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Periodic modulation of Coulomb-blockade oscillations in high magnetic fields
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Coulomb-blockade oscillations in transport through a lateral quantum dot at small Landau-level
filling factors are investigated. We observe both a periodic modulation of the peak conductance as well

as a striking modulation of the peak separation. We show that below a Landau-level filling factor of 3 a
single-particle description of these effects fails and the depopulation of the Landau levels with decreasing
electron number can occur noncyclically. We interpret our measurements in terms of a recently
developed phase diagram that characterizes the states of the quantum dot.

I. INTRODUCTION

Electronic transport studies through small conducting
islands show several striking efFects. ' If the thermal ener-

gy k~ T is small compared to the electrostatic energy re-
quired to add one additional electron to the island, con-
ductance oscillations as a function of the electrochemical
potential of the island are observed. These are usually
called Coulomb-blockade (CB) oscillations, ' whose
period corresponds to the change of the number of elec-
trons inside the island by 1. In our system, the conduct-
ing island is a quantum dot electrostatically defined in the
two-dimensional electron gas (2DEG) of a GaAs-
Al„Ga& „As heterostructure. Additionally the dot is
coupled to source and drain via two tunable tunnel bar-
riers which permit the conductance to be measured. At
source-drain bias voltages comparable to the discrete
energy-level separation in the quantum dot, the ampli-
tude of the CB oscillations depends upon the number of
current-carrying states, ' including excited states. In
the case of a small applied source-drain bias voltage,
however, only one (possibly degenerate) quantum dot
state carries current. The amplitude of the CB oscillation
peak is then determined by the coupling of this particular
state to the leads, ' or by coherent resonant tunneling of
the electrons through the quantum dot.

In the presence of a magnetic field perpendicular to the
plane of the 2DEG, the character of the CB oscillations is
significantly modified. At Landau-level (LL) filling fac-
tors larger than 3, an amplitude modulation of the CB os-
cillations has been observed. A description of the
energy-level structure of the dot in terms of a single-
particle picture leads to an excellent agreement with
these experiments. ' However, in the regime of
Landau-level filling factor 2, it is well known that a
single-particle model is unable to describe the experimen-
tal observations. ' Magnetoconductance (MC) oscilla-
tions in this regime show a period that corresponds to the
change of the magnetic flux within the area of the quan-
tum dot by one flux quantum. ' This indicates frequent
crossings of the discrete energy levels not present in the

single-particle spectrum. A quasi-self-consistent treat-
ment of the quantum dot in this range of magnetic fields
is able to explain the measurements. The minimization of
a charge-density functional shows that the dot develops
an additional electrostatic structure. ' ' Within this
model ["charge-density model" (CDM)], the formation of
Landau levels leads to a modulation of the screening
properties of the confined electrons, ' and, as a conse-
quence, the dot divides into compressible regions separat-
ed by incompressible rings. Recently, an analytical
description of the quantum dot in terms of a phase dia-
gram has been developed for the regime of LL filling fac-
tor below 2. 's This description is based upon an analytic
treatment of the charge-density distribution' inside the
quantum dot; each phase is characterized by the number
(n „n2)of electrons at the Fermi energy in the dil'erent
compressible regions.

Here we present measurements of CB oscillations over
a wide range of magnetic fields (i.e., 2 T ~B ~9 T). At
low magnetic fields (B & 3 T), we observe an amplitude
modulation which can become as large as 90 lo of the am-
plitude of the CB oscillation. At higher magnetic fields,
we observe a periodic modulation of both the CB oscilla-
tion amplitude as well as their peak separations. We nu-
merically extend the CDM to filling factors above 2 and
apply these calculations to explain our experimental ob-
servations. We show that even at filling factors above 2,
a single-particle description fails: the LL s are not always
cyclically depleted when the electron number in the dot is
reduced. In addition, we show that the period of MC os-
cillations is not necessarily given by the flux quantization
condition.

