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Electronic structure of GaN vvith strain and phonon distortions
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The full-potential linear mufBn-tin orbital method is used to study the electronic and structural
properties of zinc-blende GaN. The total energy and electronic band structures under uniaxial strain
and zone-center TO phonon distortions were calculated. This yields the cubic elastic constants,
the zone-center TO phonon frequency, and the internal-strain parameter (. The elastic constants
of hexagonal GaN are obtained using the transformation method of Martin [Phys. Rev. B 6,
4546 (1972)j. The corresponding deformation potentials are calculated for some of the important
eigenvalues.

Gallium nitride is considered as a promising mate-
rial for short-wavelength electroluminescent devices. i z In
spite of their importance for adequate modeling of device
applications, experimental data on the properties of GaN
under deformations are not available due to the difficulty
in obtaining good single crystals. Although there have
been several first-principles calculations on GaN, a
comprehensive study of the elastic properties has not
been reported to the best of our knowledge. In this work,
we report calculations of the equilibrium and elastic prop-
erties of this material in the zinc-blende (ZB) structure.
The calculations were performed ab initio within the local
density approximation to the density functional theoryii
using the Hedin-Lundqvist parametrization of exchange-
correlationiz and the full-potential linear muffin-tin-
orbital (FP-LMTO) method. is This method has been
shown previously to provide accurate elastic constants
for Si and diamond and SC-SiC. Also, we determine
the elastic constants for hexagonal (wurtzite) GaN from
our zinc-blende elastic constants using the transforma-
tion method of Martin. i Finally, we present the strain-
induced changes of the band structure and calculate the
corresponding deformation potentials.

The details of our computational procedure are as fol-
lows. A multiple-e muffin-tin-orbital basis set is used,
where ~z is the kinetic energy of the envelope function.
Three augmented Hankel functions with decay energies

of —0.01, —1.0, and —2.3 Ry were used for each an-

gular momentum s, p, and d. (Calculations including

f orbitals did not change the results appreciably. ) The
basis functions are centered on the Ga and N muKn-tin
spheres only, giving a total of 27 orbitals per atom, but
were augmented also in empty spheres at the usual tetra-
hedral interstices and including an angular momentum
cutoK of I = 4. The 2s and 2p states of N and the 3d, 4s,
and 4p states of Ga are treated as bands. The importance
of treating the Ga sd band dispersion and hybridization
with N 2s has been emphasized before by Lambrecht and
Segall~ and Fiorentini et a/. The radii of the mu8in-tin
spheres were chosen so that they stay fixed and nonover-

lapping under the considered distortions. (Radii were
chosen as 97%%uo of touching. ) The charge density and po-

tential in the remaining interstitial region are expressed
as expansions in a separate set of Hankel functions. We
used a set of Hankel functions with two decay energies

(K = —1.0 and —3.0 Ry) centered on all spheres with an-

gular momentum up to l = 4. The results were obtained
nonrelativistically. The Brillouin zone summations were

performed with a set of 10 special points. i

To calculate elastic constants, the total energies under
hydrostatic, tetragonal, and trigonal strains were calcu-
lated using strains up to 6'%%uo. For each strain the to-
tal energy difFerence between the strained and the un-

strained states are fitted to a parabolic curve. In ef-

fect, this means that the elastic constants are obtained
from numerical second derivatives of the total energy dif-

ferences. A frozen phonon calculation yields the zone-
center phonon frequency in a similar way. For the trigo-
nal strain, the relative position of the two sublattices is
not determined by symmetry alone and was thus deter-
mined by total energy minimization. It is described by
the so-called Kleinman internal strain parameter (.

The calculated equilibrium properties, which are given
in Table I, agree well with available previous calculations.
The values reported for the bulk modulus measured on
single-crystals range from 188—245 GPa. 2o 2z Our result
is in excellent agreement with other calculations using the
FP-LMTQ methods and with the atomic-sphere approx-
imation (ASA) calculations of Lambrecht and Segall.
The apparent discrepancy of our results with the earlier
ASA-LMTO result of 239 GPa for wurtzite GaN reported
by Gorczyca and Christensen4 has been resolved by re-

cent refined calculations by these authors, who now ob-
tain 200 GPa. Our result for B is also in fair agreement
with the pseudopotential calculations, 3' ' ' which dif-
fer among each other by as rauch as do the experimental
values.

