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Exact exchange-potential band-structure calculations by the LMTO-ASA method:
Mgo and Cao
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We present a method for electronic band-structure calculations based on the density-functional
formalism using, instead of the exchange potential in the local-density approximation (LDA), the
exact Kohn-Sham density-functional exchange potential. The method is formulated within the
linear muffin-tin-orbital method in the atomic-sphere approximation. We apply the method to the
alkaline-earth oxides MgO and CaO. The obtained band gaps, 7.7? eV for MgO and 7.72 eV for
CaO, are closer to the experimental values of 7.83 and 7.09 eV, respectively, while the corresponding
LDA band gaps of 4.64 and 4.30 eV are too small. To our knowledge, the exact exchange potential
is 6rst applied to realistic solids. The exact exchange potentials thus calculated show structures well

re6ecting the atomic shells.

I. INTRODUCTION

In most of the electronic band-structure calculations
based on the density-functional (DF) formalism, the
exchange-correlation (XC) energy is evaluated in the
local-density approximation (LDA) or its extension to the
local spin density. Such band calculations can reproduce
many measurable quantities. However, the LDA calcu-
lations predict band gaps too small compared with ex-
perimental ones for semiconductors and insulators. The
main reason seems to lie in the LDA that underestimates
the exchange potential for occupied bands and pulls up
their eigenvalues. This is due to its incomplete cancella-
tion of the self-interaction. Some methods, which as-
sure the self-interaction cancellation, seem to give band
gaps in good agreement with experiments. This illus-
trates the importance of the self-interaction cancellation.

In this paper, we present a method of DF band calcula-
tion using the so-called exact exchange (EXX) potential
[the exact Kohn-Sham (KS) density-functional exchange
potential] (Ref. 5) by the tight-binding linear muffin-tin-
orbital (LMTO) method in the atomic-sphere approx-
imation (ASA). This EXX LMTO-ASA method is dif-
ferent &om the "standard" LDA LMTO-ASA method
only in the point that we use the EXX energy instead
of the LDA exchange energy. The self-interaction can-
cellation is complete because the EXX energy contains
the contribution that cancels the self-interaction exactly.
As is well known, the quality of the LDA in actual ap-
plications is to some extent based on error cancellation
between the exchange and correlation energies. In our
treatment, we evaluate only the exchange energy accu-
rately, and can enjoy no such error cancellation. This is
clearly a drawback of our approach. We, however, believe
that only the accurate treatment of the exchange term
allows us to give a better description of the band gap,
as will be seen below. For this reason we compromise
and have given up implementing the partial error can-
cellation mentioned above. Talman and Shadwick have

calculated atomss by the EXX-only method (here, the
EXX-only method denotes the DF calculation method
using the EXX energy and no correlation energy), and
they obtain total energies that agree well with the ones
by the restricted Hartree-Fock (HF) method. Further,
for atoms with a small atomic number, the eigenvalues
of the states of outer electrons are also in good agree-
ment. However, for the homogeneous electron gas, the
EXX-only method and the HF method give completely
difFerent eigenvalue dispersions, while the total energies
are exactly the same. The EXX-only method gives the
eigenvalue dispersion for the noninteracting electron gas.
On the other hand, the HF method gives zero density of
states at the Fermi level. (The difFerences between the
HF and the EXX-only methods have been discussed in
Refs. 5, 7, and 9.) Therefore, by the use of the EXX en-

ergy instead of the LDA exchange energy, we can expect
to obtain band gaps that are not as large as the HF and
not as small as the LDA.

We apply our method to MgO and CaO. They are the
most simple oxides and we have many calculations to be
compared with. To our knowledge, the EXX potential is
erst applied to the realistic solids. In Sec. II, we will give
our EXX LMTO-ASA method. In Sec. III, the results are
shown and compared with the LDA results, other band
calculations, and experimental data. Finally, we give a
brief summary.

II. THEORETICAL METHOD

We start &om a simple explanation of the LMTO-
ASA method, rebuilding it for our purpose. Nota-
tions and definitions for the potential parameters follow
the paper.

