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We have measured the ac susceptibility, specific heat, resistivity, and thermal conductivity of single-

crystalline samples of FeSi in various temperature ranges between 0.04 and 300 K. The unequivocal re-
sult emerges from the ac susceptibility data, and is that there is no evidence for any magnetic ordering,
at least down to 40 mK. The specific heat contains a linear contribution visible between 1.5 and 3.5 K,
and a slow upturn below 1.5 K. This latter feature, and the observed Curie behavior of the ac suscepti-
bility can both be quantitatively accounted for within a model of Anderson-localized states associated
with impurities, at the level 10' cm '. However, the electrical conductivity, which is nowhere activat-

ed, appears to saturate below about 5 K, which would suggest a metallic state. We draw attention to
numerous similarities between our data and previously published data for the rare-earth compound
SmB6.

I. INTRODUCTION

FeSi is a cubic compound with space group P2&3 and
has hitherto widely been referred to as a narrow-gap
semiconductor. It has excited interest for over half a cen-
tury, mainly because of its unusual magnetic behavior.
The magnetic susceptibility y(T) as measured, for exam-
ple, by Jaccarino et al. '2 shows a Curie-Weiss-like 1/T
dependence above about 550 K, but falls off sharply to-
wards zero below this temperature. Subsequent neutron-
scattering investigations have revealed no evidence for
magnetic order, however. Both single particle and
many-body approaches have been used to try to explain
this. Jaccarino et a/. were able to describe the observed
temperature dependence of the susceptibility very well by
assuming a surprisingly simple and, in their view, unreal-
istic, single-particle model of two infinitely narrow bands,
located symmetrically above and below the Fermi level,
separated by an energy gap 6, and with each band able to
hold two electrons per Fe ion. The empirically deter-
mined gap parameter b, given by their fitting y(T) is 0.13
eV.

Very recently, Mattheiss and Hamann calculated the
band structure of FeSi, using the linear augtnented-
plane-wave (LAPW) method in the local-density approxi-
mation. They found an indirect gap of 0.11 eV, which
they note is very close to the empirical gap of 0.13 eV
found by Jaccarino et al. In addition they found that the
gap appears in the Fe (3d) manifold. They note, howev-
er, that the calculated band structure is not at all similar
to the model of Jaccarino et al. While the calculated and
empirical gap values 5 are comparable, and while the cal-
culated bands are sharply peaked around the Fermi ener-
gy, the calculated conduction-band width is about five
times greater than 5, not vanishingly small by compar-
ison, and, further, there is room, per peak in each band,
only for about one electron per Fe ion, not two, as the

simple model requires. Mattheiss and Hamann conclud-
ed that the result of single-particle band calculations is
completely unable to account for the observed tempera-
ture dependence of the FeSi susceptibility.

Two many-body approaches have been considered pre-
viously. Motivated by the unrealistic assumptions of the
model of Jaccarino et al. , Takahashi, Tano, and Moriya,
and also Evangelou and Edwards, developed many-body
descriptions of the magnetic behavior of FeSi. Both cal-
culations are based on the same model band structure,
and both, while including realistic conduction-band
widths of about 1 eV and on-site Coulomb correlations,
account for the temperature dependence and magnitude
of the magnetic susceptibility. The physical picture of
temperature-induced paramagnetic local moments was
subsequently confirmed by the observation of thermally
activated spin fluctuations in FeSi by neutron
difFraction.

The same neutron-scattering data revealed both a Q
(momentum transfer) independent y'(Q, O) and a strongly
Q-dependent y"(Q, to), a feature also observed in the
rare-earth compound CeNiSn. This unusual feature im-
plies a vanishing intersite magnetic interaction in the lim-
it of zero energy. From recent optical measurements of
the frequency-dependent conductivity o(to), Schlesinger
et al. ' claim that, as the temperature is lowered, the loss
of magnetic moment is accompanied by an extensive
redistribution of the charge excitation spectrum, just as it
happens in the case of a Kondo lattice. In the latter case,
the local spins couple to the entire conduction band. In
addition, it was claimed that at low temperatures the con-
ductivity sum rule is not satisfied unless an energy range
many times the gap energy is encompassed, which sug-
gests the presence of an additional energy scale, as would
be provided by the on-site Coulomb correlations.

