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Linear equidistant and bond-alternating infinite chains of hydrogen atoms have been investigated by
the ab initio crystal-orbital method at the Hartree-Fock (HF) level, by including electron correlation up
to the complete fourth order of the Miler-Plesset perturbation theory (MP4-PT), and by using different

versions of density-functional theory (DFT). The Bloch functions have been expanded in all cases in a
series of high-quality atomic-orbital basis sets and complemented by extended sets of polarization func-

tions up to 6s3p2d If per H atom. In order to compare the performance of the PT and DFT methods,
several physical properties have been computed at all theoretical levels including lattice geometry,
cohesive energy, mechanisms of bond alternation (Peierls instability), and energetic features of nonequili-
brium configurations (dissociation). For this latter quantities, both spin-restricted (RHF) and unrestrict-
ed (UHF) wave functions have been employed in all orders of PT. The methods described have been
used parallel to infinite chains and to the H2 molecule, to be able to check their accuracy on experi-
ments. In the case of the DFT, six different functionals (combining Slater and Becke exchange with local
and gradient-corrected correlation potentials) have been utilized to test their accuracy in comparison
with the MP4 results.

I. INTRODUCTION

Infinite equidistant and bond-alternating linear chains
of hydrogen atoms, H„and (H2) „,respectively, provide
the most useful model systems in studying electronic
structure effects in condensed-matter physics. On the one
hand, they frequently serve as the simplest realistic proto-
types of quasi-one-dimensional polymeric materials to
test various methods for the computation of structural
and electronic properties, including the study of
electron-electron and electron-lattice interactions, metal-
insulator transitions, Peierls instabilities, etc. On the oth-
er hand, they provide a zeroth-order model for certain
three-dimensional phases of solid metallic hydrogen
whose behavior under pressure has been the subject of in-
tensive research both from experimental and theoretical
sides (for reviews, see Refs. I and 2). It has also been es-
tablished that electron correlation effects play a predom-
inant role in the physical properties of this material and,
therefore, the exact determination of the correlation po-
tential proves to be an outstanding problem for writing
down its equation of state. These and related aspects
have in the past stimulated, following Slaters original sug-
gestion, a number of theoretical studies on finite hydro-
gen atom rings and infinite linear chains as well as
on three-dimensional structures. ' In the case of finite
rings, it has been observed ' ' that bond alternation
reduces the Hartree-Fock (HF) energy as compared to
the case of equidistant rings. On the other hand, correla-
tion contributions turned out to be larger for these latter
systems. Furthermore, the bond alternating structures
proved to be unstable against the formation of free Hz
molecules. ' In analogy to other polymers like polyace-

tylene, ' polysilene, etc., the bond alternation ob-
served at the HF level was somewhat reduced at post-HF
levels for (H2 }„.

The purpose of the present paper is to investigate four
methodological aspects of studying electron correlation
effects in extended systems: (i) the performance of
different orders of many-body perturbation theory
(MBPT); (ii) the choice of restricted and unrestricted
zeroth-order Hamiltonians (RHF and UHF, respectively}
within the Manlier-Plesset (MP) partitioning scheme, (iii)
the use of different exchange-correlation potentials of
density-functional theory (DFT) ' and comparison of
their results with those of MBPT; and (iv) the inclusion of
atomic basis sets of systematically increasing size to be
able to extrapolate the results to an "infinite basis set" at
all of the above-mentioned theoretical levels. Since vari-
ous physical properties may be infiuenced in a different
manner by the approximations inherent to each method,
we have selected four representative properties of the
infinite hydrogen chains to be compared at all levels: (i)
the cohesion energy and optimized lattice distance of the
equidistant (metallic} chain, (ii) the (uniform) dissociation
of the equidistant chain, (iii) the energetics of bond alter-
nation in the dimerized (semiconducting) chain, and (iv)
the development of the band gap as function of the di-
merization parameter. Section II of the paper will sum-
marize the methodological aspects related to the compu-
tation of the correlated ground state of an infinite chain
by using the Msiller-Plesset partitioning scheme of MBPT
and density-functional theory, respectively. Section III
contains the results obtained for metallic and semicon-
ducting hydrogen chains at different theoretical levels.
Finally, Sec. IV summarizes the conclusions.
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II. CORRELATED GROUND STATE
OF EXTENDED SYSTEMS:

PERTURBATION THEORY
VS DKNSI'j. Y FUNCTIONALS
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CI and CI are here creation and annihilation operators, re-
spectively, referring to Hartree-Fock-type Bloch orbitals

