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Static dielectric response of the electron gas
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We determine the static dielectric function of the electron gas at selected densities by using
variational and fixed-node diffusion quantum Monte Carlo to find the response to a sinusoidal electric
field. The dielectric function is then calculated by relating the induced charge density to the change
in ground-state energy as a function of the amplitude of the applied field. A released-node Green's-
function Monte Carlo calculation shows that the diffusion results are exact within the determined
error bars, apart from the size dependence correction for extrapolation to the thermodynamic limit.
The dielectric response is consistent at long wavelengths with the compressibility sum rule derived
from a fit to Ceperley and Alder's Green's-function Monte Carlo results, but exhibits differences
from accepted dielectric models at intermediate wave vectors.

I. INTRODUCTION

In this paper, we determine the static dielectric func-
tion of the electron gas e(q) at selected wave vectors q for
several paramagnetic fluid densities. The electron gas is
uniquely characterized by the dimensionless density pa-
rameter r, = ro/aa, which is a measure of the relative
strengths of the Coulomb and kinetic energies (ro is the
Wigner-Seitz radius, related to the electronic density n
by 47rro/3 = 1/n and ao is the Bohr radius). An under-
standing of the electrostatic response of the electron gas
as a function of r, yields insight into the screening prop-
erties of metals and alloys, including Friedel oscillations
and the renormalization of phonon frequencies.

The dielectric function is defined in terms of the elec-
tronic response to an external perturbation. This is read-
ily calculable only in the weak-coupling regime (r, « 1),
where the electrons may be treated as uncorrelated.
The response can then be found by solving for the one-
electron density matrix in the Hartree self-consistent field
of the external perturbation and the induced electronic
charge the random-phase approximation (RPA). For
densities of physical interest, ranging from the metallic
state (2 & r, & 6) to the Wigner crystallization regime
(r, ) 100), the RPA fails, since it does not properly ac-
count for the exchange and correlation hole around each
electron. Following Hubbard's introduction of a correc-
tion factor to the RPA, improved expressions for the di-
electric at these densities have been found using Geld-
theoretic techniques, solutions of the equations of mo-
tion for the Wigner distribution function, self-consistent

schemes, semiempirical Gts, and numerical solutions
of the Fermi hypernetted-chain equations. ' However,
the effect and range of applicability of the approximations
involved in these approaches are dificult to establish a
priori, making a first-principles calculation desirable.

The quantum Monte Carlo method has successfully ob-
tained ground-state properties of charged quantum flu-

ids and solids ' by taking correlation contributions into
account exactly. The viability of using the method to
obtain the static dielectric response was demonstrated
by the present authors in a calculation for the charged
Bose Quid spanning the entire range of densities, from
the Bose-condensed phase to the Wigner crystallization
regime. A similar approach has also been used to de-
termine the response functions of 4He and the electron
gas in two dimensions.

In Sec. II, we describe several dielectric models and in-

troduce the energy difference method of calculating the
dielectric response. This is followed by a review of quan-
tum Monte Carlo (QMC) methods in Sec. III. Our results
are then presented and summarized in Secs. IV and V.

II. DIELECTRIC FUNCTION

The static dielectric function is a measure of the linear
response induced in a system by a charge perturbation;
the perturbation is assumed small enough so that higher-
order terms in the response do not occur. In terms of the
external, induced, and total charge densities p, or, equiv-

alently, in terms of the electric Geld E and displacement
D or the corresponding potentials $,
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(2.1)

The fields, potentials, and charge densities in this equa-
tion are quantum statistical averages satisfying the mi-
croscopic Maxwell equations in Fourier space:

tq D(q) = q—'4'ext(q) = 4~pext(q)q

tq E(q) = —q'4teteI(q) = 4z pt.t.I(q)
= 4+[pext(q) + p;nd(q)]. (2.2)

where the sum is over the plane wave basis set, e is
the electronic charge, 0 is the volume occupied by the
electron gas, EI, is the kinetic energy, and fs(EI, ) is the
&ee-electron Fermi distribution function. In the ground
state, this sum may be replaced by an integration up to
the Fermi level, k~ = (3n n), yielding the Lindhard

1/3

dielectric function

&LIND('q) = 1 BLIND

k,' 1, 1+xi + —(1 —z') ln
2q2 2z (2 4)

where 1/k, is the Thomas-Fermi screening length, k, =
4 (3n/m) ~ /ao, and z = q/2k~.