Given the sum total of these indications that the elec-
tronic structure of FeSi is not explicable in a single-
particle scheme, and given also the possible opportunity
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of shedding light on many-body aspects of electronic
properties of a d-transition-metal compound that might
be related with features of correlated-electron behavior in
f-electron materials, it seemed worthwhile to perform a
comprehensive series of low-texnperature thermal, mag-
netic, and transport xneasurements, as far as possible on
one high-quality single crystal. To our knowledge, no
complete data set of this kind has yet been presented.

II. EXPERIMENTAL

We have measured the specific heat, thermal conduc-
tivity, electrical resistivity, and ac magnetic susceptibility
in varying ranges of temperature between 0.04 K and
room temperature. All measurements, except for the ac
susceptibility, were performed on the same single-
crystalline sample, a particularly important matter in the
case of FeSi, the composition of which can vary from 49
to 50.5 at. % Si." For the ac susceptibility measure-
ments, another crystal from the same batch was used.
Our samples were grown in an Antimony flux and both
samples were needle shaped. The principal specimen
weighed 18.4 mg and measured 0.5XO. SX8 xn, while
that used for the susceptibility measurements weighed
only 4.0 mg.

The resistivity p( T) was measured as a function of tem-
perature between room temperature and 1.5 K, using a
standard four-wire low-frequency ac technique, with bare
platinum or copper wires fixed to the saxnple by conduct-
ing silver paint. Excitation frequencies were in the range
of 100 Hz to 1 KHz, with excitation currents as low as 10
pA. We checked that the xneasured resistivities were in-
dependent of frequency, and that the current did not
cause significant joule heating. Initially, the sample was
fixed to a paper-covered copper heat sink by GE-7031
varnish along the whole of one side, but it was found that
results below about 200 K were not quantitatively repro-
ducible from run to run, with the sample and contacts re-
mounted and remade each time. The differences were
qualitatively consistent with the view that the sample was
subject to compression during cooling, due to GE-7031
having an integrated thermal expansivity several times
greater than that of FeSi. ' Reproducible results were
finally obtained by fixing the saxnple at one end, or in the
center with as thin a layer of Ge-7031 as would hold it in
position.

The low-frequency and low-field ac susceptibility was
measured by a conventional mutual inductance technique
in the temperature range between 0.04 and 0.7 K. Mea-
surements were made at a frequency of 82 Hz and with
an excitation field axnplitude of 0.1 Oe. The in-phase
component y' and the out-of-phase component g" were
measured with a two-phase lock-in amplifier. A low-
noise signal transformer was used to match the ixn-

pedance of the pickup coil with that of the lock-in
amplifier. With this experixnental setup, it was not possi-
ble to xnove the sample during a run, and so the cell back-
ground contribution to the measured susceptibility could
only be determined from a separate run without the sam-
pIe. Because the sample is very sma11 and proved to be
almost nonmagnetic, the relative error introduced by this

method for background determination is unacceptably
large. In order to deterxnine the size of any temperature-
independent part of the sample susceptibility, the ac sus-
ceptibility of the same small sample was again measured
in a magnetometer in which it was possible to move the
sample during a run, but in which it was necessary to
measure in an excitation field of 0.1 T and at tempera-
tures between 2 and 6 K. We made the assumption that
the temperature-independent part measured in this way
could be extrapolated to the temperature region below 1

K.
The specific-heat data were obtained with a

relaxation-type technique in the temperature ranges be-
tween 0.06 and 0.85 K, and 1.5 and 8.5 K. The sample
was fixed by 0.4-mg Apiezon grease to a sapphire disk
onto which a heater and gerxnanium-gold thermometer
had been evaporated. The disk and sample were weakly
coupled thermally to a copper heat sink held at constant
temperature. The heat capacity of the addenda, including
the grease, was determined in each temperature range by
a preliminary run without the sample. Between 0.5 and 1

K and at 9 K, the total heat capacity of the addenda was
comparable to that of the saxnple, with a correspondingly
large uncertainty in the absolute value of the data in
those regions of temperature.