Pi (the compound index I refers to the band index i and
quasimomentum k;), nL is the occupation number, and
the four-center repulsion integrals are defined by
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Integrals of the type &. . . II. . . & in Eq. (3) are analogous
in their structure to Eq. (4), with the difFerence that the
Coulomb operator is multiplied in them by the factor
(1—P12) to take account of exchange. (The operator P
interchanges variables r& and r2, respectively, before in-
tegration. ) The zeroth-order (determinental) many-
electron wave functions are eigenfunctions of A'o:

@oq'I =El q'i. . (5)

The working expressions of MBPT can be written in a
compact form using the reduced resolvent of A'0 belong-

Our ab initio method of calculating electron correla-
tion e8'ects in extended systems using MBPT techniques
has been described in more detai1 at second,
third, and fourth orders, respectively. Here we pro-
vide only a concise summary of the basic expressions to
be able to define the various theoretical levels as applied
to hydrogen atom chains. Our computational procedure
is a generalization of the methods worked out by Pople's
group over the past decades for molecules, to the
case of infinite systems using additional symmetry opera-
tions (translation and helical rotation) and different nu-
merical procedures of solid-state theory. During the de-
velopment of the computer program package POLYGAUss
used in our laboratory for the investigation of the elec-
tronic structure of extended systems, we have made in-
tensive use of several techniques and modules of the
Gaussian molecular packages starting from Gaussian 76
up to Gaussian 92/DFT. ' Concerning the DFT part, we
also benefited much from experiences gained in using the
POLYXA and ADF programs of the Mintmire and
Baerends groups, respectively.

In order to introduce the Mufller-Plesset (MP) parti-
tioning scheme of the Rayleigh-Schrodin er (RS)
MBPT, the full many-electron Hamiltonian will be
taken as the Fock Hamiltonian plus a perturbation:

8=8,+g,

ing to its lowest eigenvalue, E0..

(E,)= X(E,—E&) 'I&»&&@&I=—G .

In terms of 0, the first four orders of the RS-MBPT are
given by
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Since EH„=A' '+ @"',the correlation energy, defined as
the difference between the exact eigenvalue of 8 and
EHF, can be obtained as the sum of all higher-order terms
in the perturbation series starting by 8' '. In order to
construct the zeroth-order wave function 40, we have to
solve first the HF problem of the crystal. In the case of
the spin-restricted RHF theory, the corresponding Fock
operator consists of kinetic energy, nuclear contributions,
and Coulomb and exchange terms in the form

P( rI ) = f'+ P'+ J+k
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where N, + 1 is the number of elementary cells, n „ is the
number of atoms per cell, and ZA is the core charge of
the atom A at position R„. The first-order density ma-
trix p(rl, r ) will be constructed from the (doubly) occu-
pied Bloch spin orbitals by numerical integration over the
first Brillouin zone (BZ), and the Bloch orbitals p"„(rl)
will be obtained as self-consistent solutions of the
Hartree-Fock equations of the crystal. ' For computa-
tional purposes, the Bloch functions will be expressed as
linear combinations of symmetry-adapted Bloch basis
functions, which themselves will be expanded into a set of
contracted Gaussian-type atomic orbitals (CGTO's). The
X-electron wave function @H„will be written as a Slater
determinant built from the doubly filled symmetry-
adapted Bloch functions. Besides NHF, we can construct
further eigenfunctions of 80 by replacing some of the oc-
cupied orbitals in WHF by virtual orbitals which we also
obtain by solving the eigenvalue problem of Il. Labeling
the Bloch states such that indices I,J, . . . stand for occu-
pied (valence-band) levels in the ground-state
configuration, while A, 8, . . . refer to virtual
(conduction-band) levels, we can classify the eigen-
fucntions of A'0 as single (S},double (D), triple ( T},qua-
druple (Q), etc. excited configurations: 41 =czcl@H„,A
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As mentioned above, at first order we obtain the term
missing from Eo to the HF energy, i.e.,

defined as E«~ = 4',„«, E—H„, will be obtained as

E —g(2)+ g(3)+ g(4)
corr (13)

(12)

while in higher orders we obtain correlation corrections
to it. That is, in the fourth order the correlation energy,

I

Expanding the matrix elements of the perturbation
operator between the ground state 40 and doubly excited
states (D) of the type I~ A,J~8 in the form

(14}

we obtain the successive energy terms of PT in the form
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where the first three terms arise from the S, D, and T
summations for t in Eq. (17), while 8&) includes the Q
sum and the first sum over D in Eq. (17) (the so-called re-
normalization term, which provides a partial cancella-
tion of the Q sum). It is important to stress here, in view
of applications to infinite systems, that all four parts in
Eq. (18) (as well as all terms in lower orders) are individu-
ally size consistent, i.e., their application to an array of
isolated subunits leads to additive results. Furthermore,
in presenting the results it is reasonable to combine the
fourth-order contributions from double and quadruple
substitutions as 6])&, since 8])' and 6&' both contain
large terms from unlinked clusters that partly cancel each
other.