We divide the space into the atomic spheres (AS's).
The total volume of the AS's equals to the total crystal
volume. The points in the space are denoted by (r, B),
where R is the index for the AS and r = (r, 8, P); (r ( B)
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is the vector denoting the position in each AS. R de-
notes the radius of the AS. All the physical quantities
are expressed as the sum of the contributions from all
the AS's. To quantize the electron field, we have to de-
fine the connections of wave functions between the AS's.
The condition of the connection is linear so that the ASA
Hamiltonian is well defined as the Hermite operator. It
is accomplished by using the envelope functions, as dis-
cussed in Ref. 6. The total energy E[n] in the ASA as a
functional of the density is written as

E[n] = Ei, [n]+ Ec,„i[n,]+E [n,]+E,[n,]+E,„g[n,],

'd2
+ &vRl

I
drz

l (l + 1) —V,R(r, R) rPRi(r) = 0,

with the conditions that it should be regular at r
0 and its logarithmic derivative should satisfy DRi
RgV&&/QRi]„R at r = R (the prime denotes the deriva-
tive with respect to r), with an appropriate normalization
condition. Using PRi(r) and PRi(r) [the energy deriva-

tive is denoted by an overdot. QRi(r) in this paper cor-
responds to QR&(r) in Ref. 10], we can express the wave
function as

where n(r, R) denotes the electron density, and n, (r, R)
is the spherically averaged radial density defined as
n, (r, R) = r f n(r, R) sin(8)d8dg Ei, [n. ] is the kinetic
energy of the non-interacting system as the functional of
the density n(r, R). Ec,„i, E„E„and E,„t denote the
Coulomb, the exchange, the correlation, and the exter-
nal potential energies as the functional of n, (r, R), re-
spectively. We omit spin indices for simplicity. Adding

the term pR fo drV R(r, R)[f r3n(r, R) sin(8)d8dp-
n, (r, R)] with the Lagrange multiplier V,R(r, R), we take
the variation with respect to n(r, R) and n, (r, R) inde-
pendently. We obtain the fundamental equations

g"'(r, R) = ):(AR'L, 4Rl (r) + BR'r, 4RI (r) )Yr. (8, 0), (5)
L

where YL means the spherical or cubic harmonics. To
calculate ARL and BRL we need the LMTO Hamiltonian
HMT and the overlap integral OMT for the MT potential.
They are determined by the potential parameters pRi ——

(e„,C, v b, , p, p)Ri, which is also used to determine the
coefficients for PRi YL, and PRi Yg to construct the MTO's.

The EXX term as the density functional is defined as

+ V,R(r, R) = 0,
bEi, [n]

bn r, R

(
bEc.&i[n, ] bE.[n.]

bn, (r, R) bn, (r, R)

+ +bE, [n, ] bE.„,[n, ]

bn, (r, R) bn, (r, R)
'

where V,s(r, R) is the spherically symmetric one-particle
effective potential. In the LDA, E is given as the explicit
functional of density. Instead, we evaluate the EXX en-
ergy E and its derivative with respect to n, (r, R) as ex-
plained below. This is only the difference of our method
&om the ordinary LDA LMTO-ASA method. For E„
we use the LDA correlation energy parametrized by von
Barth and Hedin. ii [The exchange-correlation energy E„,
and its derivative used here agree with Eqs. (5.1) and
(5.2) in Ref. 5 neglecting the third terms. )

In the LMTO ASA method, the wave function
@ ~(r, R) with energy e ~ is written by linear combina-
tion of the localized MT orbitals (MTO's). Further, the
MTO's are constructed as linear combinations of the ba-
sis functions in each AS. The radial part QRi(r) of the
basis functions in each AS is determined by the equation
(we use unit 5 = e /2 = 2m = 1),

(6)

where vP; are taken to be the occupied KS orbitals. Note
that E is determined only by the density. It comes from
the ordinary DF assumption that the one-particle effec-
tive local potential to support the given density is deter-
mined uniquely.

In the LMTO-ASA, the EXX energy E [n, ] can be
evaluated through the procedure proposed by Svane and
Andersen. i3 For our purpose, E [n, ] for each spin (omit-
ting the spin index) for the valence electrons can be
rewritten as

E~ [n, ] = —) IRR (L» L3)l L3) L4)X*-
R,R'

RL1 R'L4 ~

kje kj
RI~R'14 )~ RL~ R~i14'

kj

where L is the compact index containing L and the
other index that distinguishes P from P. This means
A —= (ARL, BRI ), and QRQ&r) = (QRi(r), QRi(r)) The.
quantity IRR is defined as

(9)
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Following Ref. 12, we restrict the summation up to the
second nearest pairs. The contributions from the core-
core and the cure-valence part to E can be included in

the expression Eq. (8) by extending the index I so as
to include the index for the core wave functions. Our
expression Eq. (8) is equivalent with Eq. (22) of Ref. 12,
but more suitable for our calculation. The method to
calculate the four-center integral I~~ is detailed in the
Appendix of Ref. 12.

We can calculate hE /bV, fr(r, R) for fixed DRi based
on the equation, symbolically written as

the energy bands for the obtained SC potential V,g with
the combined correction added.