The thermal conductivity was measured using a stan-
dard steady-state technique monitoring the thermal gra-
dient along the sample in the same temperature range as
was covered with the specific-heat measurements. For
the sample thermometers, Allen-Bradley carbon resis-
tors' were used above 1 K and Matsushita carbon resis-
tors' were used below. The original resistors were
ground to a thickness of approximately 0.2 xnxn, then
wrapped in 0.1-mm-thick Ag foil and set in Stycast 2850
epoxy. Narrow extensions of the foil were wrapped
around the sample at points 5 mm apart along the long
axis and fixed to it with GE-7031 varnish, as was the
heater at one end of the sample. Temperature difFerences
between the fixing points of between 1% and 4%%uo of the
mean sample temperature were used. Thermal leaks by
radiation or conduction through the heater and ther-
mometer wires in parallel with the sample are estimated
to have been less than 0.3% throughout the measurement
range of temperature,

III. RESULTS AND ANALYSIS

The resistivity data are shown in Fig. 1 on a log-log
scale. The room-temperature value of the resistivity, 140
@Oem, is comparable to the value reported by Schles-
inger et al. , to within their xneasurement error. ' lt is
consistent with a description of FeSi as a dirty xnetal at
this texnperature, although with an elastic mean-free-path

0
of order 3.5 A if we assume one carrier per FeSi formula
unit. This would mean around one scattering site per ten
FeSi formula units. We shall show below that we believe
the structural disorder in our sample to be principally of
point defect type, and that these defects are present at
vastly lower concentration levels than would be neces-
sary, with one carrier/FeSi, to limit the mean-free-path
to 3.5 A. Thus, this mean-free-path seems unreasonably
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FIG. 1. The resistivity p( T) of FeSi between
1.5 and 300 K. The line is a fit, in the region
15-30 K, to an expression appropriate
to a variable-range-hopping mechanism:

p tx: exp(T0/T) ~ Inset is shown the conduc-
tivity, 0( T) vs T' between 1.5 and 6 K.
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short if due solely to elastic scattering arising from disor-
der, and so we propose that it is being limited by inelastic
collisions. Schlesinger et al. reached the same conclusion
for their own sample.

As the temperature falls, there is a monotonic rise in
resistivity through three and a half orders of magnitude
by the lowest measured temperature of 1.5 K. On a
linear scale there is a shoulder in the data at T=120 K,
and we observe a tendency to saturation below 10 K. In
between, although the resistivity rises very steeply, it is
nevertheless not possible, over any extended range of
temperature, to describe the data with a usual activated
behavior, i.e., o ~exp( —b, /2k' T), as would apply to a
conventional semiconductor. A fit to an expression of the
form a ~ exp[( To/T)' ], appropriate to a variable-range

hopping mechanism, is possible in this region, and we
shall return to a consideration of this later. Below 6 K,
the conductivity is well fitted by a sum of a constant and
a cubic-in-T contribution, as shown in the inset to Fig. 1.
In this range we find o =cro+aT with os=200 (Qm)
and a =0.94 (QmK~)

Here we observe that the tendency to saturation of
p( T) below 5 K suggests that the FeSi sample, far from
being a semiconductor, is metallic in character in that
temperature regime. This, following a steep rise in resis-
tivity with decreasing temperature suggests in turn that
the saturation arises through the formation of an impuri-
ty band. For an estimate of the corresponding impurity
concentration, we assume that the standard Boltzmann
formulation of the metallic conductivity in a cubic solid
is valid, so that

2
O. =

3 Lk. Sk,
12m A

where dSk is an area element of the Fermi surface, and
Lk is the mean-free-path vector. This is true for any
shape of Fermi surface. The band-structure calculations
of both Mattheiss and Hamann and Fu, Krijn, and
Doniach' predict a conduction-band minimum along the
I M direction, which means a valley degeneracy v of 12.
The low conductivity means that a free-electron approxi-

mation is probably reasonable, i.e., we assume that there
are carriers enough only to occupy the lower tip of the
conduction band. Thus, we find a conductivity given by

