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Nonlinear carrier-plasmon interaction in a one-dimensional quantum plasma
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Periodic growth and decay of linearly unstable plasmon modes are predicted by numerical solution of
the one-dimensional collisionless quantum Boltzmann equation. The nonlinear mode stabilization is ac-
companied by the generation of higher harmonics. The results are analyzed using quantum generalized

quasilinear theory.

With the fabrication of quasi-one-dimensional (1D)
semiconductor quantum wires, collective plasma waves in
1D quantum systems have become an issue of consider-
able current interest.' > Plasmons in these systems are
well established experimentally,3 and have been studied
theoretically."? Besides quasiequilibrium situations,
nonequilibrium configurations have also been analyzed,
leading to the prediction of carrier acoustic plasmon in-
stabilities in quantum wires.*> Special conditions have
been proposed which should make instabilities easier to
observe in a stationary regime (e.g., density modulation®).
Even though there is not yet direct experimental evidence
of plasma instabilities in quantum-confined structures,
several circumstances are in favor of their occurrence.
First, due to density-of-states effects, the 1D carrier-
carrier- and carrier-phonon-scattering rates and, hence,
the dephasing rates, are reduced in comparison to higher
dimensions. More importantly, for quantum wires, the
corresponding relaxation times of the carrier distribu-
tions 7p are increased significantly. Time-resolved
luminescence measurements’ as well as Monte Carlo
simulations® yield values for 7 on the order of pi-
coseconds.

So far most theoretical investigations have been re-
stricted to the random-phase approximation (RPA), i.e,,
to linear-response theory. Within RPA the dispersion of
longitudinal plasmons follows from the zeros of the ana-
lytic continuation of the dielectric function. However, as
in classical plasmas,”!® nonlinear phenomena are also of
considerable interest. In this paper we therefore investi-
gate the nonlinear evolution of unstable modes in a 1D
quantum plasma. In particular we study the temporal
evolution of linearly unstable initial distributions well
into the nonlinear regime. Our results reveal a nonlinear
mechanism governing the evolution of weak short-
wavelength fluctuations in quantum plasmas: carrier-
plasmon interaction gives rise to additional maxima of
the homogeneous part of the carrier distribution at posi-
tions tnk, away from the original ones (k, is the wave
number of the externally excited unstable mode,
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n=1,2,...). This reshaping not only removes the insta-
bility of the basic mode but even leads to mode damping.
This is of principal interest, and allows us to compare the
behavior of quantum plasmas to that of classical plasmas.
Our calculations refer primarily to an idealized model 1D
plasma. In order to visualize the main features more
clearly, we study the collisionless relaxation over a rela-
tively long time. The applicability of our results to realis-
tic quasi-1D, in particular to electron-hole plasmas in
quantum wires, is of course confined to times significantly
less than the previously mentioned relaxation time 75.!"!
With the fabrication of cleaner samples, this time interval
is expected to increase further.

We study the nonlinear mode dynamics by direct solu-
tion of the 1D collisionless Boltzmann equation (also
known as the time-dependent Hartree-Vlasov equation).
In Fourier representation, this equation can be written as
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where f(p,q,t), U,, and V, are the spatial Fourier trans-
forms of the Wigner function, the external potential, and
the Coulomb potential, respectively. In the numerical
calculations we use ¥ (g)=2e2Ky(gd)/e, for a one-band
quantum wire. Here K, denotes the modified Bessel
function of the second kind, d is the wire width, and ¢, is
the background dielectric constant.’

