
PHYSICAL REVIEW B VOLUME 50, NUMBER 20 15 NOVEMBER 1994-II

Ab initio calculation of the electronic, structural, and dynamical properties
of Zn-based semiconductors

Bal K. Agrawal, P. S. Yadav, and Savitri Agrawal
Physics Department, Allahabad University, Allahabad 211002, India

(Received 18 May 1994)

The scalar relativistic version of an accurate Srst-principles full-potential self-consistent linearized

muon-tin orbital (LMTO) method has been employed for describing the physical properties of the II-VI

semiconducting compounds, ZnS, ZnSe, and ZnTe. The presently employed modi6ed version of the

LMTO method is quite fast and goes beyond the usual LMTO-ASA (atomic-sphere approximation)

method in the sense that it permits a completely general shape of the potential and the charge density.

Also, in contrast to LMTO-ASA, the present method is capable of treating distorted lattice structures

accurately. The calculated values of the lattice parameters are within 1.5~o of the experimental values.

The calculated values of the bulk modulus and the elastic constants are in good agreement with the

available experimental data. The values of the phonon frequencies at some symmetry points are also in

close agreement with the experimental data wherever available.

I. INTRODVCnON

In the last decade, it has been observed that structural
and lattice-dynamical properties can be determined ab in-
itio with reliable accuracy if one can calculate the elec-
tronic energy of the solid as a function of the atomic posi-
tions using the usual density-functional theory. Recently,
the linear-muffin-tin orbital (LMTO) method has drawn
much attention towards its application to the study of the
electronic structure of molecules as well as of crystalline
solids. The method has several advantages. (i) Only a
minimal basis set is required in the method; thus it can be
applied to large unit cells with high efficiency. (ii) The
method treats all the elements of the Periodic Table in a
similar manner. Thus atoms with a large number of core
states and metals having predominantly d or f character
can be treated easily. (iii) As the augmentation procedure
generates the correct shape of the wave function near the
nuclei, it is quite accurate. (iv) The use of atom-centered
basis functions for the difFerent values of the angular
momentum in the method helps one to have a quite clear
physical picture.

Usually in the application of the standard LMTO
method, an atomic-sphere approximation (ASA) is used
to make it efficient. However, this LMTO-ASA method
sufFers from several disadvantages. (i) It neglects the
symmetry-breaking terms by discarding the nonspherical
parts of the electron density. (ii) The method discards the
interstitial region by replacing the muffin-tin spheres by
space-filling Wigner spheres. (iii) It uses spherical Hank-
el functions with vanishing kinetic energy.

It has been noted that quite reliable results can be at-
tained by employing a LMTO basis set if all the potential
terms are determined accurately. For this the sizes of the
atomic spheres are shrunk so as to make them nonover-
lapping. The potential matrix elements are then split into
two parts, one contribution coming from the atomic
spheres and the other from the complicated interstitial

region. The first part, i.e., the atomic-sphere part, is easy
to evaluate by expanding it in terms of the usual spherical
harmonics. On the other hand, the evaluation of the in-
terstitial contribution is quite diScult and very time con-
suming if done by standard techniques. EEorts have been
made to find an efficient and quick way to determine the
interstitial contribution. In the method' used in the
present work, the interstitial quantities were expanded in
terms of spherical Hankel functions. The integrals in-
volved three-center were expressed as linear combina-
tions of two-center integrals by numerical means. These
two-center integrals involving Hankel functions can easi-
ly be evaluated analytically. The method does not em-

ploy plane waves and is thus applicable to periodic as
well as nonperiodic systems, which so often need to be
treated specially when there occur impurities, defects,
and lattice distortions or atomic relaxations.

The present LMTO method is seen to produce the elec-
tronic structure, cohesive energy, lattice constants, elastic
constants, phonon frequencies, mode Gruneisen parame-
ters, and strain parameters for simple systems like Si, C,
etc.' Very recently, the method has been successfully
applied also for III-V and II-VI semiconducting com-
pounds like AlAs, CdS, GaAs, etc. The influence of
structural relaxation of the atoms on the valence-band
ofFset at the lattice-matched interfaces of II-VI and III-V
semiconductors ZnTe/GaSb(110) and the lattice-
mismatched interface ZnS/ZnSe(001) has been investigat-
ed. The electronic structure, elastic constants, and
frozen-phonon frequencies of the parent superconductor
CaCu02 of the recently discovered high-T, oxide super-
conductors have been obtained. Also, very recently,
Hg-based superconductors revealing the highest values of
T, 's of 165 K have been investigated.