We observe that the EXX potential V (and V,R) ob-
tained by the SC calculation has a small h function at
r = R. Owing to this contribution, the derivative of
the wave function is not continuous there and it raises
the kinetic energy slightly. We think that it comes from
the artificial space division and the finite partial-wave
expansion employed in the ASA. In practice, it does not
give a significant efkct.

bEz bE~ bX b'PRi bE~ bIRRI'
+

bV, R bX b'PRi bV, R bIRR~ bV, fi

To calculate the quantity in the parentheses of the first
term in the right-hand side of Eq. (11), bE /b'PRi, we
use simple two-point numerical derivatives but this is
the most time-consuming part in our calculation. Other
quantities in the right-hand side of Eq. (11)are calculated
from QRQ&r) and b'QRQ&r)/bV rr(r', R) in each AS. The lat-
ter quantity is expressed by use of the two independent
solutions of the radial Schrodinger equation Eq. (4) (and
their energy derivatives). The logarithmic derivatives
DR~ are not the variational parameters but quantities
determined self-consistently in an ordinary LMTO man-
ner, so that e„~~ is set to the center of gravity of the
occupied states in the projected density of states. The
differentiation with respect to V,fr(r, R) is performed in
the restricted space of the fixed total electron number.
Correspondingly, there exist trivial sum rules,

hE " b, ( ', R')'= &-, ""bV..(,*,
R)

= &-, ""bV'..(,', R)

III. RESULT AND DISCUSSION

Our EXX energy bands are shown in Figs. 1 and 2

together with the LDA ones. All calculations are nonrel-
ativistic. The lattice constants and the signer-Seiz cell
radii are taken &om Table I of Ref. 15. The LDA bands
are calculated using the original TB-LMTQ program
with the combined correction. For MgO, we use the
Mg(3s3p3d) and O(2s2p) orbitals as the basis for the SC
calculation. Inner orbitals are treated as cores. After the
SC calculations are performed, the energy band is calcu-
lated by use of the Mg(3s3d) and O(2s2p) orbitals as the
basis, and by taking account of the contribution of the
Mg(3p) orbitals through down folding. is This treatment
is necessary to exclude the "ghost" bands arising from
the Mg(3p) orbitals appearing around 1 Ry in Fig. 1.
[Comparing our bands with those obtained by the aug-
mented plane wave (APW) method, we have made the
band identification. The bands that do not appear in the
APW bands are identified as the "ghost bands. "] For
CaO, we used Ca(4s3d) and O(2s2p) orbitals in the SC

which can be used to check the code. Based on a
similar equation with Eq. (11), we can also calculate
hn, (r, R) /h V,g(r', R').

The EXX potential V (r, R) = bE [n, ]/bn, (r, R) is
calculated &om the above two quantities hE /bV ir(r, R)
and bn, (r, R)/bV, R(r', R') by solving the integral equa-
tion:

LDA Exact Exchange

bE [n, ] ). , bn, (r', R') bE [n, ]

bV,R(r, R), o bV,R(r, R) bn, (r', R')

Here we can restrict B and B' within the primitive cell
considering the periodic boundary condition of the crys-
tal. To solve Eq. (13), we should take account of the
sum rules Eq. (12). Corresponding to these sum rules,
the constant part of V is not determined uniquely. In
the actual procedure, the integration in Eq. (13) is re-
placed by the discrete sum using the trapezoidal rule for
integration. Then Eq. (13) becomes a linear equation,
and the EXX potential is obtained by solving it.

We have developed a computer code which executes
the self-consistent (SC) non-relativistic calculation using
the EXX potential V, starting from the TB-LMTo pro-
gram by Schilfgaarde et al. The so-called "combined
correction" is not taken into account in the SC calcula-
tion. After performing the SC calculation, we calculate

/

/
/

0—
MgO

FIG. 1. MgO: LDA and EXX energy bands. The top of
the valence band energy is set for zero.
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FIG. 2. CaO: LDA and EXX energy bands. The top of the
valence band energy is set for zero.

FIG. 3. MgO: LDA and EXX density of states. Solid and
broken lines denote the EXX and the LDA ones, respectively.
The top of the valence band energy is set for zero.

calculation. Then the energy bands are calculated us-

ing the Ca(4s4p3d) and O(2s2p) orbitals as the basis.
We perform the Brillouin zone sum using 29 k points in
the irreducible wedge of the zone (we need 20 minutes
for each iteration cycle of the EXX SC calculation by
the Intel 486DX2-66 CPU). The LDA LMTO bands are
compared with the bands calculated by the LDA APW
method, shown in Fig. 1 of Ref. 15. Our LMTO bands
agree well with the APW bands in the vicinity of the
Fermi level including band gaps.