The calculated kequency of the zone-center TO
phonon, 18.1 THz or 603 cm, agrees very well with
the calculation of Ref. 9 and reasonably well with the
calculation of Ref. 10. As for the elastic constants, we

note that the main discrepancy with the experimental
data of Sherwin and Drummond is our much larger
value of C44. We note that the values of Sherwin and
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TABLE I. Equilibrium properties, zone-center optic
phonon, elastic properties of cubic GaN.

Property

a (A)

%oh

B (GPa)

vr (cm ')

Cgg (GPa)
Cg2 (GPa)
C44 (GPa)
Ap

Present Other Calc.

4.46 4 5" 4.42'
4.30", 4.45"~

10 gb 9 gc 82h
13.45'

201 198, 200', 173', 240"
176 19+ 239 179

3.9 4.4', 3.64', 2.66'
3 93d

600', 558~

4.46

10.8

603
0.5
296
154
206

2.90

Expt.

4.5', 4.50~

9.0'

245" 237'
188"

32" 43'

264
153
68

1.23

Drummond were derived &om data on hexagonal crys-
tals. We thus prefer to make our comparison directly for
the hexagonal tensor.

The relations between the elastic constants of the
wurtzite and ZB structures were derived by Martin
assuming that the local tetrahedra extending to second
neighbors about each atom are rotated but otherwise
identical in the two structures. The procedure involves

applying rotations to the elastic tensor and then adding
corrections due to the internal strain (IS) between two
inequivalently oriented tetrahedra in the wurtzite struc-
ture to the resulting tensor. We applied this procedure
to our calculated cubic elastic constants. The resulting
hexagonal elastic constants are given in Table II. We first
note that the results of Martin's procedure differ only
slightly f'rom those obtained by simply rotating the ten-
sor without taking the internal rotation of the tetrahedra
into account. This was also reported to be the case for
SiC by Martin. The only experimental data known to

TABLE II. Elastic constants of wurtzite GaN transformed
from values for zinc-blende GaN.

Elastic constant

Cgg (GPa)
Cgz (GPs)
Cgg (GPa)
C33 (GPa)
C44 (GPa)
Cps (GPa)

Rotation only

431
109
64

476
126
161

With IS

396
144
64

476
91

126

Expt.

296
130
158
267

24
83

Prom thermal expansion data. Reference 25.
Cs6 = (Cgg —Cg2)/2.

TABLE III. Deformation potentials of cubic GaN for
[001] and [111]strains snd optical phonon distortion in units
of eV.

us were derived by using root mean square dynamic dis-
placements (RDD) of atoms measured on GaN powder by
the x-ray di8'raction method and a theoretical bulk mod-
ulus of 200 GPa. 2s Overall, they are significantly smaller
than our calculated values. This is not too surprising,
because the data were taken on powders which tends to
underestimate the elastic constants because of porosity.
Significant uncertainties are also related to the method
of extracting the full set of elastic constants &om these
measurements. Basically, the displacements of the atoms
&om the equilibrium are determined by the forces be-
tween them and thereby related to the elastic constants.
The elastic constants of Ref. 25 were obtained using these
relations and seeking solutions in a limited numerical
range &om the values of the Debye characteristic tem-
peratures, RDD, the bulk expansion coeKcient, and the
bulk modulus. In a test on zinc, their method predicted
much smaller values of Cq2 and C44 than those from ex-

State Strain d State Strain d

Data for wurtzite Ga¹
Reference 9.' Reference 7.
Reference 3.' Reference 5.
Average a,s from wurtzite GaN. a,s = (J3a c) ~ . Refer-

ences 22 and 20.
~ Data for epitaxially grown cubic GaN. Reference 19." Reference 6.
' Reference 8.
~ Reference 10.
" Reference 20.
' Reference 21.

Reference 4." Reference 22.
Reference 23. These are obtained from the hexagonal elastic

constants derived from x-ray measurement of thermal expan-
sion of GaN polycrystals (Ref. 25) which in turn were trans-
formed into the cubic constants using Martin's method (Ref.
16).

A = 2C44/(Cgg —Cga).