II. EXPERIMENTAL DETAILS

For the fabrication of the quantum dot we use a
GaAs/Al„Ga& „As heterostructure with an electron
density of 3.6X10' m and a mobility of 1.1X10
cm /V s at 4.2 K. The quantum dot is realized by the ap-
plication of bias voltages to an appropriate gate structure
defined on the surface of the heterostructure (Fig. l). The
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FIG. 1. Atomic force microscope picture of a typical gate
structure (bright) on the surface of a GaAs-Al„Ga& „Ashetero-
structure (dark). The quantum dot is defined by application of
negative gate voltages to the four electrodes. The arrow denotes
the direction of current Qow.
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electrodes form two quantum point contacts, whose
transmission can be independently adjusted. For the ex-
periments presented here, their conductance is kept fixed
below 2e /h. A sweep of the voltage applied to the
center gate C leads to peaks in the conductance that are
separated by e/Cc, where Cc is the partial capacitance
between C and the dot. The total dot capacitance Cz is
given by the sum of all the partial capacitances, including
the capacitance between the quantum dot and the leads,
CL. For the structure considered here, we measure

Cz =200 aF for typical gate voltages, where the capaci-
tance CL contributes 60 aF to Cz. We determine CL

from the difference between C& as obtained from the tem-
perature dependence of the linewidth of one CB oscilla-
tion conductance peak and the sum of all partial capaci-
tances the dot forms with the gate electrodes. The
charging energy for a single electron is thus 0.4 rneV. We
apply an ac source-drain excitation voltage with an am-
plitude of 4.3 pV and measure the current in a two-
terminal configuration. The current resolution is estimat-
ed to be 200 fA. The measurements are carried out in the
mixing chamber of a dilution refrigerator with a base
temperature of 25 mK.

III. RESULTS AND DISCUSSION

A. Low magnetic SeM—Darwin-Pock states

In Fig. 2(a), we show CB oscillations at 8=2 T. A
modulation of the peak conductance with an average
period of six CB oscillations is observed. Similar
behavior has been reported by Staring et a/. However,
we see a much stronger modulation amplitude (90% com-
pared to 10% in Ref. 9). ' This amplitude modulation
results from both the cyclic order in energy of the

FIG. 2. (a) Conductance oscillations as a function of the
center gate voltage Vc (inset) at B=2 T, corresponding to a
filling factor of six inside the dot. The inset shows the schemat-
ic gate structure of our sample and the direction of the current
I. The lithographic dot size is 450X480 nm2. (b) Magnetocon-
ductance oscillations at a fixed center gate voltage ( Vc = —500
mV). The bath temperature for these measurements in (a) and
(b) was T=25 mK.

Darwin-Pock states' with respect to their LL index as
well as the fact that only states belonging to the lowest
LL couple to the leads. Due to both the increased length

and height of the tunneling barrier, tunneling via higher
Landau levels is strongly supressed and can be neglect-
ed. For a given state at the Fermi level, the peak ampli-

tude is thus modified by the occupation probability of the
nearest state in energy of the lowest LL. The strength of
the amplitude modulation is thus governed by the ratio
between the typical energy-level separation and the
thermal energy, 5E/ksT. For our sample, we estimate

exp( Mlks T) =0—.1. Assuming a typical electron tem-

perature of T=100 mK, we expect a typical level separa-
tion of 5E =20 p eV, in reasonable agreement with an es-
timation of 5E using the Darwin-Fock model.

The MC at fixed gate voltages in this regime of the
magnetic field is shown in Fig. 2(b). MC oscillations with
a period of 58=37 rnT are measured. Within the model
described above, one MC oscillation period corresponds
to the addition of one electron to a state of LL l. Hence,
one flux quantum (h /e) must be added to the area of the
dot. Assuming a circular dot shape, this allows us to esti-
mate the dot radius to rd„=V'h /mes, 8 =190 nm, in

good agreement with the lithographic dimensions com-
bined with electrostatic depletion lengths.
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B. High magnetic field —introduction
to the phase diagram

In Sec. III C, we discuss the properties of the CB oscil-
lations for filling factors inside the quantum dot vd«& 2,
i.e., B ~ 6 T. At B=6 T, we observe an amplitude modu-
lation with a period of two conductance peaks. The peak
separations are modulated with the same period [Fig.
3(a)]. This behavior' can be understood in terms of the
CDM. ' The compressible regions I and II are separated
by an incompressible ring, located at the region of unity
filling factor [Fig. 3(b)]. Hence, an additional intradot ca-
pacitance arises which is responsible for the observed
modulation of the peak separation. Within the CDM,
the state of the dot in the regime vd„&2 has been charac-
terized in terms of a phase diagratn. Each phase is
characterized by the number (n„nz)of electrons in the
outermost compressible region I and in the innermost
compressible region II, respectively. An obvious require-
ment for the existence of well-defined compressible re-
gions is that the magnetic length, ltt =&AleB, be smaller
than the separation between these regions. In Ref. 14,
the intradot capacitance C,2 is assumed to be constant,
and the capacitance CL [see Fig. 3(b)] between the dot
and the leads is neglected. The value of CL determined