Our numerical results are summarized in Figs. 1 and 2.
In both cases we start from a distribution function which
is spatially homogeneous and has a main peak at p =0 (a
Fermi function with chemical potential 0.4E; and tem-
perature T=5 K) plus a second peak (a Gaussian,
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nounced minimum between both maxima [solid lines in
Figs. 1(c) and 2(c)]. One mode is excited externally using
a small-amplitude potential U, =U3, ,+U*8; _,.
Figure 1(a) shows the temporal density evolution
n(R,0)= [ f(p,R,t)dp / at the fixed space point R =0.
After the strong initial amplitude increase, which is pre-
dicted by linear theory, we see a significant decrease. In-
stead of regular harmonic oscillations, which are charac-
teristic of the linear regime (there is a transient damped
mode mixed with the unstable mode at early times), we
clearly observe nonharmonic behavior. This temporal
variation is caused by the superposition of several fre-
quencies w(ky), w(k,), etc. Correspondingly, in the spec-
trum [Fig. 1(b)], n(k,t)= ff(p, k,t)dp /m, we see the fun-
damental mode at k, plus a second spatial harmonic at
k, =2k, and even a very weak third harmonic. Since the
mode dispersion w(k) is nearly linear, the presence of
spatial harmonics causes the corresponding frequency
harmonics in the density.

Shifting the second maximum of the initial distribution
to slightly higher moments (from |p,,|lag=1.5 in Fig. 1
to |pmaxlag =2.0 in Fig. 2), we change the density evolu-
tion drastically [Fig. 2(a)]. We see irregular behavior,
with the mode-beating period shortened and substantial
enhancement of higher harmonics [up to the fourth har-
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FIG. 1. Nonlinear evolution of a linearly unstable plasma
[solution of Eq. (1) for kgap=0.7013, p ..az=1.5, U=0.05,
and d /ap =0.25]. Shown is (a) the time evolution of the carrier
density at R =0, (b) the time evolution of the spatial Fourier
transform of the carrier density, and (c) the space-averaged
Wigner function for different times (solid line is t =0, dashed
line is t =6.83 ps, and dotted line is £ =10.0 ps). The units for
the plots are as follows: n is in carriers/ag, t is in ps, k is in &k,
and pisin a;!. For these calculations we used Ex =4.2 meV as
the exciton Rydberg energy, m =0.067m, (m, is the free-
electron mass) as the electron, and azp =140.0 A as the exciton
Bohr radius for GaAs.
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monic, Fig. 2(b)]. Analyzing the numerical results, we
note that the beating of the harmonics is in phase and the
higher harmonics start after and disappear before the
lower ones.

To gain further information we plot the spatially aver-
aged Wigner function f(p,t)=ff(p,R,t)dR as a func-
tion of p for different times in Figs. 1(c) and 2(c). With
increasing time, we observe a decrease of the original
second maximum and the simultaneous occurrence of ad-
ditional peaks. These additional maxima appear at a dis-
tance of roughly k, on both sides of the original sidepeak.
As we will verify in our subsequent theoretical analysis,
the initial reshaping of the Wigner function is responsible
for the undamping of the higher harmonics. At the next
stage, the growing peak between the original two maxima
in f(p,t) leads to the removal of the original instability
condition, causing damping of the density oscillations.

To analyze the results, we now consider the necessary
condition for the occurrence of an instability in linear
theory, Ime <0. For a one-component plasma, in the
case of small damping or growth, this criterion can be
written as

Ime(Q,q)=LZ—V(q)[fo(p_)—fo(p+)]<0, (2)

with pT=(m /q)Q+(q /2), where Q is the real part of the
complex mode frequency Q=Q—il, and f, is the
zeroth-order 1D carrier distribution, which is the solu-
tion of the stationary, homogeneous, field-free Boltzmann
equation. I is the linear damping/growth rate (I" ~Ime).
Note that condition (2) for quantum plasmas depends on
the details of the distribution on a macroscopic scale given

FIG. 2. Same as Fig. 1, but for a shifted peak position of the
initial distribution function (|pn.laz=2.0). In (c) the times
plotted are solid line ¢t =0, dash-dotted line ¢t =2.24 ps, dashed
line r =3.60 ps, and dotted line ¢t =4.27 ps.
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by the basic wave number k,=gq. There always exists a
maximum value k,,,, beyond which all waves are stable.’