[001]
[111]

optic

d3

ds
ds

dso

-2.8 I')5
-3.4
-5.3
14.6

[0011
[111]

optic

d3 1.5
d5 -20.7
d5 -19.2
d5 -11.3

X5

[001]
[111]

optic

[001]

optic

d3 48
d", 8.1
dq 8.1

d,'4.4

dq 0.4
-27.0

di 6 4 Xi
d3 0.3
dg 12.7
d4 14.3
d4 -12.6

optic

[001]

d", 14.4
dg 15.9
d -11.0

d3

We adopt the notation of Kane (Ref. 27), which is related
to that of Pikus and Bir (Ref. 28) by dz = ~3b, dz ——~2d
aud to that of Herring and Vogt (Ref. 29) by d~ =:- /v 3,
d', = ~2=- /~3.
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periments using sound velocity measurements. (For Cqz
and C44, they obtained a 60% underestimate. ) In view
of this and the demonstrated accuracy of the computa-
tional method, we consider our present values to be more
accurate than those experimental values. We hope that
our calculated results will provoke a renewed interest for
carrying out high precision sound velocity measurements
on sufficiently large single crystals of GaN. We note that
recently important progress has been made in growing
single crystals of wurtzite GaN.

From the self-consistently calculated potential at each
strain or phonon-distorted state, we calculate the band
structure along some symmetry lines of the Brillouin
zone. Figure 1 shows the bands structures for 2% tetrag-

onal (a), and 2'%%up trigonal strain (b), and a phonon ampli-
tude of u = 0.0lu (c), each compared to the equilibrium
undistorted band structure. [Note that in the phonon dis-
tortion the Ga and N are displaced by k(l/2)u(1, 1, 1).]
The deformation potentials are deEned as suitably sym-
metrized linear strain coefficients of the band-structure
eigenvalues. We follow the notation of Kane " (ds and
ds) which is related to that of Pikus and Bir (6 and d)
by d3 ——~3b, ds ——~2d for the deformation potentials of
the I'qs eigenstate. The splittings under [001] and [ill]
strains for the Fq5, X, and L states are given in Kane "
Eqs. (3.39)—(42) and Tables II, III, VI, and VII. The
relation to diferent notations are given in Kane Table
XI. For the splitting of the I'1s state, the ds corresponds

(a) (b)

10

0)

2—

0

ld

pc
1

l5

Q) 2

0

LJ

-8
I" X W L K X

-8
r X W L K X

(c)

10

fc
1

r"„

X W L K X

FIG. 1. Energy bands of zinc-blende GaN (full lines) under (a) tetragonal strain of 2%, (b) trigonal strain of 2'%%uo, and (c)
I'To phonon distortion with amplitude u = 0.01a; the dashed lines represent the undistorted band structure.
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to uniform trigonal strain without the internal displace-
ment, the unprimed d5 includes the internal displacement
efFect and ds corresponds to the optical mode deforma-
tion potential. They are related by ds ——d's —(ds, /4. A
similar decomposition is used for d~, dz, and d4.

The calculation of deformation potentials by the
present method was tested for Silicon. Our results are
found to be in good agreement with the available ex-
perimental data and will be given elsewhere. The de-
formation potential results for GaN are given in Table
III. These are essentially predictions since no experimen-
tal data or other calculations are known to us for these
quantities. We note that for GaN the F&5 state is not
the lowest conduction band state; that is the Fq state.
The latter, however, is only subject to hydrostatic strain
shifts. The calculation of these shifts difFer in a signifi-
cant way &om the ones reported here which correspond to
traceless (i.e., volume preserving) shear strains. The rea-
son for this is that while for a traceless strain the average
electrostatic potential remains unshifted, this is not the
case when the volume changes. To account for and even
properly define it one needs an interface-type calculation
between two regions of the material experiencing difFer-

ent hydrostatic strains. O' The determination of these
"absolute" deformation potentials will be the subject of
future work.

In sr&mmary the full-potential LMTO calculations car-
ried out here for zinc-blende GaN were found to provide
groundstate properties (lattice constant, bulk modulus,
and its pressure derivative) in excellent agreement with
experiment and previous calculations. The same method
was used here to calculate the full set of cubic elastic
constants. These values along with Martin's transfor-
mation method also provide the first O,b initio deter-
mination of the full set of hexagonal elastic constants
of wurtzite GaN. We believe these to be more accurate
than the only set of experimental values reported today,
which were based on a rather intricate analysis of x-ray
data on powder samples. The TO-phonon &equency at
the zone center was also determined and found to be in
close agreement with experimental data and previous cal-
culations of the corresponding phonons in wurtzite GaN.
The strain-induced changes in the band struture were
determined and the deformation potentials for the F, L,
and X eigenvalues are reported.
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