2

vs
12m fi

' 2/33' Pl

V
(2)

where n is the itinerant charge-carrier concentration. If
we invoke the Ioffe-Regel condition, and assert that
L ~a, where a =2.2 A is the FeSi nearest-neighbor dis-
tance, then we find, if we insert cr =cro, that n ~ 3.7 X 10'
cm at T =0. This would mean that each charge car-
rier occupies a spherical volume with a diameter of at
least 170 A. We note here that although these carriers
presumably originate from impurities, the concentration
of the impurity sites may be greater than 3.7 X 10' cm

The thermal conductivity A,(T) data are consistent with
an estimate of 3.7X10' cm or less free charge car-
riers. They are shown in Fig. 2, in which is included the
electronic contribution A,, w„ to A,(T), which has been
calculated under the assumption that the Wiedemann-
Franz (WF) rule is valid. We have already noted that the
resistivity at room temperature indicates the dominance
of inelastic scattering, at least at that temperature, which
actually invalidates the use there of the WF rule. Howev-
er, in the most usual circumstance in which inelastic
scattering dominates, that is at temperatures higher than
the regime where impurity scattering dominates, but nev-
ertheless much smaller than the Debye temperature, so
that inelastic electron-phonon scattering is through small
angles, the WF rule is still correct to within a factor 2 or
so. It is clear from Fig. 2 that A,, w„is four to five orders
of magnitude smaller than A, throughout the temperature
range where both conductivities were measured. Provid-
ing the caveat just mentioned holds good, there must,
therefore, be a vastly dominating phonon contribution to
the thermal conductivity, as one would expect for a single
crystal and a charge-carrier concentration of only
3.7X10' cm

We find that the temperature dependence of the
thermal conductivity follows a power law reasonably well
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is to occur. Since, on the insulating side of the transition,

10
From experiment

me
aeff ~ciao ~m' (4)

10-2 P

10 4:-

00
0

0 0
0

0

where ao is the Bohr radius, c,
&

is the static dielectric con-
stant, and m, is the free-electron mass. If we use
c., =380+10, as deduced by DeGiorgi et al. ' from an ex-

trapolation to dc of far-IR reflectivity measurements
down to 6 K and to below 100 cm ' on the same sample
that was used for the dc conductivity measurements, we
obtain m *(5.7m, . This compares with an estimated
conduction-band mass, at the band edge along the I M
direction, of 2-5m„which may be calculated from Fig. 3
of Ref. 4.

These numbers have two immediate implications. One
is that, according to Mott, a,ff implies a minimum metal-
lic conductivity o. ;„given by

o;„= = 1700—3400 (Qm)
Ce —1

eff

, from p(T)

0.001 0.1 10

throughout the measured temperature range. For
T (0.2 K, A, =2.4T ' W/Km, while dA, (T)/dT declines
with increasing temperature.

We may estimate the effective mass of the charge car-
riers if we assume that the sample does undergo an insu-
lator to metal transition with decreasing temperature and
that this occurs when the Mott criterion for this,

n '"a,', & 0.25 (3)

is satisfied, where a,ff is the effective Bohr radius. For
0

n =3.7X10' cm we require a*,ff=35 A if a transition

FIG. 2. 1he thermal conductivity A,(T) of FeSi for tempera-
tures below 8 K. We also show the Wiedemann-Franz A,(T) as
calculated from the electrical resistivity data.

where C is a constant between 0.025 and 0.05. ' This
minimal conductivity is 8.5 —17 times bigger than what
we actually observe. In view of the simplifying assump-
tion of spherical pockets of the Fermi surface, this
discrepancy may not be significant but has been noted in
another similar case as well (see Sec. IV).

Another implication of a metallic interpretation of the
conductivity at the lowest measured temperatures is that
there should be a linear-in-T contribution to the specific
heat. Within the framework described above, where we
have assumed 12 degenerate spherical Fermi surface
pockets along the I M directions, and we use the values
for n and m' deduced from the conductivity, we find

y =4.6 X 10 J/mol K . We do see a nonzero linear con-
tribution to the specific heat, and, remarkably, it is within
a factor 2 —3 of this calculated value. Nevertheless, even
if the metallic interpretation is correct, such close agree-
ment may well be largely fortuitous, given the
simplifications involved in calculating y from o .