Improvements on the Lindhard dielectric are typically
expressed in terms of the local-field correction G(q), de-
fined by

( ) i XLIND

1+G(q) BLIND
(2 s)

The self-consistent field (SCF) or RPA dielectric func-
tion applicable at high densities is

4me ).fo(EItyq) —fo(EI,)escF q =1 —
0 2 E —E, 23

k+q k

where a = (4/9x) ~s and the energies are in Ry.
Vashishta and Singwis used a self-consistent solu-

tion relating G(q), the static structure factor, and the
frequency-dependent dielectric function to obtain a for-
mula applicable in the metallic density regime

G(q) =a 1 —e (2.10)

where a and b are density-dependent fitting parameters.
Ichimaru and Utsumi fit an elaborate functional form
for G(q),

G(q)=aQ +bQ +c+ aQ + b+ — Q —c4 2 4

)
xi

(4 —Q'l 2+ Q
4Q ) 2 —Q

(2.ii)

a=0.029 (0 & r, & 1S),
9 16

b = —~. ——[1 —g(o)] ——
16 64 15

3 9 16
c = --~.+ —[1 —g(o)] ——a

4 16 5

(2.12)

(2.13)

(2.14)

1 z

8 I()
- 2

-=4( "i )'" (2.i5)

in terms of the first-order modified Bessel function Ii(z).
The parameter a was chosen to closely reproduce the
authors' microscopic theory. 4

Based on the hypernetted-chain method, Pietilainen
and Kallios proposed a relationship between the struc-
ture factor S(k) and the local-field correction

where Q = q/ky. po was obtained &om the Pade fit
of Vosko, Wilk, and Nusairis to Ceperley and Alder's
released-node Green's-function Monte Carlo (GFMC) en-
ergies for the electron gass while g(0) was taken from
Yasuhara's expression

which attempts to take into account the exchange and
correlation hole. The short-wavelength behavior of G(q)
is given by the Kimball relation,

1
S(k) =

1/2 '(1+12r, [1 —G(k)]/(r k)4)
(2.16)

lim G(q) = 1 —g(0), (2.6)

where g(0) is the pair correlation function at zero sep-
aration. At long wavelengths, the dielectric function is
related to the thermodynamic compressibility ~ by the
compressibility sum rule

(k, ) ' r.
m e(q) =

( q ) &Iree
(2.7)

where ef, , is the compressibility of the noninteracting
electron gas. The compressibility ratio is in turn related
to the correlation energy per electron E,(r, ) by

which yields the uniform limit results as k -+ 0. The
degree of validity of this self-consistent condition de-
pends on the accuracy of the Lado approximation for
the squared Slater determinant.

The dielectric function can be determined &om the re-
sponse of the electron gas to an external field of strength
A, produced by a sinusoidal deformation of the neutraliz-
ing positive background. The Hamiltonian of this prob-
lem is

II =Ho+ H

1 2 2 . 1
IIo = ——) V,'+ —)

s 1=1 8 i(j U

&free

4a

) (2 8)
N N

H,„t =A) cos(q. r;) = e) P,„t(r;), (2.17)

1 7lA 5 d —2

4 24 ' dr, ' dr, (2.9) where N is the number of electrons and r;~ = ]r, —r~~.
(Henceforth, lengths and energies will be quoted in units
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& ~(q) = (&q)g —(Pq)o

) e *q'
i=1

(2.18)

of ro and Ry, respectively, with k~ = 1/o. = 1.92.) The
charge density induced by the field is given by the differ-
ence in the expectation values of the density operator in
the presence and absence of the perturbation,

functions to optimize a set of free parameters with the
resulting E, being a strict upper bound for Eo within
statistical error bars.

