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The lattice constant, bulk modulus, and single-particle eigenvalues of Si, Ge, and GaAs are eval-
uated by using the local-density approximation (LDA) and the generalized-gradient approximation
(GGA) for the exchange-correlation energy. We consider two difFerent generalized-gradient function-
als, the exchange correlation recently proposed by Perdew and Wang and the Becke exchange com-
bined with a previous version of the Perdew-Wang correlation. We perform an all-electron calculation
with the linear-augxnented-plane-wave method to test the capability of these generalized-gradient-
exchange-correlation functionals to describe structural properties of semiconductor systems. Our
results differ from previous calculations of the same quantities within the pseudopotential scheme
although the qualitative trends are the same. The LDA yields lattice constants that are sxnaller by
less than 0.6% than the experimental values. Both GGA's overcorrect, giving lattice constants that
are larger than the experimental ones by about 2'%%uo for the earlier GGA and by about 1.5%%uo for the
later GGA. The LDA predicts bulk moduli that are within 3% of the experimental value whereas
the GGA's underestimate the bulk moduli by 14—22'%%uo. The underestimate of the LDA band gaps is
not improved by either of the GGA's.

I. INTRODUCTION

Within density functional theory, the ground state en-

ergy of an interacting system of electrons in an external
potential can be written as a functional of the ground
state electronic density. ' The theory is, in principle, ex-
act but the energy functional contains an unknown quan-
tity, the exchange-correlation energy E„,[pj, which has
to be approximated. The local-density approximation
(LDA) is a widely used approximation of the exchange-
correlation functional,

Sr.D~~
~ f~,r.o~~

~

E„, represents the exact functional for a homogeneous
electron gas and has been shown to give also a quali-
tatively good description of the ground state properties
of a variety of highly inhomogeneous systems. However,
LDA does not always provide sufBciently accurate results.
For example, it almost always overestimates the bind-
ing energy and often underestixnates the bond length of
molecules and solids especially in weakly bound cases.
LDA fails also to predict the ground state structure of
iron. 4 In the attempt to improve upon LDA, a depen-
dence of the exchange-correlation energy on the deriva-
tives of the electronic density can be introduced. This

approximation is known as the generalized-gradient ap-
proximation (GGA). The generalized-gradient approxi-
mation exchange-correlation energy restricted to first-
order derivatives is

fr| =f& p blvrI),
Up to the present time, several generalized-gradient ap-
proximation functionals have been proposed by differ-
ent authors both for the exchange and the correlation
energy. 2 The Becke exchange6 combined with the
Perdew correlation functional' (BP), the Perdew-Wang
exchange-correlations's (PW86), and the more recent
version of the same functionais'M (PW91) are among the
most commonly used functionals and have been tested
by using diferent computational schemes. These ap-
proximate functionals seem to give a good description
of several finite systems: they improve the values of
the total energy of atoms, the cohesive energy, equilib-
rium distance, and vibration &equency of weakly bound
molecules (IIA-IIB dimers), ~4 the cohesive energy of
most first-row and second-row molecules and of atomic
clusters. They also give a better estimate of the cohe-
sive energy of simple metals, third row elements, and
hydrogen bonded systems. For iron, the correct ferro-
magnetic bcc ground state is predicted as well as the
correct high pressure phase transition. While there is
general agreement about the improvement yielded by the
GGA upon the LDA in the description of the structural
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properties of 3d transition metals, ' contradictory
results have been found for 4d and Gd metals. For
these systems, different theoretical schemes have been
used to solve the Kohn-Sham equations and the approx-
imations introduced in these methods make it difBcult
to establish the accuracy of the functionals. The same
problem is encountered in the literature regarding semi-
conductor systems. Si, Ge, and GaAs have been studied
within the pseudopotential approach in combination with
different generalized-gradient approximation functionals.
The pseudopotentials have been constructed either in the
density functional LDA scheme and screened within the
generalized-gradient approximation ' or generated in-
cluding gradient corrections and applied to bulk sys-
tems with and without nonlinear core corrections.