We give the direct energy gaps at high-symmetry
points in Table I, which is compared with Tables II and

V of Ref. 17. The band gaps lie between that of the
LDA and of the HF calculations. 1 The direct gaps at
the I' points are close to the experimental values. To
see the dependence of the results on a specific choice
of the LDA parametrizations, we also have calculated
the bands for CaO in the same framework using one of
the most accurate LDA correlation energy parametrized
by Vosko, Wilk, and Nusair instead of the one by von
Barth and Hedin. The calculated band gap is 7.73 eV,
which is only slightly (0.01 eV) different from the results
obtained for von Barth-Hedin's parameter, thus confirm-

TABLE I. Energy gaps (in eV) at high-symmetry points for MgO and CaO.

Method
Mgo

CaO

Experiment
LDA (this work)
EXX (this work)

APW-LDAb
Hartree-Fock

Experiment
LDA (this work)
EXX (this work)

APW-LDAb
Hartree-Pock

7.833
4.64
7.77
4.7

25.3

7.09
4.30
7.72
4.4

15.8

Direct gap
X

13.56
17.56
10.2
17.0

4.30
9.32
3.9

19.9

12.91
15.56
8.3

21.4

7.78
11.4
7.9

21.9

Indirect band gap
r-x

3.96
9.08
3.5

18.7

Whited et al. (Ref. 18).
Klein et al. (Ref 15). .

'Pandey et aL (Ref. 17).



14 820 TAKAO KOTANI 50

0-

-2-

-8-

-10-

-12-

I

0 ~ 1
r (a.u. )

Fig. 4 the mean value of the EXX potential is set equa1
to that of the LDA. The EXX potential reHects atomic
shell structures more clearly than the LDA. Especially,
the EXX potential at the vicinity of the O(2p) orbitals
(outer dip of the EXX potential in the oxygen AS) is
well enhanced (more negative) compared with the LDA.
In other words, the LDA exchange potential for the oc-
cupied orbitals is underestimated (less negative).

As a principle, the DF energy bands do not necessarily
agree with the electron quasiparticle spectrum. However,
the DF energy band is well de6ned and is the basic con-
cept in the time-dependent DF formalism, which gives
a dynamical linear density response. Due to the small-
ness of the LDA band gaps, we never obtain the correct
density response if we apply the above formalism to the
solid like MgO using the LDA energy band. In such cases,
we have to start &om DF energy band calculations which
give more accurate band gaps than the LDA. Our EXX
LMTO-ASA method or its modi6cations will give such
accurate DF energy bands.

FIG. 4. CaO: Exchange potential V in each atomic sphere.
The solid and broken lines show the EXX and the LDA
exchange potentials, respectively. For the EXX potential,
we have to add small b function contributions WRb(r —R)
(Wca ———0.098, Wo = 0.117).

ing qualitative independence of the present results on the
parametrization of the LDA correlation energy. The up-

per valence bands are formed by the O(2p) orbitals. The
widths of the O(2p) bands for the EXX are narrower
than those obtained by the LDA. The MgO density of
states of the valence bands are shown in Fig. 3. The
widths by the EXX and by the LDA are 3.56 eV and
4.72 eV, respectively. This is intuitively reasonable be-
cause the self-energy cancellation effect involved in the
EXX method makes the fully occupied orbitals of the
O(2p) more localized. For MgO, the valence electron
number in the oxygen AS is 6.46 for the LDA and 6.72
for the EXX (total valence electron=8). According to x-
ray photoelectron spectroscopy, the observed splitting
of the double peak in the density of states of the O(2p)
bands is 2.4 eV, while the corresponding EXX value is
2.0 eV.

The calculated EXX potential for CaO is shown in
Fig. 4 with the LDA exchange potential. In the plot of

IV. SUMMARY

A method of band calculation using the exact exchange
potential in the framework of the LMTO-ASA method
is presented and applied to MgO and CaO. Obtained
band gaps are not as small as in the LDA, and a lit-
tle larger than the experimental values. It is reasonable
because our method is &ee &om the defects arising in
the LDA due to the incomplete cancellation of the self-
interaction. Comparing the exact exchange potentials
with those of the LDA, we see that the LDA underes-
timates the exchange potential for O(2p) orbitals. Our
method is within the ordinary Kohn-Sham DF formalism
which gives the local one-particle effective potential, and
can be a natural starting point for systematic inclusion
of higher order correlation effects.
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