For detailed information about the method used, we
refer to earlier articles. ' ' The results for the three pro-
totypes of II-VI semiconductors, i.e., ZnS, ZnSe, and
ZnTe are presented in Sec. II. The main conclusions are
included in Sec. III.
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II. CALCULATIGN AND RESULTS —49.50

In the present calculation, the basis employed for mak-
ing expansions of the products of the LMTO envelopes
includes functions with I 4 and of energies —0.01,—1.0, and —2.3 Ry and with two different decays given
by A. = —1 and —3 Ry. The set will include 50 functions
for each atomic sphere. The local-density potential of
Hedin and Lundquist has been employed. An absolute
convergence to better than 1.0 mRy/atom is obtained
with an spd basis of 22 LMTO's for each atom. The
number of atoms in the unit cell was taken to be four.

The muffin-tin (MT) spheres were chosen to be slightly
smaller than touching each other and the radii for cation
and anion in each compound were chosen to be equal.
The values of the radii of the atomic spheres for ZnS,
ZnSe, and ZnTe were taken as 2.210, 2.315, and 2.493
a.u. , respectively. An equal number of empty spheres of
sizes equal to the cation and anion were introduced in the
vacant interstitial sites present in the zinc-blende struc-
ture.

A two-panel calculation was performed for each sub-
stance to investigate the important role (usually not ap-
preciated) played by the semicore 3d and 4d states. In
ZnS, in the first panel we consider Zn(4s, 4p, 3d) and
S(3s, 3p, 3d) as valence states, whereas in the second panel
no semicore state is considered. Similarly, in ZnSe, in the
first panel Zn(4s, 4p, 3d) and Se(4s, 4p, 4d) states are taken
as the valence states, and in the second panel Se(3d)
states are assumed to be the semicore states. In ZnTe, in
the first panel Zn(4s, 4p, 3d} and Te(5s, 5p, 5d) states are
taken as the valence states, and in the second panel
Te(4d) states are taken as the semicore states. A set of
appropriate (spd} states was also included on all the emp-
ty spheres. The semicore Se(31) and Te(41) electrons are
thus treated as bands in a way similar to valence elec-
trons. The core electrons are not treated in the frozen-
core approximation but are allowed to relax. This means
that the core-electron charge density is recalculated in
each iteration in the self-consistency loop.

In all the calculations, the relativistic effects have been
included. The variation of the total electronic energy
with the volume of the crystal V is shown in Figs. 1-3,
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FIG. 2. Same as in Fig. 1 but for ZnSe.

A. Electronic structure

The radius of the muffin-tin sphere for the common
cation Zn in these Zn-based compounds has been chosen
in accordance with the magnitude of the lattice parame-
ter of the solid and it increases from ZnS to ZnTe. The
charge inside the MT sphere is seen to decrease with in-
crease in the atomic number of the anion, whereas the re-

Vo being the experimental volume of the solid. For ZnS
(Fig. 1), the energy minimum appears at a value of lattice
parameter (a) equal to 5.318 A, which is very close to the
experimental value of 5.409 A (see Table I). On the oth-
er hand, for ZnSe and ZnTe (see Figs. 2 and 3) the
minimum energy appears at a =5.633 and 6.019 A, re-
spectively, which are also very near to the experimental
values of 5.668 and 6.101 A (see Tables II and III).

The charge outside the muffin-tin sphere, i.e., the
difference between the atomic number and the charge ly-
ing within the MT sphere for the atoms Zn and S in ZnS
is 1.41, and 1.40 electron charges, respectively, for the
atoms Zn and Se in ZnSe is 1.22 and 1.68 electron
charges, respectively, and for the atoms Zn and Te in
ZnTe is 0.88 and 2.27 electron charges, respectively. The
total charge per unit cell outside the MT spheres is 2.09e
in ZnS, 2. 16e in ZnSe, and 2. 36e in ZnTe.
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FIG. 1. Variation of crystal energy (mRy) with the ratio of
unit-cell volumes. Vo and V are the experimental and calculat-
ed volumes for ZnS.
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FIG. 3. Same as in Fig. 1 but for ZnTe.
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TABLE I. Computed physical quantities for ZnS. The lattice
parameter is in A. The elastic data are in Mbar and the phonon
frequencies in cm

Expt.PresentQuantitySerial No.

5.409'
0.767
1.OOOb

o.65ob

0 340
276'
316'
90'

211'

5.318
0.852
1.220
0.667
0.378

289
311
105
209
299

Lattice parameter
Bulk modulus

C12

TO(I )
TO(X)
TA(X)
LA(X, )

LA(X2)

1

2
3
4
5

6
7
8
9
10

'Reference 7.
Reference 11.

'Reference 13.

TABLE II. Computed physical quantities for ZnSe. The lat-
tice parameter is in A.. The elastic data are in Mbar and the
phonon frequencies in cm

Expt.PresentQuantitySerial No.