In the case of the spin-unrestricted UHF theory
we have to solve the Fock eigenvalue problem
simultaneously for both spins, whereby the electron den-

In Eqs. (16) and (17), V„=V„—Voo5„, and the sums over

s, t, and u are over all eigenfunctions of Po except 4o. In
second order, only matrix elements between the ground
state and doubly excited configurations will have to be
computed. Starting at third order, however, matrix ele-
ments between doubly excited states will also be required.
Their list substantially exceeds that of the former ele-
ments, since even with the use of basis sets of moderate
size the number of virtual bands by far exceeds that of
the occupied ones. In fourth order, the sum over t in-

cludes all single (S), double (D), triple (T), and quadru-
ple (Q) excitations. For further analysis of difFerent con-
tributions in fourth order, it is convenient to write 8( '

as50

sity for a and P spins will be computed analogously to the
HF case. The zeroth-order many-electron function
for PT will be constructed as
=(N!) '~ det[. . .(()"„' (r, )P"„'~(r;+]).. . ]. To compute
the correlation terms, we proceed as above using 4UHF as
the reference state. It has to be noted, however, that in
this case the wave function HUH„ itself contains certain
amount of correlation due to the definition of E„„.
Physically, this correlation energy is the consequence of
the use of different spatial orbitals for different spins that
introduces a small Coulomb hole into the many-electron
system. Though the perturbation theoretical equations
have been formulated in the Bloch function basis, in or-
der to make most efficient use of the translational (or heli-
cal} symmetry of the system, the transformation from the
Bloch basis to that of localized Wannier functions turns
out to be a very efficient procedure to actually calculate
the matrix elements of Q (Refs. 38-42) for semiconduc-
tors. For metals, however, the original Bloch formula-
tion of PT has to be used. It has been shown, further-
more, based on k p PT, that in quasi-one-dimensional
metallic systems no numerical instabilities should occur
around the Fermi level during PT calculations when
both the nominator and the denominator approach zero.
In order to obtain numerically stable results (especially in
the case of large atomic basis sets which frequently lead
to numerical problems in solids due to linear depen-
dences~6), special attention has to be paid to the proper
truncation of the lattice sums. The electrostatic terms
have been summed up, therefore, in this study to infinity
using the multipole expansion technique, 73 while the ex-
change and correlation terms have been cut off with a ra-
dius of 16 A, ensuring their proper convergence.

Since for higher-order PT the computational costs in-
crease rapidly with the size of the unit cell, there is in-
terest in methods which could reach comparable pre-
cision more efficiently. Density-functional theory (DF'I')
has recently shown promise in this direction. ' Therefore,
it might be useful to compare for our model system PT
expansions with different functional forms of DFT to
gain some insight into their performance in relation to
different physical properties. The Fock operator in this
case takes a form analogous to Eq. (11), with the
difference that the HF exchange k will be substituted
with the appropriate exchange-correlation term

= f'+ 0'+i+I„, ,
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and the crystal HF equations will go over to the corre-
sponding Kohn-Sham equations. The self-consistent
and gradient procedures for solids are again in complete
analogy to the molecular case and the appropriate
moduls of the G92/DFT program package ' have been
utilized, after extension for translational symmetry opera-
tions, for their solution. Several numerical and computa-
tional aspects of this procedure specific to infinite systems
will be reported elsewhere.

The functionals used in our computations consist of
separate exchange and correlation parts, respectively.
For the exchange part, either the free-electron gas func-
tional proposed by Slater (S), or the gradient-corrected
Becke functional (B) (Ref. 59) will be used. The correla-
tion part will be either ignored (HFS and HFB theories,
respectively) or it will be treated by the local-spin-density
theory as parametrized by Vosko, Wilk, and Nusair
(VWN) (Ref. 60) or by the gradient-corrected functional
of Lee, Yang, and Parr (LYP) (Ref. 61) as transformed by
Mielich et al. Both correlation functionals can be com-
bined with both exchange terms providing four different
further schemes: S-VWN, S-LYP, B-VWN, and 8-LYP„
respectively.