The diffusion Monte Carlo (DMC) algorithm solves
the imaginary-time many-body Schrodinger equation in
the short time-step approximation. For computational
efFiciency, the equation is rewritten in terms of the mixed
distribution f(R, 7) = 4(R, ~)@T(R) as

It can be related to the second derivative of the ground-
state energy Eo with respect to the amplitude of the ap-
plied field (cf. Ref. 11), leading to the following expres-
sion for the dielectric function:

1 d'E, (A)=1+
e(q) Xr, q2 dA' (2.19)

III. QUANTUM MONTE CARLO

The ground-state energy is the minimum of the expec-
tation value of the Ekamiltonian H with respect to all
possible trial wave functions @T(R):

j0 * (R)H4'T(R)dR
e IRi I i@T(R)i'dR

(3.1)

where the integration is over the 3N particle coordinates
R = (ri, r2, . . . , r~). Variational Monte Carlo uses the
Metropolis algorithm to evaluate the integrals by sam-
pling configurations R~ drawn from the probability den-

2
sity P(R) =

& ~

~~
~l~,

" . The variational energy E
is then given by

1
Eo & E, = lim ) EL(R),M~~ M

where El, (R) = H@T (R)/@z (R) is the local energy.
The variation is typically performed on a subset of wave

This formula is used in our calculations since it is par-
ticularly well suited to quantum Monte Carlo, which ac-
curately calculates ground-state energies Rom first prin-
ciples. As discussed in our study of the boson dielectric
response, determination of the induced charge by direct
measurement of p;„g(q) requires much longer QMC runs
to obtain accurate convergence. Use of the Kubo relation
for the imaginary-time density-density correlation func-
tion requires the extraction of dynamics, which poses a
difFicult problem in ground-state simulations.

The second derivative of the energy can be found from
a quadratic fit, with the term linear in A omitted by sym-
metry arguments. Field strengths should be as small as
possible, consistent with statistically meaningful energy
differences, in order to insure linearity of the response.
Linearity can then be tested for each applied Geld by
checking that higher harmonics in the induced fluctua-
tions do not appear. As a practical estimate of the linear
regime, the field amplitudes used in our QMC simulations
at r, = 4 range from 0.5 —2.0 x 10 V/cm, which is

on the order of e/ro2.

(3.2)

where ET is an introduced constant known as the trial
energy. The DMC solution is obtained by using the short
time-step propagator

G(R w R', ~)

—3N/2
4~~6

x exp
4v h2
2m

x exp [
—~ [El,(R) + Eg(R')]/2+ ~ETj

to evolve an initial ensemble of configurations generated
from a variational simulation according to

f(R', t+ ~) = dR G(R ~ R', r) f(R', t),

(3.3)

In the absence of symmetry constraints on the wave func-

tion, such as those imposed by fermion statistics, the
asymptotic solution converges exponentially fast to the
ground state. Extrapolation to w ~ 0 then eliminates
the short time-step approximation.

The mixed distribution f is interpreted as the density
of diffusing configurations undergoing drift and branch-

ing processes. For fermion systems, antisymmetry is
maintained by assuming that the ground-state wave func-
tion has the same (approximate) nodal structure as the
trial function, so that the distribution never changes sign

the fixed-node approximation. The Schrodinger equa-
tion is then solved within the hypervolumes bounded by
the nodal surface, by terminating any configuration that
crosses it. The resulting DMC fixed-node energy can be
shown to be a strict upper bound to the ground-state
energy, and a very good one if the trial wave function is

properly chosen.
The Creen's-function Monte Carlo method removes

the time-step error of DMC by using the exact propaga-
tor instead of its short time-step approximation to evolve

the probability distribution. The exact density matrix is

generated from an expansion in terms of a trial density
matrix, by iterative solution of a linear integral equa-
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tion relating the two. In practice, a time-independent
form of the propagator is used to evolve the configura-
tions, the distribution after n propagation steps being
known as the nth generation. Importance sampling and
the fermion fixed-node approximation are introduced via
the trial function described for DMC.

In the released-node method, the GFMC 6xed-node
distribution is considered to be an approximate start-
ing population. Configurations are allowed to cross the
nodes of the trial function and to continue for a few gen-
erations, but their contribution to any average changes
sign at every node crossing. Antisymmetry is taken into
account correctly, but the process is numerically unsta-
ble, since the distributions of configurations with either
an even or odd number of node crossings both tend to
the same unconstrained boson ground state, causing the
evaluation of expectation values to become increasingly
noisy. The node-crossing populations can be shown to
grow exponentially with generation number, due to the
difference between the Fermi and Bose energies of the sys-
tem. Therefore, the released-node method is restricted to
systems for which the trial nodes can be accurately ap-
proximated, so that relaxation occurs quickly enough and
the ground-state energy can be accurately projected.