5.668'
O.625b

5.633
0.811
1.072
0.675
0.372

224
203

79
173
158

Lattice parameter
Bulk modulus

C12

TO(r)
TO(X)
TA(x)
LA(X, )

LA(X2)

1

2
3
4
5
6
7
8
9
10

213'
219'
70'

194'

'Reference 7.
Reference 12.

'Reference 14.

TABLE III. Computed physical quantities for ZnTe. The
lattice parameter is in A. The elastic data are in Mbar and the
phonon frequencies in cm

ELECTRON DISPERSION CURVES FOR ZnS System
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0.859
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Reference 13. FIG. 4. Dispersion curves for ZnS.

verse is true for the charges inside the MT spheres of the
anions.

The calculated dispersion curves along some important
symmetry directions for ZnS, ZnSe, and ZnTe are shown
in Figs. 4—6, respectively. The symmetry points are I
(0,0,0), X (m./a) (1,0,0), K (n./a) (0.75,0.75,0.0), L (n/a. }
(0.5,0.5,0.5), and W (n/a) . (1.0,0.5,0.0).

In ZnS (Fig. 4) at the most symmetric I' (0,0,0) point,
the lowest valence state is a singlet and appears at —13.1

eV, originating from the bonding Zn(4s)-S(3s)-like orbit-
als. The top of the valence band which has been set at
zero energy is formed by the triply degenerate hybridized
Zn(4p, 3d)-S(3p)-like orbitals in an antibonding manner.
The conduction state appearing at 1.85 eV is the anti-
bonding Zn(4s)-S(3s) singlet state. The higher conduction
states arise from the hybridization of the Zn(4p, 3d)- and
S(3p, 3d)-like orbitals. The 6at bands near —6.0 eV origi-
nate from the Zn(3d) states.

At the symmetry point X (!r/a) (1,0,0), the lowest
singlet valence state has bonding character and is com-
posed of the Zn(4p, 3d)-S(3s)-like orbitals. The conduc-
tion states are composed of Zn(4p, 3d}-S(3s,3d)- and
Zn(4s)-S(3p, 3d)-like orbitals. No photoemission data for
the electronic structure are known to us.

The computed dispersion curves for the electron states
in ZnSe are depicted in Fig. 5. At the I' (0,0,0) symmetry
point, similar to ZnS, the lowest valence state at —13.36
eV arises from the bonding Zn(4s)-Se(4s} singlet. The top
of the valence band originates from the Zn(4p, 3d)-Se(4p)-
like orbitals possessing triply degenerate character in an
antibonding manner. The bottom of the conduction band
appearing at 1.04 eV is comprised of the antibonding 4s
states of Zn and Se atoms.

At the X point, the valence states appear either from
the Zn(4s, 3d)-Se(4p)-like orbitals or from the Zn(4p, 3d)-
Se(4p)-like orbitals just below the valence-band edge. The
semicore Se(3d} states appear much lower, around—47.06 eV.

The computed dispersion curves for the electron states
in ZnTe are depicted in Fig. 6. At the I (0,0,0) point,
similar to the earlier compounds, the lowest valence state
at —11.92 eV is the bonding Zn(4s)-Te(5s) singlet. The
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ELKS.l'SON DISPERSION CURVES FOR ZnSe System

2-

0

-2- ~ ~

~ ~ ~ ~ + ~ ~ ~

Illltete ~

-e-
-10-
-12- . . . . . . .

-14
V

i ii i ' s!i ' i f tllliilllltll ~f II I I lll t

FIG. 5. Dispersion curves for ZnSe.

B. Density of states

In the calculation of the electronic density of states
(DOS), a sampling method with Gaussian broadening of
energy 0.2 eV was employed over a mesh of 19 points in
the irreducible part of the Brillouin zone. The calculated
DOS for the self-consistent calculation for ZnS is shown
in Fig. 7. The valence-band states are distributed over an
energy interval of about 13 eV. The low-lying peak near—12.0 eV arises from the hybridized Zn(4s, 4p, 3d)-S(3s)-
like orbitals. The other main peaks appearing near
—6.0, —4.6, and —2.0 eV are comprised of the hybri-

ELEtaÃON DISPERSION CURVES FOR ZnTe System

~ ~ 1
~ ~

l

~ I
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top of the valence band originates from the Zn(4p, 3d)-
Te(5p)-like orbitals possessing triply degenerate character
in an antibonding manner. The bottom of the conduction
band appearing at 1.00 eV is comprised of the antibond-
ing 4s states of Zn and Ss states of Te atoms. A triply de-
generate state appears in the conduction band at 4.38 eV
which is comprised of the Zn(4p, 3d)-Te(5p, 51)-like orbit-
als. Again, no experimental data are available for corn-
parison.