III. MODELS AND RESULTS

A. HF-based perturbation theory

In order to obtain a first orientation for the quality of
our theoretical models, we computed the binding energy
and equilibrium internuclear distance of the hydrogen
molecule and compared it with highly accurate theoreti-
cal results obtained previously. The first column of
Table I defines the atomic basis sets of systematically in-
creasing size used in these studies. The exponents and
coefFicients of the starting 6s set of Gaussian-type orbitals
(GTO's}, contracted to four atomic orbitals according to
the grouping 3/111, have been taken from Clementi's
work, while the exponents of the (uncontracted) polar-
ization functions are from the correlation optimized sets
of Dunning. The smallest basis set contains four (con-
tracted) atomic orbitals per hydrogen atom, while the
largest one (6s3p21 lf) contains 31. The same basis sets
have also been applied for the infinite systems.

A least-square fit to the HF and MP molecular total
energies as functions of the number of the contracted
GTO's, Nct- TQ, with a polynomial of the type
p(X) =g; A; /X', and extrapolation to the complete basis
set limit (X=Nc—GTo ~ ao ) results in an estimated HF en-

ergy of —1.133 560 hartree at the HF-optimized
geometry, —1.167123 hartree for MP2, and 1.173288
hartree for MP4, respectively. The estimated HF limit
for H2 is —1.133 668 hartree, close both to our
(6s3p211f) basis set result of —1.133473 hartree and to
the extrapolated value. The most accurate correlated
[configuratio interaction (CI)] energy reported for H2 by
Liu using a (Ss3p312f) set of Slater functions is
—1.174 142 hartree, while Kolos and Wolniewicz calcu-
lated an "exact" energy of —1.174475 hartree (Ref. 65)
providing a correlation energy of —0.020404 hartree per
H atom. Our MBPT wave functions result in
—0.016327, —0.018987, and —0.019714 hartree per H
atom at second, third, and fourth orders, respectively us-
ing the (6s 3p211f) basis set (E). These methods thus re-
cover 80, 93, and 96.6% of the full correlation energy.
On the other hand, the importance of polarization func-
tions is reflected in the fact that the (6s) basis set ( A)
provides only —0.012 619 hartree (62% ) in fourth order.
The PT binding energies systematically converge to the
exact value of —0. 174475 hartree, the MP4 value of
b,E= —0. 173019 hartree containing only 0.8% error.
At the same time, with R =0.7405 A, the equilibrium
bond distance of the H2 molecule, 0.7408 A, also will be
reasonably reproduced.

For the infinite equidistant (metallic} H-atom chain,
the equilibrium lattice parameter systematically decreases
at the HF level with the increasing size of the atomic
basis set, from 0.9706 (set A) to 0.9620 A (set E). Elec-
tron correlation, on the other hand, expands the lattice
from 0.9620 A at HF to 0.9698 A at MP2, and to 0.9746
A at the MP4 level of theory, respectively. The intera-
tomic distance of the infinite chain is significantly larger
at all theoretical levels (by 0.24—0.26 A) than that of the
hydrogen molecule. Figure 1 demonstrates the basis set
dependence of the cohesion energy per H atom in the
infinite equidistant chain as function of NcGTQ using
different theoretical approaches. Polarization functions
with higher angular momenta seem to be especially im-
portant for the MP2 and MP4 energy contributions,

TABLE I. Equilibrium distance (R) and total energy of the hydrogen molecule computed at HF and
0

various correlated levels using different atomic basis sets (energies in hartree, distances in A).

Basis set' E(HF) E(MP2)' E(MP3) E(MP4) R(HF) R(MP2) g(MP4)

A: 6s
B: 6s 1p
C: 6s2p
D: 6s2p ld
E 6s3p2d 1f

—1 ~ 128 386
—1.132742
—1.133 331
—1.133393
—1.133473

—1.146 626
—1.160758
—1.163 348
—1.165 205
—1.166 127

—1.151 892
—1.166784
—1.169 337
—1.170822
—1.171445

—1.153 623
—1.168 342
—1.170 888
—1.172 313
—1.172 899

0.7323 0.7379
0.7356 0.7389
0.7339 0.7359
0.7339 0.7365
0.7337 0.7359

0.7456
0.7430
0.7405
0.7410
0.7405

The 6s basis set of Ref. 66 has been contracted in the form {6s/3111),while the polarization functions
taken from Ref. 67 have been used without contraction.
Obtained at the HF-optimized geometry.