In QMC, the choice of trial wave function is of criti-
cal importance for eKcient convergence and fermion an-
tisymmetrization. A standard Slater-Jastrow product
form is used for the ground-state trial function

N
1 w 2
2 ) & + H~~i/escpr'.S

2 ". 1—) —+ H,„i (1 —1/escp)
rs . . rijx(y

(3.6)

The second bracketed term contains the interaction en-

ergy and a reduced perturbation which can be matched
with the two-body Jastrow and the one-body pseudopo-
tential of the trial function, respectively. The 6rst brack-
eted term is the Hamiltonian of noninteracting electrons
in an external field shielded by escp [Eq. (2.3)j. An exact
solution for the Slater determinant orbitals ~k+) satisfy-
ing this Hamiltonian involves Mathieu functions, but to
linear order in A,

+ q) + I q)
2escp (q+ 2k) q (q —2k) q

(3.7)

as derived &om 6rst-order perturbation theory. The one-
body pseudopotential parametrized by p is everywhere
positive and does not change the nodal surface of the
system determined by the SCF orbitals. This suggests
that p may be found &om the boson RPA solution for
an external field of strength H,„i (1 —1/escp):

eT (R) = [D(R, k) ~t ~D(R, k) ~~ J(r;, ) ) (3 4)

—Ar2

(q4+ 12r, )'~
(3.8)

where ~D(R, k) ~" and ~D(R, k) ~" are Slater determinants
of plane waves ~k) = e'"' for the spin up and down popu-
lations and J(r;~) is the Jastrow factor derived within the
RPA, which takes into account both the cusp condition
as two electrons approach each other and the long-range
correlations. This unparametrized form has been used
successfully in determining properties of the electron gas
and low-Z metals. i7 The allowed values of k are those
reciprocal to the 6nite simulation cell, with the ground
state of the system obtained by filling the N states of low-
est energy. In order to reduce surface effects, the possible
choices for N are restricted to those which correspond to
filled or closed shells (a shell consists of all k values re-
lated by cubic symmetries). The closed shell values for
double spin occupancy used in this study may be deter-
mined by inspection and are N/2 = 7, 19,27, 33, 57, 81.

In the presence of the external Geld, an appropriate
modification of the form of the ground-state trial function
is required:

@T(R)= ~D(R, k )~t~D(R, k )~~ J(r;~)

N

x exp p ) cos(q . r;)
&;=i )

(3 5)

A similar product form was used with good results in the
hypernetted-chain study of Ref. 7. The components of
this trial function are suggested by a trivial rewriting of
the Hamiltonian,

This value of p lies close to the optimal value as deter-
mined by variational minimization. An alternative trial
function form, Eq. (3.7) with escp replaced by a varia-
tional parameter and p = 0, converges to the same ener-
gies, although somewhat more slowly. These checks give
us confidence that our trial function adequately models
the nodal surface.

The simulation of bulk systems necessitates the use of
periodic boundary conditions to reduce surface effects.
The long-range Coulomb interactions between the parti-
cles in the simulation cell and their periodic images can
then be evaluated by Ewald sums. Periodic boundary
conditions require an integer number of wavelengths of
the applied field to Gt in the simulation cell. The use of
multiple oscillations combined with different system sizes
allows us to explore the whole range of interesting wave
vectors; however, calculation of the long-wavelength be-
havior (q « kF) becomes prohibitively expensive, since
the maximum wavelength allowed is proportional to the
cube root of the number of particles in the simulation
cell.

The QMC dielectric results exhibit significant N de-
pendence and must be extrapolated to the bulk lixnit. In
the study of the ground-state electron gas, the kinetic
energy was extrapolated on the basis of the size depen-
dence of noninteracting fermions2 and the Coulomb po-
tential was corrected for the self-interaction of a particle
with its images (a term appropriate to a perfect lattice,
but not to a Fermi liquid). Since the calculation of the di-
electric by Eq. (2.19) relies solely on energy di8'erences,
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FIG. 3. Released-node energy vs genera-
tion after release M for r, =6, N=3S, A=0.0
Ry (top curve), and A=0.035 Ry, with wave
vector q=[3.47811,0,0] (1/rs) (lower curve).
The error bars are shown by vertical lines.