Our specific-heat data Cz(T) are shown in Fig. 3, and
in Fig. 4 on a logarithmic scale. In Fig. 5 we plot C /T
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FIG. 3. The specific heat C~(T) of FeSi for
0.06 & T & 9 K.
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FIG. 4. The specific heat C~(T) of FeSi for 0.06& T &9 K
plotted on a lo -1g- og scale to emphasize the presence of the low-

temperature upturn. We also show the excess specific heat h, C
, o tained by subtracting from the measured specific

heat the sum of the linear and cubic in T t 'b

as (a). Theas a. These are deduced from fits to the region for which

1.5 & T & .5 K, as explained in the main text. Th 1''n ex. e inear con-
ri u ion, y is shown as (b), while (c) is the contribution of

Anderson-localized states arising from 1.0X 10' cm random-

y istributed impurity sites, as given by the model of Kamimu-

ra and Aoki, which considers only intrasite interactions, usin

given y applying the same model to the susceptibil-
ac ions, using

ity data, shown in Fig. 6.

X=Xo+C/( T (6)

and gives go=6. 81X10 emu/mol, C =8.81X10
emuK/mol, and 8=5+1 mK. Th b k o ise ac ground yo is

II w ile
determined by the data above 1 Ke, as mentioned in Sec.

, w ile C and 8 are obtained from the sub-1 K data.
This value of 8 is almost an ord f
than the lowest

n or er o magnitude lower
an t e owest temperature at which measurem temen s were

s ould be interpreted as evidence that, within
the detection limits of the susc t'b'1'tep i i i y measurement, no

2vs T for temperatures below 3 5 K dan we also show the
expected acoustic-phonon contribution ch

'
u ion c aracterized by

, which we have calculated from the sound
velocity at 300 K. This we deduce to be 4720 ms ' from
measurements at 300 K of th 1 te e astic constants c» and

c44, by Zinoveva, Andreeva, and Geld. ' Taken to ether
ig. s ow that the Debye acoustic contribu-

tion is dominated below 10 K by another bano er contribution,
an we suggest that this may be a soft acoustic- h
mode. In addition

'
ion, the good linear fit between 1.5 and 3.5

ous ic-p onon

K indicates thee presence of a linear component T
where = 1.8 Xy= . X10 J/molK is constant in this tern er-
ature range.

is emper-

Below 0.5 K the specific heat rises as temperature de-
creases. On general grounds, this must be the e result of

'
ations of interacting Fermions within a finite

of states. Aft
in a nite number

and cubi
er subtraction of extrapolations f th 1'o e inear

ubic terms mentioned above, we find that the
n in ig. , is well described by a power law

hC(T) ~ T, with a= —0.5. Thus, b,C(T) seems not to
arise as a result of excitations within a two-level sys em
characterized by a single interlevel energy J. A

'
llsis we

is would give a Schottky anomaly in the
specific heat, with a hi
T 2

a igh-temperature tail varying as

Our measured ac susceptibility for T & 1 K, shown in
Fig. 6, is well fitted by

I)

16 IL

II

FIG. 5. Cp ( T)/T of FeSi as a function of T
for 0.06 & T & 3.5 K. We also show the
acoustic-phonon contribution.
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FIG. 6. ac susceptibility y'(T) of FeSi for
T & 1 K. The solid line is a fit to
y'( T)=go+ C/( T —8).
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IV. DISCUSSION

As a preliminary, we note that a comparison of the
thermal-conductivity data below 0.2 K with the lattice
specific heat suggests an absence in our sample of gross
imperfections such as might scatter phonons below 0.2 K.
This assertion holds so long as the following argument is
reasonable. We see that A. =2.4T ' W/Km for T 0.2
K. Equating this with the T contribution that arises at
low enough temperature through boundary scattering of
phonons and using simple kinetic theory, we can estimate
the temperature-independent mean-free-path of the pho-
nons for T ~ 0.2 K. We take the usual equation