'Obtained at the MP2-optimized geometry.
Obtained at the MP4-optimized geometry.
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FIG. 1. Dependence of the cohesion energy per atom on the
number of contracted Gaussian atomic basis functions
(CGTO's) in the infinite equidistant chain of H atoms computed
with difFerent methods.

while the HF energies are practically convergent at the
(6slp) basis set level. The (6s2pld) basis set, however,
seems to be a very reasonable compromise for all
methods. The single-particle energies are relatively in-
dependent of basis set efFects, as shown by the nearly con-
stant value of the Fermi level around —0. 13412 hartree
(basis set E).

Extrapolation of the HF and PT energies for an infinite
basis set provides —0.536746 hartree as an estimate for
the HF limit of the equidistant H-atom chain, and—0.026 819 and —0.030 822 hartree for E „at the MP2
and MP4 levels, respectively. Two remarks are in order
concerning these quantities. First, as also observed in
earlier studies, ' the infinite equidistant H chain is not
stable (at any level of theory) against dissociation into K2
molecules since the binding energy per H atom in Hz is
always larger than in H „.However, electron correlation
does somewhat stabilize K„against K2 by about —10
millihartree (mhartree) per electron, though it cannot
compensate for the destabilization energy of +30 mhar-
tree observed at the HF level. Second, intercellular (delo-
calized) interactions play an important role in E~~ and
increase its value by about 40—50% in each order of PT
for H„as compared to H2. In addition, in fourth-order
PT diagrams appear for H„ that do not play a role in
H2. For example, triple excitations contribute about
—2.5 mhartree per electron to E4 in the case of basis set
(E)

For the quantum-mechanical calculation of the
mechanical properties of solids, it is of primary impor-
tance to develop computational schemes that will be able
to describe potential surfaces corresponding to nuclear
configurations substantia11y different from those around
equilibrium. It is well known, on the other hand, that the

proper inclusion of electron correlation is especially im-
portant in such situations. To test the methods proposed
in this paper for such problems, we first computed the
lattice energy of a uniformly expanded equidistant H„
chain as function of the interatomic distance R using the
RHF, MP2, and MP4 procedures with the (6s3p2dlf)
basis set (Fig. 2). The HF potential-energy surface shows
the expected incorrect dissociation behavior due to its
single-determinant closed-shell wave function. It is in-
teresting, however, that the MP2 potential is still rather
far from the physically correct one (achieved by the MP4
method). As shown by Fig. 2, this problem can be traced
back to the fact that though the MP2 method covers
about 80—85 % of the correlation for a given basis set in
the neighborhood of the equilibrium configuration, Ro,
its proportion drops rapidly to 45 —50% by moving away
from Ro.

Another, though related, problem is the proper ener-
getic description of lattice dimerization eSects. Such
mechanisms not only play an important role in the con-
ductive properties of several polymer crystals by funda-
mentally changing their electronic states (e.g., through
metal-to-semiconductor transitions), but are also inti-
mately connected with the properties of several impor-
tant phonon modi. To compare the performance of our
methods again, we calculated the energetic changes due
to the introduction of a bond alternation into the previ-
ously equidistant H„chain. As shown in Fig. 3, the
bond-alternation parameter d =R, —R z will characterize
difFerent configurations of this (Kz)„chain. In these
model calculations, the bond-alternating structures were
symmetrically generated from the corresponding opti-
mized equidistant chains by taking R, =Re+1/2 and

R2 =Re —d /2. A remarkable feature of the dimerization

E(hartree}

-0.400

-0.450

-0.500

-0.550 — ~ MP2

~ MP4

R (A}

FIG. 2. Dissociation properties of the infinite equidistant
chain of H atoms as described by restricted HF (RHF)-based
perturbation theories. The energy per H atom has been com-
puted using the 6s3p2d 1fatomic basis set.
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H- H

d=R- R

FIG. 3. Definition of the dimerization parameter d in the
bond-alternating infinite H-atom chain.

process is the very different role played by the various PT
terms in going from the E„„(d)curve to the EMP4(d) one
as depicted in Fig. 4. In summary, we can see that corre-
lation efFects somewhat reduce the dimerization ampli-
tude and substantially diminish (especially through the
4' ' term} the dimerization energy (measured from the
energy per H atom in the equidistant chain).