-0.1495

-0.1500 10 20 30

M

40 50 60

the occupation of plane wave orbitals [k —q) and [k + q),
which are not inside the Fermi sphere of the ground state.
The loss of symmetry is particularly significant for finite
systems, which do not possess the k-space isotropy of
the bulk liquid. Because of the shell structure, the wave-
vector-dependent correction cannot be obtained by sim-
ulating systems of increasing size but constant q. It is
smallest for the [100] data, which has the greatest degree
of symmetry of the three field orientations considered.

The ground-state bulk extrapolation fit to the Gnite-
N energies is accurate to approximately 0.1%. Since the
errors in the energies of the external field systems are no
smaller than those for the ground state, the QMC dielec-
tric results have a 10% uncertainty, due to the loss of
two significant digits in taking energy differences. Use of
a correlated sampling scheme to obtain greater accuracy
in the energies would be inefFective, since the finite-N en-
ergy differences are already an order of magnitude more
precise than the bulk-extrapolated values.

IV. RESULTS

All of the DMC calculations were performed with a
time step chosen to yield Metropolis acceptance ratios
on the order of 99.3%, which ensures good statistics and
convergence. The DMC energies must then be extrap-
olated to the zero time-step limit. Since the trial wave
functions for the ground state and the perturbed systems
have difFerent nodal structures, it is not a priori obvious
that the v dependencies of the corresponding energies
are the same. However, time-dependence plots for the
ground-state and applied-field systems show that lines of
the same slope can be Gt to both, as in the representa-
tive plot for r, = 4 shown in Fig. 1. Since the dielectric
calculations rely only on energy differences, this means
that time-step extrapolation is not required as long as
the same v is used for all field strengths, which results in

E(A)/N = 1.06316(6) —0.0250(2)A (4 1)

As a check on the accuracy of DMC, released-node
GFMC simulations were performed at r, = 6 for the
ground state and one applied Geld. The GFMC energies
as a function of generation after release M are shown in
Fig. 3, the energy differences are shown in Fig. 4, and the
results are compared with DMC in Table I. The lowering
of the ground-state energy from its fixed-node value by
1.8(3) x 10 4 Ry (Fig. 3) is consistent with Ceperley and
Alder's resultsli of 2(l) x 10 4 and 1.0(5) x 10 Ry at
r, = 5 and r, = 10, respectively. (The number in paren-
theses is the error in the last digit. ) Although it does not
appear that the released-node calculation has converged
in either the ground or perturbed states, the GFMC en-

ergy difFerences as a function of generation after release
converge to —0.002 35(2) Ry for M ) 30, which is consis-

TABLE I. Comparison of DMC and GFMC energies (in
Ry) for r, = 6, N=38, @=[3.47811,0,0] (1/rs). The error in
the last digit is shown in parentheses.

EDMC EVFMC

0.0 0.146 98(1) 0.14748(1)
0.035 0.149 36(1) 0.14983(2) 0.002 38(1) 0.002 35(2)

a considerable computational saving.
A quadratic fit to the constant ~ DMC energies is then

used to calculate the dielectric function. The greater the
number of external fields used, the smaller the result-
ing statistical error. However, the CPU time required
to perform statistically accurate simulations at sufficient
choices of densities and wave vectors generally limits us
to the use of three to four fields. A typical example of a
quadratic fit is illustrated in Fig. 2 for r, = 1, N = 54,
q = [1.03122, 0, 0], which satisfies
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FIG. 4. Released-node energy differences
vs generation after release M for r, =6, N=38
and wave vector iI=[3.47811,0,0] (1/r s). The
error bars are shown by vertical lines. The
dotted and dashed lines show the diffusion
and nodal release energy differences, respec-
tively.
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TABLE II. Inverse dielectric response as a function of wave vector q in (1/rs), r, = 1.
1/siv, 1/equi, 1/sin, 1/Evs, and 1/eAsY refer to the finite-N, bulk-extrapolated, Ichimaru-Utsumi,
Vashishta-Singwi, and asymptotic compressibility values. All results were obtained with 6elds in
the [100] direction. The error in the last digit is shown in parentheses.