A.(T)= ,'Cvv, l h, — (7)

magnetic order or spin-glass freezing occurs in this sam-
ple of FeSi, at least down to 40 mK. This is consistent
with the neutron-scattering data taken at room tempera-
ture and at 77 K (Ref. 3) and extends the validity of the
conclusion of those results downward through a further
three orders of magnitude in temperature. Further, we
note also that this result is consistent with the other
neutron-scattering result mentioned in the introduction,
that of Tajima et al. who deduce from their data that
g'(q, 0) is q independent, i.e., that there is a vanishing in-
teraction between local moments in the system, at least at
low temperatures. The low-temperature tail in the sus-
ceptibility is consistent with a 2. 1X10' cm, 1.3X10'
cm, or 9.1X 10' cm concentration of spin —'„2, or —,

'

impurities, respectively, as we would have if this tail
refiects uncompensated iron moments from either d
Fe+, d Fe +, or d Fe + ions, respectively. Schlesinger
et al. are able to fit their high-temperature ac susceptibil-
ity if they suppose spin- —, impurities with a concentration
of 0.2%, which is equivalent to 9.0X10' cm, and
about 40 times greater than in our sample. In this con-
nection, we note that excess iron at the 1% level is per-
mitted in single-phase FeSi."

where CV is the lattice contribution to the specific heat,
U, is the velocity of sound in FeSi, and I h is the phonon
mean-free-path. We find I h=0. 2 mm, which is of the
order of the macroscopic dimension of the sample per-
pendicular to the heat flow. Thus, we infer that our sam-

ple does not contain gross structural disorder. Rather,
any disorder is most likely of point-defect type. Such de-
fects, whether interstitial or substitutional, would not
scatter phonons below 1 K.

A combination of specific heat and conductivity data,
which is intriguingly similar to that presented here, has
previously been observed in SmB6. ' This compound
has been claimed to be an intermediate-valence material
in which a hybridization gap of order 5 meV is believed
to open up at temperatures of a few Kelvin. First, the
conductivity of SmB6 also saturates at low temperature,
following a regime in which an exp(TO/T) '~ depen-
dence, again compatible with variable-range-hopping, ap-
plies, and at a value 5-10 times less than the minimum
metallic conductivity calculated according to Eq.
(5), ' ' ' rather as we find here for FeSi. As far as we are
aware, also for SmB6 the origin of the residual conduc-
tivity is still an unresolved matter. Second, the lattice
contribution to the specific heat below 10 K by far
exceeds the Debye contribution, and a linear contribution
is usually observed (although some authors have suggest-
ed that this is not an intrinsic effect ') together with some
not well-resolved hump at even lower temperatures.
Third, as in SmB6, the c&z elastic constant of FeSi, al-

though positive, is much smaller than either c» or c44. '

Such an anisotropy is typical of intermediate-valence
compounds, where, as in Sm86 c,2 may even be negative.
Low-temperature reflectivity data for SmB6 also indicate
that the gap has closed up at a temperature much less
than the gap temperature, as is claimed to be the case
for the single-particle gap in FeSi (Ref. 10) although this
was not confirmed for our sample.

'

The above analysis of the resistivity is predicated on
the view that the FeSi sample has become meta11ic below
about 5 K. In this scenario, one could envisage the
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2
pBns

X (8)

where n, is the number of singly occupied sites per unit
volume. This is in fact the usual Curie expression for the
susceptibility of a noninteracting spin —, system. It is,
however, a simplification of the full expression

3.7X10' cm (8 ppm) or less carriers as being localized
at impurity sites at somewhat higher temperatures, but
becoming itinerant at low enough temperature. From
Eqs. (3) and (4), we observe that this transition could
occur as a function of temperature if c rises or m de-
creases. There is no evidence that the effective mass of
the carriers drops dramatically with temperature.
Indeed, our analysis above indicates a low-temperature
value comparable to the band mass. The driving force
for the transition should, therefore, be ascribed to a con-
siderable increase of c. at low temperature. As mentioned
above, far-IR reflectivity measurements on our sample'
do indicate that the static dielectric constant c& has at-
tained the very large value of 380+10 at 6 K.