Here, we report tests of the PW91 GGA functional
and a functional consisting of the Becke exchange com-
bined with the earlier PW86 correlation functional (BP)
(Ref. 7) for the semiconductors, Si, Ge, and GaAs and
compare the results to those obtained &om LDA. The
calculations were performed using the general potential
linear-augmented-plane-wave (LAPW) method. 29 so This
method differs &om pseudopotential approaches in that it
makes no &ozen core or related approximations and per-
mits treatment of the Ga and Ge 3d states on the same
footing as the valence states. Additionally, the method
uses a very Hexible basis while imposing no shape ap-
proximations on either charge density or potential.

In Sec. II, we give a brief outline of the method used
and describe the characteristics of our calculations. In
Sec. III, we present our results and a comparison with
the values obtained by other authors.

II. METHOD

The general potential LAP% method has been re-
viewed in detail elsewhere. Accordingly, only aspects
speci6c to the present calculation are presented here.
Both the core and valence states are treated self-

consistently, the core states relativistically and the va-

lence states in a scalar relativistic approximation. Spin
orbit for the valence states is, however, included for the
calculation of the band structures of GaAs and Ge, using
a second variational approach. Highly converged basis
sets constructed with RM~G equal to nine are used

(RM~ is the LA.PW sphere radius, demoted BM~ for his-

torical reasons —a muon-tin potential is not implied —and
G is the interstitial plane-wave cutofF). For instance,
for Si in LDA, reducing RM~G to 8.5 results in a
change in the energy of only few tens of pRy. Additional
local orbital basis functions are used to include the Ga
and Ge 3d states in the same energy window as the va-

lence states as well as to remove any errors due to the
energy linearization. The zone samplings during itera-
tion to self-consistency are performed using 10 special k

points in the irreducible wedge of the zone. Increas-
ing the sampling to 60 special k points changes the total
energy of Si and GaAs by a few tenths of a mRy and
that of Ge by approximately 1 mRy. The larger change
in the total energy of Ge with respect to Si and GaAs is
expected because both LDA and GGA predict Ge to be a

semimetal instead of a semiconductor, at both the exper-
imental and the theoretical equilibrium lattice constants,
at least with the inclusion of spin-orbit coupling and for
the particular parametrization of the LDA used.

Tests are also performed to determine the sensitivity of
the results to the LAPW sphere radii used in the calcu-
lation. This is important for GGA calculations because
continuity of the second derivatives of the wave functions
and, therefore, the charge density is not enforced in the
LAPW method, and this then can lead to discontinuities
in the GGA potential, which depends on these second
derivatives. We 6nd that the GGA lattice parameters
and bulk moduli which we present here are insensitive to
the choice of the radii. However, changes of a few tens of
mRy are found in the value of the total energy of GaAs
when the LAPW sphere radius is changed by 2.5%%up, while
for LDA the change is only a few tenths of a mRy. Hence,
we present cohesive energy for the LDA functional only.

III. RESULTS AND CONCLUSIONS

In Table I, we report our results for the equilibrium lat-
tice constant and the bulk modulus of Si, Ge, and GaAs.
We also list the results obtained by Juan and Kaxiras
using the LDA and the PW91 exchange-correlation func-
tional and the pseudopotential method. The equilib-
rium lattice parameter for these systems was calculated
by Ortiz within the pseudopotential scheme and with
the use of the LDA and the BP exchange correlation.
Calculations of the lattice constant and bulk modulus of
Si were also performed by Dal Corso et al. using the
same functionals and computational scheme as Ortiz. We
compare only with these authors because they include
the generalized-gradient functional in the construction of
the pseudopotentials. Ortiz's results are closer to our
all-electron calculations than Juan and Kaxiras's results
for the respective exchange-correlation functionals. The
relative difference between the LDA and the BP GGA
lattice parameters found by Ortiz is very close to the dif-
ference we evaluate. Since the use of nonlinear core cor-
rections brings Ortiz's BP GaAs lattice parameter close
to ours, we could expect a better agreement between our
results and Ortiz's results for all the systems both in the
LDA and the GGA if nonlinear core corrections were in-