0.964 50
1.031 22
1.15937
1.61724
2.411 59
3.093 67
4.124 89

N

66
54
38
14
114
54
54

1/eiv

0.23(1)
0.436(5)
0.300(6)
0.423(2)
0.717(2)
0.807(1)
0.9501(6)

1/e~

0.25(1)
0.286(5)
0.327(6)
0.476(2)
0.707(2)
0.815(1)
0.9465 (6)

0.243
0.269
0.319
0.485
0.698
0.819
0.9459

1/evs

0.246
0.272
0.324
0.494
0.712
0.829
0.9466

I/sAsY

0.240
0.269
0.313

1.0

0. 8

0. 6

0.2

FIG. 5. Inverse dielectric function vs
wave vector at r, = 1. The RPA is shown

by the dot-dashed line, Vashishta-Singwi by
the dashed line, Ichimaru-Utsumi by the solid

line, and the low-q asymptote by the double-
dotted-dashed line. The diffusion points are
shown by squares. The errors are smaller
than the symbols.

"o.o 1.0 2. 0 3.0 4. 0

(1/r0)
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TABLE III. Inverse dielectric response as a function of wave vector q in (1/ra), r, = 4.

1/6gy, 1/eo, 1/ciU, 1/evs, and I/czars refer to the Snite-N, bulk-extrapolated, Ichimaru-Utsumi,

Vashishta-Singwi, and asymptotic compressibility values. The error in the last digit is shown in

parentheses. A s or t indicates a Seld in the [221] or [111]direction, respectively. All other results

were obtained with Selds in the [100] direction.

0.964 50
1.031 22
1.15937
1.61724
1.786 13
2.008 09
2.145 03

2.411 59

2.801 14
2.893 50

3.093 6?

3.478 11

4.124 89

N

66
54
38
14
54'
38'
162
162~

114
114~
14'
66
66t
54
54t
38
38t
54

1/eiv

0.017(2)
0.106(12)
0.024(3)
0.045(6)
0.09(3)
0.26(2)
0.10(1)
0.19(1)
0.246(3)
0.189(6)
0.17(1)
0.328(9)
0.239(6)
0.338(3)
0.522(5)
0.560(5)
0.496(6)
0.7976(7)

1/eo

0.026(2)
0.031(12)
0.036(3)
0.080(6)
0.13(3)
0.19(2)
0.12(1)
0.16(1)
0.234(3)
0.217(6)
0.23(1)
0.321(9)
0.280(6)
0.353(3)
0.461(5)
0.533(5)
0.501(6)
0.7868(7)

1/eiv

0.024
0.027
0.034
0.067
0.082
0.106
0.123

0.165

0.246
0.270

0.331

0.478

0.7835

1/evs

0.022
0.025
0.034
0.080
0.104
0.143
0.171

0.233

0.340
0.367

0.429

0.7910

1/~A. SY

0.024
0.027
0.034
0.064

tent with the DMC value of —0.002 38(1) Ry (see Fig. 4).
This indicates that the fixed-node errors cancel upon tak-
ing energy difFerences, although more GFMC simulations
would be necessary to establish this point conclusively.

Our QMC results are checked in the asymptotic long-
wavelength limit against the compressibility sum rule for-
mula [Eq. (2.7)] using Perdew and Zunger's fit to the
ground-state electron gas energies. For the range of r,
studied here, their results are virtually identical to those

obtained by Vosko, Wilk, and Nusair. is We also com-
pare our values with two dielectric functions from the
literature, the Vashishta-Singwi and Ichirnaru-Utsumi
models described in Sec. II.

At strongly coupled densities, the QMC data are fitted
to the Ichimaru-Utsumi form, Eq. (2.11), for G(q), with

po obtained from the fit of Perdew and Zunger mentioned
above. The Yasuhara expression Eq. (2.15) for g(0) used
in this formula gives values indistinguishable from QMC

1.0

0.8

0.6

0.4

FIG. 6. Inverse dielectric function vs
wave vector at r, = 4. The RPA is shown

by the dot-dashed line, Vashishta-Singwi by
the dashed line, the QMC St by the solid
line, Ichimaru-Utsumi by the dotted line, and
the low-q asymptote by the double-dotted-
dashed line. The diffusion points are shown

by squares and the errors by vertical lines
when larger than the symbols.