In the following, we suggest an analysis of the ac sus-
ceptibility and specific heat for T &1 K, which offers an
alternative explanation for these intriguing low-
temperature properties in the sense that the electronic
properties of FeSi are governed by a finite density of
Anderson-localized states at the Fermi surface, at least
down to 0.06 K. This argument arises by consideration
of a model used originally to describe the structurally
disordered system Si:P, where P dopants are randomly
distributed in the periodic potential of the Si lattice and
in the doping regime just on the insulating side next to
the metallic regime. In this regime it is envisaged that
carriers contributed by the dopants are Anderson local-
ized around each dopant site. Accordingly, the electron-
ic states are described by extended wave-functions ex-
ponentially damped within a characteristic localization
length g. There is a nonzero density of states at the Fermi
level, and hence a nonzero linear-in-T contribution to the
specific heat, but these electronic states are localized, and
so any contribution from them to charge conduction is of
hopping type, and cannot be described by the metallic
model used in the above analysis. In particular, the elec-
trical conductivity should vanish at T=O. We discuss
this point further below.

For the magnetic behavior of such a system, we may
consider a model described by Kamimura and Aoki (KA)
(see Ref. 24 and references therein), where it is envisaged
that an array of randomly distributed impurity sites ex-
ists, each of which can be empty, or singly or doubly oc-
cupied by electrons. It is supposed that the one-electron
energies are randomly distributed up to some maximum
value 8'. The only parameter in this model is the ratio of
W to U, the mean intrasite Coulomb repulsion energy.
The coexistence of localization and intrasite electron-
electron interactions leads at temperatures smaller than
U/kB to a Curie-like susceptibility, despite a nonzero
density of states at the Fermi level. This susceptibility is
determined by the singly occupied sites

2LMB
y(T)= g[2+exp[P(p —E —U )]

kBT

+exp[ —P(p —e )]] (9)

where the summation is over states a, @=1/ks T, p is the
chemical potential, c is the one electron energy, and U
is the Coulomb repulsion energy, which is energy depen-
dent and given by

U = U(3v+1)[1—(s /W)]—:U(e ) . (10)

where f is the Fermi function, and using the values for
n„S'and U deduced above from the susceptibility data.
We show the result in Fig. 4 as curve (c). Clearly, the ob-
served linear term in our specific-heat data cannot be ful-

ly accounted for in this way. The contribution to the
specific heat from Anderson-localized states in numbers
as indicted above is too small, by a factor 2, and more-
over, peaks at about 5 K, so that it is not linear-in-T in
the range where our data are linear. This supports our
metallic interpretation of the conductivity data or sug-
gests that any possible such contribution is too small to
influence the experimental data noticeably.

The assertion that the Anderson-localization interpre-
tation of the susceptibility nevertheless makes sense is
supported by the fact that the KA model can also ac-
count for the low-temperature rise in the specific heat in
a manner consistent with the value of n, that we deduced
above from the susceptibility data. In the KA model, the
rise is due, once again, to the high-temperature tail of a
superposition of Schottky anomalies, this time due to in-
tersite doublet-doublet interactions. For any given pair,
the total interaction can be antiferromagnetic or fer-
romagnetic, and the total interaction energy will depend
on the distance that separates the members of the pair.

The critical exponent 5 is unity according to scaling
theory.

If we use Eq. (8) to interpret the temperature-
dependent part of Eq. (6), then we easily find that
n, =10' cm, and from Eqs. (9) and (10) we find that
excellent agreement with the temperature-dependent part
of our data is obtained with W/U=0. 25, with W =1.7
meV and U=6.9 meV. In this calculation, we assume
that the density of singly occupied states is given by
n, /W, and we determine p for each temperature.

At the same time, the continuous range of direct on-
site interactions U will cause a broadly peaked contribu-
tion to the specific heat, which is a superposition of
Schottky peaks. This will result in a specific-heat contri-
bution approximately linear-in-T far enough below the
range of peak temperatures. The linear contribution in
our data is clear to see between 1.5 and 3.5 K, so in this
interpretation, the range of characteristic on-site interac-
tion energies would have to be of the order of 10 K or
more. We have calculated the specific heat in the KA
model, in which

2f(e )[e + —,'U f(s +U )]
"dT 1+f( ) f( +U )—
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ES=n, R ln(2s+1), (12)

where s =
—,
' and n, is what above was called the number

of singly occupied sites per unit volume. We can calcu-
late Es using

b,c(T')
0 T' (13)

From Fig. 5 it is clear that hC is negligible above
T =1.5 K, and so we can set this as an upper limit to the
integral in Eq. (13). We find b,S=0.35 mJ/mol K and we
calculate, from Eq. (12), n, =6.2X 10 /f. u. or 3 X 10'
cm . The actual number must be somewhat greater
than this, since the entire excess specific-heat hump is not
within the accessible temperature range. However, it is
remarkable that similar values for n, are deduced from
two independent bulk measurements, one magnetic, the
other thermal.