cluded in all of Ortiz's calculations. For Si, Dal Corso
et al. obtained ao ——10.20 a.u. and Bo ——0.96 Mbar,
within the LDA, in excellent agreement with our results.
The pseudopotentials generated using the PW86 func-
tional are known to have a pathological shape and to be,
therefore, less transferable with respect to the smoother
pseudopotentials obtained by using the BP functional.
The difference between the PW86 and BP functional is
the exchange part of the functional. Juan and Kaxiras
use the PW91 exchange correlation and we can, there-
fore, expect that the pseudopotentials generated includ-
ing this approximate exchange-correlation functional will
have similar or worse oscillations and irregular behavior
than the PW86 functional and will be less transferable
than the BP pseudopotentials. Although Ortiz's results
are closer to our all-electron calculations, the pseudopo-
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TABLE I. LAPW calculations of the lattice constant and bulk modulus of Si, Ge, and GaAs by using the Perdew-Wang
exchange-correlation functional (PW91) (Ref. 9) and the Becke exchange in combination with a previous version of the
Perdew-Wang correlation functional (BP) (Ref. 7). We also list the results obtained by Juan and Kaxiras with the LDA
and PW91 (Ref. 28) and by Ortiz with the LDA and BP (Ref. 26). For GaAs with BP, Ortiz obtains ap ——10.80 a.u. and
—E h „-„, ——6.13 eV by including nonlinear core corrections. The numbers in parentheses are the percentage errors. The
experimental values are as quoted in Ref. 28.

Si

GaAs

ap a.u.
Bp (Mbar)
&cohesive (eV)

ap a.u.
Bp (Mbar)
-Ecohesive (eV)
ap a.u.
Bp (Mbar)
&cohesive (eV)

Crystal Property Present work
LDA PW91

10.22(-0.4) 10.39(1.3)
0.96(-3) 0.83(-16)
5.28(14)

10.63(-0.6) 10.86(1.6)
0.78(1.3) 0.61(-21)
4.54(18)

10.62(-0.6) 10.84(1.5)
0.74(-2.6) 0.65(-14)
7.99(23)

BP
10.46(1.9)
0.80(-19)

10.88(1.8)
0.60 (-22)

10.88(1.9)
0.60(-21)

Juan and
LDA

10.17(-0.9)
0.97(-2)
5.38(16)

10.53(-1.5)
0.75(-2.6)
4.53(18)

10.42 (-2.4)
0.77(1.3)
8.58(32)

Kaxiras
PW91

10.56(2.9)
0.85(-14)
4.64(0.2)
11.19(4.7)
0.58(-25)
3.71(-3.6)
11.19(4.8)
0.55(-28)
6.43 (-1.4)

Ortiz
LDA

10.15(-1.1)
BP

10.38(1.2)

5.35(16) 4.41(-4.8)
10.52(-1.6) 10.80(1)

8.16(25) 6.45(-1.1)

4.65(21) 3.68(-4.4)
10.41(-2.5) 10.70(0.2)

Experiment

10.26
0.99
4.63
10.69
0.77
3.85
10.68
0.76
6.52

TABLE II. Eigenvalues of the Kohn and Sham equations at I', X, and L for Si. All the eigenvalues are in eV and their
zero is taken to be the top of the valence band (I'qsi). The eigenvalues are evaluated at the experimental lattice parameter
a p: 10 26 a.u. The experimental eigenvalues are as quoted in Ref. 33.

Si
LDA
PW91
BP
Expt.