0.2

0.|I 1.0 2.0

(1/r0}

3.0 4.0
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TABLE IV. Inverse dielectric response as a function of wave vector q in (1/rp), r, = 6.
I/ew, I/&n, I/&IU, I/&vs, and 1/eAsY refer to the finite-N, bulk-extrapolated, Ichimaru-Utsumi,
Vashishta-Singwi, and asymptotic compressibility values. The error in the last digit is shown in
parentheses. A * or t indicates a field in the [221] or [111]direction, respectively. All other results
were obtained with fields in the [100] direction.

1.031 22
1.61724
1.786 13
2.008 09
2.145 03

2.411 59

2.801 14
2.893 50

3.093 67

3.478 11

4.124 89

N

54
14

54
38'
162
162t
114
114t
14'
66
66t
54
54t
38
38t
54

1/eiv

0.06(1)
—0.048(7)
—0.06(1)
0.127(7)

- 0.030(5)
0.033(5)
0.063(4)

- 0.010(7)
- 0.070(7)
0.109(4)

—0.006(7)
0.087(3)
0.317(4)
0.358(3)
0.292(5)
0.687(l)

1/eo

0.00(1)
—0.021(7)
—0.03(1)
0.062(7)

—0.013(5)
0.014(5)
0.053(4)
0.015(7)

- 0.005(7)
0.103(4)
0.033(7)
0.101(3)
0.254(4)
0.330(3)
0.297(5)
0.673(1)

—0.012
—0.032
- 0.038
- 0.047
-0.051

- 0.053

—0.029
- 0.015

0.032

0.202

0.674

I/~vs

—0.016
- 0.020
- 0.016
- 0.004
0.007

0.041

- 0.123
0.148

0.209

0.356

0.685

I/eASY

—0.012
—0.029

results within statistics. The &ee parameter a is deter-
mined by least-squares optimization to the [100] QMC
data, which exhibits the smallest size dependence of the
three field orientations. Values of the fit parameters a,
'Ip, aild g(0) are given in Table VI. Using QMC data
for S(k) in the hypernetted-chain self-consistency rela-
tion Eq. (2.16) gives a G(k) curve which does not fit the
QMC data as well as the Ichimaru-Utsumi parametrized
form.

A. Weakly coupled Quid —v, = 1

Table II gives results for the finite-N and bulk-
extrapolated DMC [(Eq. (3.9)] dielectric function, to-
gether with numbers derived from the Ichimaru-Utsumi
and Vashishta-Singwi local-Geld corrections, and the
asymptotic values obtained Rom the GFMC compress-
ibility. The same data is plotted in Fig. 5, together with
the RPA dielectric function. It should be noted that the

1.0

0.8

0.6

U'

iti 0

0.2

FIG. 7. Inverse dielectric function vs

wave vector at r, = 6. The RPA is shown

by the dot-dashed line, Vashishta-Singwi by
the dashed line, the QMC fit by the solid

line, Ichimaru-Utsumi by the dotted line and
the low-q asymptote by the double-dotted-
dashed line. The diffusion points are shown

by squares. The errors are smaller than the
symbols.

0.0

'-'0 0
0

1.0 2.0

q (&/1.0)

3.0 4. 0 5 0
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TABLE V. Inverse dielectric response as a function of wave vector q in (1/r 0), r, = 10. 1/6N,

1/co, 1/cgU, and 1/c&sv refer to the finite-N, bulk-extrapolated, Ichimaru-Utsumi, and asymptotic
values. The error in the last digit is shown in parentheses. A s or t indicates a Seld in the [221] or

[111]direction, respectively. AII other results were obtained with fields in the [100] direction.

1.031 22
1.238 43
1.61724
1.786 13
2.008 09
2.41152
2.801 14
2.893 50

3.093 67

3.478 11
4.124 89

N

54
162

14
54'
38'
114
14'
66
66t
54

54~

38
54

1/cN

0.003(2)
—0.038(7)
- 0.118(3)
- 0.145(4)
- 0.049(4)
- o.177(s)
- 0.351(7)
-O.233(6)
- 0.347(6)
- o.22s(2)
- 0.012(3)
0.065(3)
0.487(1)

1/co
—o.o33(2)
- 0.052(7)
- 0.100(3)
- 0.123(4)
- 0.098(4)
- 0.186(8)
- 0.297(7)
- 0.238(6)
- 0.313(6)
- 0.215(2)
- 0.071(3)
0.036(3)
0.470(1)

