",, ]=1,we find from Eq. (Cl 1)

From this we find

v'3 a e'
2 l, h

(C9}

For n =2,n'=1 it is also possible to consider the situa-
tion Rz=R;„.This will reduce the fiuctuation ampli-
tude below the value of Eq. (C9), since the probability to
backscatter to the orifice from position Ri will be re-
duced. Since Eq. (B9) already gives a too low estimate,
we will not consider this possibility.

Now we consider the case n =1,n ' = 1. For the choice
R

& =R;„,we get

2V2 a e
7 l, h

(C12)

a'
16 /, , /~ (ka}

From this we find

(C13)

Finally, we consider the case n =2,n'=1 under the con-
dition of enhanced scattering in the constriction region.
This is due to an effective density of elastic scattering
centers N;, in the constriction region which is larger
than in the remote regions. Taking into account N, ,
leads to a modified version of Eq. (C8), which involves

/, , =(oN;, )

2'
Ha4k' ~) (C10) 56= v'3

2

1/2
a e

l,
(C14)
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