At the X point, the lowest singlet valence state has
bonding character and is composed of the Zn(4p, 3d)-
Te(5s)-like orbitals. The conduction states are composed
of Zn(4s, 4p, 31)-Te(5s,5p, 5d)-like orbitals. The semicore
Te(4d) states appear much lower, around —36.22 eV.

dized Zn(4s, 4p, 3d)-S(3p)-like orbitals. The top of the
valence band is formed by the 4p states of Zn and 3p
states of S. The bottom of the conduction band is formed
by the Zn(4s) and S(3s) states. The other main peaks in
the conduction band near 4.0 and 6.0 eV originate from
the mixed Zn(4s, 4p)-S(3s, 3p, 3d)-like orbitals. The calcu-
lated energy gap is direct and its value of 1.85 eV is quite
small as compared with the experimental value of 3.54
eV. Underestimation of electron energy gaps is a usual
result of first-principles local-density approximation cal-
culation of the band structures of semiconductors and in-
sulators. This well-known effect is understood as origi-
nating from the fact that the eigenvalues of the Kohn-
Sham equations are not excitation energies of the sys-
tem. ' Accurate band gaps can be obtained from the
solution of the quasi-particle equations' when the ex-
change and correlation effects are described by the self-
energy which is a nonlocal energy-dependent effective po-
tentia1. This is beyond the scope of the present work.

The calculated conduction states seem to be reliable in
their character although their overall location may be
shifted somewhat towards the low-energy side by a mag-
nitude equal to the difference between the experimental
and the calculated values of the energy gap. We are not
aware of any photoemission data available for ZnS for
comparison.

The projected DOS for ZnSe is shown in Fig. 8. The
valence-band states appear in an energy interval of 13.36
eV. The major peaks in the valence-state region appear-
ing near —12.5, —6.36, —4.75, and —2. 19 eV originate
mainly from hybridized Zn(4s, 4p, 3d}-Se(4s)-, Zn(3d)-,
Zn(4s, 3d)-Se(4p)-, and Zn(4p)-Se(4p)-like orbitals, respec-
tively. All the peaks in the conduction-band region near
3.01, 3.78, 5.01, and 5.80 eV arise from the mixed
Zn(4s, 4p)-Se(4s, 4p, 4d) orbitals. The calculated energy
gap of 1.04 eV is quite small as compared to the experi-
mental value of 2.58 eV.

The projected DOS for ZnTe is shown in Fig. 9. The
valence-band states appear in an energy interval of 11.92
eV. The major peaks in the valence-state region appear-
ing near —11.00 —6.83, —4.91, and —2.20 eV arise
from mixed Zn(4s, 4p, 3d)-Te(5s)-, Zn(3d)-, Zn(4s, 4p, 3d)-
Te(5p)-, and Zn(4p)-Te(5p}-like orbitals, respectively. The
peaks in the conduction-band region near 3.0 and 4.5 eV
originate from the hybridized Zn(4s, 4p)-Te(5s, 5p, 5d) or-
bitals. The calculated energy gap of 1.00 eV is quite
small as compared to the experimental value of 2.26 eV.

C. Charge density
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Contour plots of the self-consistent valence charge den-
sity for ZnS, ZnSe, and ZnTe in the (1,1,0) plane are
shown in Figs. 10—12, respectively. The contours are
plotted in steps of 0.01 electron/(a. u. ) up to a maximum
of 0.15 e/(a. u. ) .

-12-

FIG. 6. Dispersion curves for Zn Te.

D. Elastic constants

For the evaluation of the energy derivatives, we have
used five different values of e. The maximum value of e is
taken as +0.04. The change in the internal energy is
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FIG. 7. Projected electronic density of
states at different atoms for ZnS.
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FIG. 9. Projected electronic density of

states at different atoms for ZnTe.
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fitted to polynomials of order 0, 2, and 3 and the
coefficients of the various polynomials are evaluated; they
are equal to some multiple of the different combinations
of the elastic constants.

The results for the elastic constants for ZnS, ZnSe, and
ZnTe are included in Tables I-III, respectively. For
ZnS, the presently computed values for the bulk moduli
C

& &
and C44 are higher than the experimental values. "

The value of C,z is in very good agreement with the ex-
perimental value, within 2.7% (see Table I). We have
also calculated the various elastic constants for the ZnSe
and ZnTe systems. However, the experimental results
are not available for comparison except for the bulk
modulus of ZnSe, which is slightly higher than the exper-
imental value' (see Table II).

E. Phonon frequencies

Charge Density of ZnS
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The variation of the internal energy with different
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FIG. 10. Contour plots of the self-consistent charge density
for the (110) plane of ZnS. The plots are in steps of 0.01
electron/(a. u. )' up to a maximum of 0. 15e/(a. u.)'.

—0.06 —0.06

FIG. 11. Same as in Fig. 10 but for ZnSe.
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