If we accept that the susceptibility data and the low-

temperature rise in the specific-heat data find a common,
quantitatively coherent interpretation in terms of the KA
description of Anderson-localized states at the Fermi lev-

el, arising from structural disorder due to a random array
of donor sites, then we must reconcile this with our previ-
ous assertion that the conductivity, apparently saturating
at low temperature, and the linear term in the specific
heat above 1.5 K, are evidence for an insulator-metal
transition having occurred as the temperature fell below
about 5 K. If these interpretations are both valid, then
both itinerant and Anderson-localized states would have
to coexist on the low temperature, metallic side of the
transition, so that the Fermi level would have to lie at or
very close to the mobility edge, the energy which
separates the two types of states. This means, in effect,
that the material must remain on the verge of a metal-
insulator transition, even while the conductivity satu-
rates. The same presumably applies to previous asser-
tions' that the residual conductivity in SmB6 implies the
existence of delocalized states at the Fermi level.

The total contribution to the specific heat should also be
peaked, with the peak position reflecting an average in-
teraction energy. If this interpretation is correct then our
data, which is not peaked by 0.06 K, implies a charac-
teristic intersite interaction energy, which is at least two
orders of magnitude smaller than the intrasite energy.
The disparity of energy scales, in this sense, is a feature of
the model described by Kamimura and Aoki. If we are
attributing the specific-heat upturn with the degrees of
freedom of spin doublets, then the associated entropy per
mole of FeSi should be given by

level of randomly distributed impurities is certainly a
reasonable scenario for FeSi, which is not a line com-
pound. Since the sample was grown in an Sb flux, it is
conceivable that the impurities are Sb donors, but this is
not necessarily the case, since the sample of Schlesinger
et al. also displays, at low temperature, a Curie tail in
the susceptibility and a nonactivated resistivity, and yet
was grown by vapor transport. The low-temperature rise
of the dc resistivity of our sample, though it amounts to
three and half orders of magnitude, is not activated in
conventional semiconductor fashion, although, on cool-
ing from room temperature, there is a temperature re-
girne, between 10 and 30 K, in which it is well accounted
for by a variable-range-hopping description. In the limit
of low temperature, the resistivity saturates. If this
means that itinerant charge carriers are present, and the
presence of a linear contribution to the specific heat indi-
cates that they are, then it is not clear how this can be
reconciled with Anderson localization other than by as-
suming that the Fermi level and mobility edge virtually
coincide. We have performed a simple analysis, which
indicates that the number density of itinerant charge car-
riers is 4% that of the Anderson-localized electrons.
What does seem to be a genuine bulk property of FeSi is
the conclusion drawn from the ac susceptibility data, that
there are no magnetic ordering phenomena in FeSi, at
least down to 40 mK.

In our analysis we have neglected the complication of
the possible lifting of the 12-fold valley degeneracy of
perfect FeSi due to crystal fields surrounding the impuri-
ties. It does not seem appropriate to treat this problem
here, since the effect on our interpretation of the data
presented here would depend on the resulting degeneracy
of the lowest lying state and on the energy gaps between
this and higher states, none of which are known for our
sample.

In this paper we have tried to distinguish between
those data that are certainly characteristic of bulk FeSi
and those that can be quantitatively accounted for
through weak positional disorder. If this disorder does
arise extrinsically, then our results suggest that caution is
needed in interpreting low-temperature experiments on
FeSi, since we find that impurities at the sub 0.1% level

are sufficient to account both for the observed rise in

specific heat below 0.4 K and also for the Curie tail seen
in the susceptibility, while 10-ppm donor impurity levels
would account for the saturation of the resistivity in the
limit of low temperature. Finally, we point to similarities
between the low-temperature properties of FeSi and

Sm86, two compounds that are not otherwise obviously
related.
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