I'g

-11.97
-12.10
-12.08

-12.5+0.6

I'is
2.53
2.47
2.53
3.4

Xg
-7.83
-7.91
-7.90

X4
-2.86
-2.90
-2.87
-2.9

Xg
0.61
0.47
0.59
1.13

L2~

-9.63
-9.73
-9.73

-9.3+0.4

Lg
-7.00
-7.09
-7.05

-6.8+0.2

L3~

-1.20
-1.21
-1.20

-1.2+0.2

Lg
1.42
1.38
1.42

2.04+0.06

TABLE III. Eigenvalues of the Kohn and Sham equations at I', X, and L for Ge without spin-orbit interaction. All the
eigenvalues are in eV and their zero is taken to be the top of the valence band (I'2si). The eigenvalues are evaluated at the
experimental lattice parameter a, p: 10 69 a.u. The experimental eigenvalues are as quoted in Ref. 26.

Ge
LDA
PW91
BP
Expt.

I'g

-12.82
-12.85
-12.83

-12.9+0.2

-0.19
-0.06
-0.10
0.89

Xy
-8.95
-8.94
-8.94

-9.3+0.2

X4
-3.08
-3.14
-3.10

-3.5+0.2

Xg
0.66
0.56
0.68

1.3+0.5

Lg~

-10.74
-10.74
-10.74

-10.6+0.5

Lg
-7.65
-7.68
-7.65

-7.7+0.2

L3~

-1.40
-1.43
-1.42

-1.4+0.3

Lg
0.05
0.05
0.09
0.84

TABLE IV. Eigenvalues of the Kohn and Sham equations at I', X, and L for GaAs without spin-orbit interaction. All the
eigenvalues are in eV and their zero is taken to be the top of the valence band (F2si). The eigenvalues are evaluated at the
experimental lattice parameter a,„p = 10.68 a.u. The experimental eigenvalues are as quoted in Ref. 33.

GaAs
LDA
PW91
BP
Expt.

r,
-12.80
-12.80
-12.79
-13.1

r,
0.29
0.40
0.39
1.63

Xy
-10.29
-10.24
-10.26
-10.75

X3
-6.89
-6.91
-6.90
-6.70

X5
-2.69
-2.75
-2.72
-2.80

Xg
1.35
1.22
1.36
2.18

L2
-11.03
-11.00
-11.01
-11.24

Lg
-6.70
-6.75
-6.72
-6.70

L3
-1.15
-1.17
-1.16
-1.30

Lg
0.85
0.84
0.88
1.85

TABLE V. Eigenvalues of the Kohn and Sham equations at I', X, and L for Ge with the inclusion of spin-orbit interaction.
All the eigenvalues are in eV and their zero is taken to be the top of the valence band (I's ). The eigenvalues are evaluated at
the experimental lattice parameter a p: 10 69 a.u. The experimental eigenvalues are as quoted in Ref. 32.

Ge
LDA
PW91
BP
Expt.

r+
-12e93
-12e94
-12.92

-12.9+0.2
-12.6

r+
-0.30
-0.28
-0.28
-0.3

r,
-0.29
-0.16
-0.20
0.9

X5
-9.05
-9.03
-9.03

-9.3+0.2

X5
-3.18
-3.23
-3.20

-3.5+Oe2
-3.15+0.2

X5
0.56
0.46
0.59

1.3+0.2

L6
-10.84
-10.83
-10.83

-10.6+Os 5

L+
-7.75
-7.78
-7.74

-7.7+0.2

L6
-1.60
-1.62
-1.60

-1.4+0.3

L4,5
-1.41
-1.44
-1.43

-1.4+0.3

L+
-0.06
-0.05
-0.004

4.2+Os 1
4.3+0.2
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TABLE VI. Eigenvalues of the Kohn and Sham equations at I', X, and L for GaAs with the inclusion of spin-orbit interaction.
All the eigenvalues are in eV and their zero is taken to be the top of the valence band (I's). The eigenvalues are evaluated at
the experimental lattice parameter a,„p = 10.68 a.u. The experimental eigenvalues are as quoted in Refs. 33 and 35.