from the temperature dependence of the CB oscillation
line shape is for the sample considered 60 aF. This is ap-
proximately 30% of Cx and certainly not negligible. To
include the infiuence of a significant Cr as well as the
magnetic-field dependence of the intradot capacitance
C]2 we have minimized numerically the total electrostat-
ic energy of the quantum dot in the plane defined by C&c
and Vc. We have modeled the dependence of C&z on C&c
using the expressions developed in Ref. 13 [Fig. 3(c)].
Since the area of region I is a monotonically increasing
function of magnetic field, we note that Ctc can be
identified, within a certain range of validity, with a mag-
netic field. The symmetry of the phase diagram around
C,c =C2c (Ref. 14) is removed by a non-negligible value
of CI . Furthermore, as a consequence of the decreasing
value of Ctz with increasing C,C, the amplitude of the
zigzag line that separates phases belonging to a different
total number of electrons inside the dot increases. The
modulation of the peak separation reflects the different
lengths of the traversed phases under a variation of the
applied gate voltage at a fixed value of the magnetic field.
The amplitude of the CB oscillations is determined by the
coupling between region I and the leads. Note that only
region I carries current, since the overlap of the wave
functions between regions I and II is negligible. As in the
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FIR. 3. (a) CS oscillations at filling factor vz & 2 (B=6 T) and the corresponding peak separations at T=25 mK. (b) The structure
of the electron gas inside the dot as obtained from the charge-density model. An intradot capacitance C» between the compressible
regions I and II is formed, separated by an incompressible ring. Each compressible zone has a partial capacitance with respect to the
gates and contains an integer number of electrons, n;, i = l and 2. (c} Calculated phase dittgram of the quantum dot for v„~2. The
capacitance between the outermost region I and the leads was assumed to be 0.3C&. The arrow denotes a center gate voltage sweep
at fixed magnetic field. (d) CB oscillations at B=8.8 T and T=25 mK.
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low-field case discussed above in Sec. III A, the electronic
transport occurs via activated states of LL 1.

The maximum amplitude 5(h Vc) of the zigzag-shaped
phase boundaries separating regions that contain a
different total number n, +n2 is given by'

4C +C12 X

To compare Eq. (1) quantitatively with the measure-
ments, we determine the conversion ratio
a=DE/ehVc=Cc/Cz, with Cc=e/b, Vc, where EVc
is the mean separation of the conductance peaks. We see
a strong dependence of AVC on Vc. This effect has its
origin in the decreasing value of Cc with decreasing Vc,
as a consequence of the increasing depletion length be-
tween the dot and C. In the regime between —900
mV ( V & —300 mV we find, independent of the applied
magnetic field, a linear dependence of 6VC on Vc, which
we fit by AVc=1.2X10 V —7.3X10 X Vc. From
Fig. 3(a), we determine at Vc = —480 mV
5(b, Vc ),„=0.6 mV, leading to an estimation for
C&2 ~ 380 aF. This value may be compared directly with
the intradot capacitance C&2 as obtained from electrostat-
ic considerations. ' We approximate C&2 by

C
~ 2

=4K',pr &
ln

where d is the typical width of the compressible regions
(d = 100 nm), and r

&
is the radius of the middle of the in-

compressible ring. Using the expressions derived in Ref.
14, we calculate r, = 130 nm at B=6 T. Equation (2) can
be used to estimate the width of the incompressible ring
to w, 10 nm. This width depends upon the separation
of the lowest two LL's, which is given by the effective g
factor g,z. Hence we can estimate g,z ~ 3. Furthermore,
we see that the intradot capacitance is comparable to the
other capacitances in our system.

MC oscillations in this regime show the same period as
those at much lower magnetic fields [Fig. 2(b)] and
represent the transfer of electrons from region II into re-
gion I. ' ' ' Since the intradot charging energy
e /2C, 2 is much smaller than the Zeemann splitting, this
electron transfer is governed by the flux quantization
condition discussed above.