—0.049
- 0.072
- 0.132
- 0.167
- 0.222
- 0.346
- 0.477
- 0.502

- 0.534

- 0.405
0.450

1/&As Y

—0.047
- 0.070
—0.125

QMC number-dependence correction from Eq. (3.9) is
substantial ( 52'%%uo for q = 1.03122). The QMC results
are consistent with the low-q asymptote, even at wave-
lengths for which the compressibility sum rule is not ex-
pected to be accurate. The RPA underestimates the cor-
rect response at all wave vectors, although the coupling
is relatively weak. The bulk-extrapolated QMC results
closely correspond with the two other dielectric models
over the entire range of wave vectors.

B. Metallic Suid —7', = 4

Accurate calculations in the density regime typical
of alkali metals —Na (r, = 3.93), K (r, = 4.86), Cs

(r, = 5.62)—are of considerable interest. The QMC
data for r, = 4 are given in Table III. The two sets
of QMC points at intermediate wave vectors correspond
to the [100] and [221] orientations, the latter indicated
by a e in the table. Additional wave vectors, with the
field oriented along the [111]diagonal, are indicated by a
f. The same data are plotted in Fig. 6, together with the
RPA, the Vashishta-Singwi and Ichimaru-Utsumi curves,
the long-wavelength asymptote, and the QMC fit (Table
VI). As the figure shows, the number correction works
well at long wavelengths, where the local-6eld correction
is small, but cannot eliminate all the size effects at in-
termediate wave vectors. As expected, the RPA is now
a poor description of the induced charge, severely under-
estimating the dielectric response over the entire range

1.00

0.75

0.50

0.2$ ~

0.00

-0.25 ~

FIG. 8. Inverse dielectric function vs
wave vector at r, = 10. The RPA is shown by
the dot-dashed line, the QMC fit by the solid
line, Ichimaru-Utsumi by the dotted line and
the low-q asymptote by the double-dotted-
dashed line. The diffusion points are shown
by squares. The errors are smaller than the
symbols.

-O.SO

0'% 0 1.0 2.0

g (1/rp)
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of wave vectors. The QMC fit is approximately bounded
by the two other curves, indicating that the response at
this density lies in between the corresponding theories. $0 y(0)

TABLE VI. Local-field correction fitting parameters.

C. Low-density metallic fluid —v, = 6 6
10

0.011
0.012
0.003

0.2810
0.2915
0.3074

0.0533
0.0213
0.0042

The electron gas compressibility becomes negative for
r, & 5.24. As a consequence, the low-density metallic
Quid exhibits striking differences ft.om the behavior at
higher densities. The QMC data and the various dielec-
tric model values are given in Table IV and plotted in
Fig. 7, together with the QMC fit (Table VI). The di-
electric response becomes arbitrarily large and negative
at low q, which is consistent with the compressibility sum
rule, Eq. (2.7). Another distinctive feature is the appear-
ance of an in6nite discontinuity in the dielectric where the
sign of I/e changes near q = 2.0 = k~. The RPA is com-
pletely inadequate at this density, predicting a positive
response over the entire range of wave vectors. Compar-
ison with the QMC fit shows that the Vashishta-Singwi
curve appears qualitatively correct in the region of the
axis-crossing discontinuity. By contrast, the Ichimaru-
Utsumi theory substantially misses the location of the
sign change and lies below the QMC data at interme-
diate wave vectors. As before, the two models act as
approximate bounds to the QMC fit.

Vashishta-Singwi dielectric at this density. The magni-
tude of the response and the wave vector at the change of
sign differ signi6cantly from the Ichimaru-Utsumi values.

V. SUMMARY

Our QMC results represent a first-principles calcu-
lation of the static dielectric function of the three-
dimensional electron gas and provide a useful benchmark
for future work. The data agree with the asymptotic lim-

its, and are bounded by established dielectric theories at
intermediate wave vectors. In principle, the same method
can be used to calculate the macroscopic dielectric func-
tion of any solid-state system, metallic or insulating. The
essential difBculty of the approach lies with the bulk-
extrapolation problem which requires either simulations
of signi6cantly larger systems or the development of an
improved extrapolation formula.

D. Strongly interacting fluid —r, = 10 ACKNOWLEDGMENTS
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