The numerical results suggest that the evolution of the
plasma and the excited modes is governed by the evolu-
tion of the homogeneous part of the distribution f;. One
therefore can try to derive an equation for the time evolu-
tion of f, under the influence of the plasma oscillations.
Using the general ansatz

F P, R)=Fo(pByot 3 [f1PI8k e, +f1 (PO —i)] (3
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n=[fdp/m, U= U+2V; ny, and U;=2Vy ny
i > 1, the equation for f, reads
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equation and just as complicated. However, Eq. (5) al-
ready reveals the basic nonlinear mechanism in collision-
less quantum plasmas: the homogeneous part of the dis-
tribution is changed (slowly, on times much longer than
the oscillation period) due to interaction of carriers with
all harmonics. The system of equations for the harmon-
ics is particularly useful if the number of excited harmon-
ics is small, as in our numerical examples. The simplest
approximation is obtained assuming that f, is only
changed due to the influence of f, which is determined
using linear theory. This corresponds to the level of
quasilinear theory.?

A very interesting result follows if we use for f, and
U, in Eq (5 a single-pole approximaiion:
f1p,)=f(plexp[—iQ,t] and U,(t)=U,exp[—if};t].
Here ,(kq)=Q,(ko)—iT(ky), where Q,(ky) and
T',(kg) are the dispersion and growth rates [I";(k) <0] of
the unstable mode determined within the RPA. Then
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Together with the corresponding equations for
f1:f2 ..., Eq. (5) is equivalent to the original kinetic =~ With this expression inserted into Eq. (5), we obtain
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Along with f,, the dispersion and growth rates become
slowly time dependent. From Eq. (7) one can see that the
generation of an unstable mode causes a deformation of
the homogeneous distribution in such a way that the in-
stability is weakened. This becomes obvious if one con-
siders 9f(p.x)/0t for the momentum corresponding to
the original side maximum. This derivative is negative,
causing a lowering of the maximum. Furthermore, addi-
tional maxima start growing at p,,.tk,. While the
lowering of the maximum is evident in Fig. 2(c), it is not
seen in Fig. 1(c). This is because only carriers on the high
momentum side of the maximum have a less-occupied
momentum state to move to; these carriers contribute en-
ergy to the growing mode. The occupation of states on
the low momentum side of the maximum actually in-
creases as some carriers scatter into them from below the
Fermi momentum (absorbing some energy from the
mode).

The appearance of additional maxima weakens the
growth rate of the mode. The side maximum at p,,, +k,
and the interaction with the higher harmonics lead to a
continuation of this process so that no stationary state is
reached. After damping sets in, all harmonics gradually
vanish and the original maximum of the distribution
grows again. Now the complete evolution process starts
all over again. From Eq. (7) one can see that the cycle of
this evolution is defined mainly by the linear growth rate;
stronger linear growth leads to a shorter cycle period.
The number of generated harmonics can be controlled by

the ratio between the wave number k, and the distance
between the Fermi momentum and the peak position
Pmax- In situations where the relative density change is
small [Fig. 1(a)], the result of Eq. (7) can be generalized to
include also the contributions of the higher harmonics to
the change of f,. Then one has to replace the right-hand
side of Eq. (7) by a sum over the harmonics s, substituting
s for the index 1 and sk, for k.

The present theory can be generalized to systems with
more than one component. Formally, an application to
higher-dimensional systems is possible; however, the
respective time scale for the validity of the collisionless
kinetic equation may be more restricted. We want to em-
phasize that our model describes a truly reversible evolu-
tion. This is in contrast to the classical quasilinear
theory,!® where a turbulent superposition of a large num-
ber of modes leads to irreversible loss of phase memory
and the formation of a plateau in the distribution func-
tion.
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the two-particle correlation time). This means that there will
be many periods of the oscillation of a carrier until it enters a
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(e.g., external) excitation mechanism. Then it depends on the
ratio of the amplitude of the oscillation, the average energy
transfer in a single-carrier collision process, and how long it
takes to damp out the mode. In this situation, a collisionless
approximation should be applicable as long as 75 >>1/|T(k)|
(rg denotes the relaxation time of the one-particle distribu-
tion), and the damping and growth of the oscillations are only
slightly modified by collisional damping. The exact range of
validity of the collionless equation depends on numerous sys-
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of the Boltzmann equation above for an inhomogeneous plas-
ma including a microscopic scattering term.
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a significantly different phase velocity.
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