Another interesting feature of this phase diagram
which is reproduced in our measurements is the behavior
at extremely high magnetic fields. As expected from Fig.
3(c), the periodicity of the peak separation modulation is
absent at magnetic fields much higher than 6 T [Fig.
3(d)]. Since the number of electrons contained in regions
I and II is very different, the two compressible regions are
no longer cyclically depleted under the variation of the
center gate bias.

C. Extension of the phase diagram
to intermediate magnetic fields

At intermediate filling factors, i.e., 2(vd ~3, we ob-
serve both a cyclic depopulation of the LL's [Fig. 4(a)] as
wel1 as modulations that indicate a noncyclic depopula-

tion [Fig. 4(c)]. At B=4 T, the period of three CB oscil-
lations indicates a filling factor inside the dot of vd =3.
In this regime, we clearly resolve the spin splitting and
observe additionally a striking modulation of the CB os-
cillation peak separations. A single-particle description
is not able to explain these measurements. Modeling the
dot by Darwin-Fock states and under the assumption of a
reasonable enhanced g factor, it is impossible to occupy
states in the third LL while leaving the fourth LL unoc-
cupied. These measurements are therefore a clear indica-
tion of the necessity to include the Coulomb interaction
to explain these data. Note also that the sequence of
depopulation sometimes changes [Fig. 4(a)]. Hence the
LL's are no longer strictly cyclically depopulated. The
quasicyclic depopulation of the Landau levels is com-
pletely lost in a magnetic field of B=5 T [Fig. 4(c)]. In
terms of the charge-density distribution model, such a
noncyclic depopulation is readily understood. For filling
factors between 2 and 3 it is to be expected that the dot
decomposes into three compressible regions, each with an
integer number of electrons at the Fermi energy. If the
three compressible rings are equal in area, their electron
occupation numbers n &, n 2, and n 3 will be approximately
the same. If, however, one region is large or small corn-
pared to the remaining ones, a cyclic depopulation is no
longer energetically favorable. At B=5 T, the area of the
innermost region (III) is close to zero. Hence we expect
p1 3 to be small compared to both n, and n 2, and conse-
quently a noncyclic depopulation of the compressible re-
gions occurs.

To justify this interpretation, we have extended the
phase diagram [Fig. 3(c)] (Ref. 14) to the case of three
compressible regions. At each value of C,c and Vc, we
minimize the total electrostatic energy of the dot nurneri-
cally. This calculation gives the distribution of the elec-
trons among the compressible regions, where each phase
is now characterized by three numbers (n, , nz, and n3).
As above, we include the capacitance between region I
and the leads. Figures 4(b) and 4(d) show two sections of
the calculated phase diagram. Not only do we find re-
gions of cyclic depopulation, but also, at small values of
C3c noncyclic depopulation of the three compressible re-
gions. In detail, we choose Czc and C3C to decrease
hnearly with increasing C&c. We include the behavior of
the intradot capacitances using Eq. (2). Despite the large
uncertainties of these phase boundaries due to both the
crude estimations of the capacitances as well as the lirnit-
ed range of validity of Eq. (2), these calculations are able
to explain the experimental observations qualitatively.

D. Magnetoconductance oscillations
and flux quantization

The period of MC oscillations is usually explained with
the flux quantization. If the magnetic field is increased,
the charge flows toward the center of the dot, and, hence,
the electrochemical potential in the outermost compressi-
ble region, p&, decreases, while it increases in the inner re-
gions. Once an additional flux quantum has been added
to the area of the dot, an electron can be transferred from
an inner region to the outermost region I, thereby reduc-
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FIG. 4. (a) CB oscillations at B=4T and their peak separations. (b) The corresponding section of a generalized phase diagram as

numerically calculated. (c) At B=5 T, a noncyclic depopulation of the Landau levels is found. (d) This behavior at B=5 T can also
be modeled by the phase diagram description, and corresponds to a much higher value of C&&.

ing the total electrostatic energy of the dot. Since the
difference between the electrochemical potential in region
I and in the leads can be taken as a measure of the cou-
pling of I to the leads, this electron transfer is re6ected in
the conductance of the quantum dot. Moreover, one ex-
pects the number of electrons in the dot to decrease slow-
ly as a function of increasing magnetic field. ' Hence one
expects to observe broad resonances with a short-period
oscillation superposed' [Fig. 5(a)]. To bring the dot back
into a conducting state after crossing one broad reso-
nance, it is necessary to change the number of electrons
inside the dot. One broad resonance thus corresponds to
the magnetic-field interval necessary to change the occu-
pation number of the dot by one electron. 17

If one compressible region becomes very small, the as-
sociated charging energy necessary to transfer one elec-
tron can exceed the energy separation of the LL's. In
this case, the period of the MS oscillations is no longer
determined solely by the Aux quantization condition, but
also by the intradot charging energies.