GaAs
LDA
PW91
BP
Expt.

r.
-12.91
-12.91
-12.90
-13.21

I'7

-0.34
-0.33
-0.33
-0.33

r.
0.17
0.29
0.27
1.52

X6
-10.41
-10.35
-10.37
-10.86

X7
-7.00
-7.02
-?.01
-6.81

X6
-2.85
-2.90
-2.87
-2.93

X7
-2.76
-2.82
-2.79
-2.86

X6
1.23
1.11
1.25
2.0?

L6
-11.14
-11.11
-11.12
-11.35

L6
-6.82
-6.86
-6.83
-6.81

-1.36
-1.38
-1.37
-1.46

L5
-1.16
-1.18
-1.17
-1.36

0.73
0.73
0.77
1.74

tential approach provides a description of the structural
properties of these semiconductor systems that is not in
complete quantitative agreement with our calculations
while the qualitative trends are predicted to be the same.
Both GGA's overcorrect the local-density approximation
equilibrium lattice parameters. The lattice parameter is
too small in the LDA by 0.4—0.6'%%uo but it is too large by
1.3—1.6% for PW91 and by 1.8—1.9%%uo for BP. While the
LDA gives bulk moduli that are within 3'%%uo of the experi-
mental values, the GGA's underestimate the bulk moduli
by 14—22%.

In Tables II, III, and IV, we present the Kohn-Sham
eigenvalues and the experimental excitation energies at
I', I, and L for Si, Ge, and GaAs without spin-orbit
splitting. In Tables V and VI, we include the spin-orbit
splitting for Ge and GaAs. The eigenvalues are evaluated
at the experimental lattice constant in order to isolate
the effects due to the different functionals. Although the
excitation spectrum is not given by the single-particle
eigenvalues of the true density functional, this compar-
ison is nevertheless frequently made. As is well known,
LDA greatly underestimates the band gap of Si and GaAs
and for Ge it gives a band overlap at I'. The GGA and
LDA eigenvalues are not much different if they are eval-
uated at the same (experimental) lattice constant. The
band gap tends to open up under lattice compression.
Hence, evaluation of the eigenvalues at the theoretical
value of the lattice constant makes the direct LDA band
gap somewhat larger for all three systems and the di-
rect GGA band gaps somewhat smaller. For GaAs, both
GGA's give a small band overlap at I' when spin-orbit
interaction is included. Comparison with the pseudopo-
tential results of Ortiz show that the eigenvalues for Si
agree to better than 0.1 eV but the largest discrepancies

for Ge and GaAs are 0.19 eV and 0.26 eV, respectively.
This is because Ortiz constructed the pseudopotentials
for Ge and Ga with the relatively shallow 3d states in
the core. The Ge and Ga 3d states are at —25 eV and
—15 eV, respectively and the overlap with the valence
states is not negligible. The error introduced by treating
the 3d states as core states can be partly cured if nonlin-
ear core corrections are included. For GaAs, with the BP
functional, Ortiz does use nonlinear core corrections and
the resulting eigenvalues are in somewhat better agree-
ment with ours. The error can be completely removed
only if the d states are not frozen as core states. The
importance of relaxing the Ga d states and including rel-
ativistic corrections is discussed in Ref. 36. The omission
of relativity and core relaxation results in an acciden-
tal better agreement with the experimental band gap.
A recent pseudopotential calculation using a hardness
conserving pseudopotential (which include nonlinear core
corrections) (Ref. 38) yields LDA eigenvalues that agree
with ours to better than 0.02 eV for Si, 0.1 eV for Ge,
and 0.15 for GaAs. The fact that the discrepancies are
largest for GaAs, which has the shallowest d band, points
to the omission of the d states from the valence as being
the largest remaining error.
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