As expected, we observe broad resonances with a sepa-
ration of approximately 0.5 T superposed with short-

period oscillations. For the resonance at 3.15 T, the
short period has a mean value of 68=35 rnT, in good
agreement with our low-field data [Fig. 2(b)]. Within this
short period two distinct peaks are clearly visible. At
8=3.15 T the filling factor of the dot lies between
3 vd 4. As the magnetic field is increased, electrons
contained in the uppermost two LL's are cyclically
transferred to LL's 1 and 2. Within one modulation
period (b,B=35 mT), one flux quantuin is added to the
area of the quantum dot. This allows the addition of one
electron to both LL's 1 and 2. If an electron is added to
LL 1, the change in the conductance is large. If, howev-
er, the electron is added to LL 2, p, is only slightly
changed due to the capacitive coupling between regions I
and II, and hence the corresponding conductance peak is
small.

The short-period oscillation in the resonance around
8=3.65 T, however, cannot be attributed to the area of
the quantum dot. One possible explanation is that, in
this regime, the electrostatic energy needed for a rear-
rangement of the electrons becomes comparable to the
magnetic energies in the dot. At 8=3.65 T, the fourth



15 118 T. HEINZEL et al. 50

0.3 22

(D 0.2
(D
O

~ 0.100

E
20 c

(2

I
CL

CO

18~
tD

CL

0
2.8

0.2 ' '

3.2 3.4 3.6
16

3.8
34

0.15

Q)
U
C

0.1

o
0

0.05

30
E
C0

26

(0

22 Q)
CL

I I I I I I I I I

44 45
8

4.6 4.7 4.8 4.9 5 5.1

Magnetic Field (T)

FIG. 5. Magnetoconductance oscillations and the corre-
sponding periods at fixed center gate voltages [ Vc = —600 mV
in (a) and Vc = —505 mV in (b)] at a bath temperature of T=25
mK.

LL is nearly completely depleted. We thus expect a very
small intradot capacitance between the compressible re-

gions III and IV.
Around B=5 T, a noncyclic depopulation of the LL's

is found in center gate voltage sweeps [Fig. 4(c)]. This in-

dicates that the innermost compressible region III has a
very small area. We can thus expect that the cyclotron
energy is comparable to e /Czs. In this regime, we find a
MC oscillation whose period increases with increasing
magnetic field. The increase in period thus reflects the
decrease of C23 with increasing magnetic field. In addi-

tion, we observe a slight modulation in the MC oscilla-
tion peak separation with a period of two oscillation
peaks. We take this as an indication that the electrons in
region III are cyclically transferred into regions I and II.
The last observable oscillations in this measurement at
B=5.1 T show a significantly increased peak separation.
An explanation for this behavior might be that we ob-
serve the complete depletion of region III. If the mean
separation of the electron in region III exceeds the mag-
netic length, the charge density is no longer homogene-
ous. Indeed, the formation of a "Wigner molecule" has
recently been predicted. ' An unambiguous verification
of this effect would require a pronounced hysteresis of the
CB oscillations with respect to the gate voltage sweep
direction. ' Such behavior has not been observed in our
measurements.

IV. CONCLUSIONS

In summary, we have investigated Coulomb-blockade
oscillations in a semiconductor quantum dot at high mag-
netic fields, and have found strong modulations both in
the amplitude as well as in the separation of the conduc-
tance peaks. At filling factors between 2 and 3, our mea-
surements show that a description of the quantum dot in
terms of a single-particle model is unable to explain the
observed modulation of the peak conductances. A gen-
eralization of the recently developed description of the
dot in terms of a phase diagram to the regime of filling
factor 3 reproduces all of the experimental observations.
The depletion of the LL's does not always occur cyclical-
ly, and the period of the magnetoconductance oscillations
is not always determined by the flux quantization condi-
tion, but presumably by the energies necessary to change
the distribution of the electrons inside the dot.
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