B. UHF-based yerturbation theory

The influence of the relaxation of the spin symmetry
has been investigated by assigning the u- and P-spin elec-
trons to different Bloch orbitals, first in the framework of
the unrestricted Hartree-Fock (UHF) procedure. The 6s
atomic basis set has been used in these computations, but
the overall conclusions apply to the polarized basis sets as
well. It is interesting to note here that, contrary to the
H2 molecule, the H„ch ianalways proves to be triplet
instable ' (also for nuclear configurations close to equilib-
rium). The UHF wave function introduces in all cases a
substantial difference between a- and P-spin densities
(0.38—0.40 electron per site). Parallel to building up this
spin density, the lattice expands by 0.02-0.03 A and the
energy decreases (EUHF EHF = 5 mhartree). @UHF
however, turns out to be not as advantageous as 4HF for
the use of zeroth-order many-electron wave functions in

E(millihartree)

PT. Despite the better start by —5 mhartree, the UHF-
based PT energies always lie higher than the correspond-
ing MP2 and MP4 ones (by 3.144 and 0.748 mhartree for
UMP2 and UMP4, respectively}. Formally, this can be
traced back to the artificially large energy gap introduced
by the UHF method into the single-particle energy spec-
trum. Though the position of the Fermi level is un-

changed for the HF-to-UHF transition, a gap of about
0.3 hartree appears for UHF that substantially increases
the energy denominators in PT. The lattice constant in-
creases from 0.9776 (MP2) to 1.0144 (UMP2) and from
0.9855 (MP4) to 1.0188 A (UMP4).

It may also be of interest to observe that different
terms of PT will be influenced in a very different manner
by the UHF-type choice of the zeroth-order state. While
8' ' will be reduced from —16.469 (HF} to —7.880
mhartree (UHF), 8' ' increases from —l. 837 to —2.435,

remains nearly unchanged, 6&& mutates from
+0.364 to —0.993, and 8'T' from —1.469 to +0.051
mhartree, respectively. Due to associating different
Bloch orbitals with different spins in the zeroth-order
UHF many-electron wave function, all versions of the
spin-unrestricted theory (from UHF to UMP4) display an
excellent dissociation behavior, as shown by Fig. 5. This
property predestinates them to provide a sound theoreti-
cal basis for studies of elastic properties of solids.

C. Density-functional theory

As mentioned in Sec. II, we applied six diferent func-
tional forms of the DFT theory to compare their perfor-
mance with the HF, MP2, and MP4 methods, respective-
ly. As for these latter procedures, we wi11 first turn to the
H2 molecule to determine the accuracy of the DFT
methods in predicting equilibrium bond distances (R}

E(hartree}

0:
-0.500

-0.520

-10

-20

0.2 0.4

~ HF

~ E2

~ E3~ E4

~ MP4

0.6 0.8
0

Dimerization (A)

-0.540
J

-0.560

~ UHF

~
~ UMP2

~ UMP4
l

R (A)

FIG. 4. The energy contribution per H atom of di8'erent
terms in the fourth order of MBPT as a function of the dimeri-
zation parameter in the bond-alternating infinite chain shown in
Fig. 3 (basis set: 6slp).

FIG. 5. Dissociation properties of the infinite equidistant
chain of H atoms as described by unrestricted HF (UHF)-based
perturbation theories. The energy per H atom has been com-
puted using the 6s 1p atomic basis set.
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TABLE II. Energy of the H atom, equilibrium distance (R), total energy (E), and binding energy
(hE) of the hydrogen molecule, respectively, computed at various theoretical levels using the 6s3p2d 1f
atomic basis set. The diferent density functionals are defined in the text (energies in hartree, distances
in A).

Method

HF
MP2
MP4
HFS
HFB
S-VWN
S-LYP
B-VWN
B-LYP

E(H atom)

—0.499 940
—0.499 940
—0.499 940
—0.456 958
—0.497 802
—0.496 322
—0.456958
—0.537 674
—0.497 802

R(H2 molecule)'

0.7337
0.7359
0.7405
0.7819
0.7523
0.7634
0.7748
0.7353
0.7458

E(H2 molecule)

—1.133473
—1.166 127
—1.172 899
—1.044 504
—1.132029
—1 ~ 173 130
—1.082 169
—1.262 370
—1.170 117

EE(H2 molecule)

—0.133 593
—0.166247
—0.173019
—0.130558
—0.136425
—0.180486
—0.168 253
—0.187022
—0.174 513

'Experiment: R =0.7408 A (Ref. 68).
Exact value: E = —1.174475 hartree (Ref. 65).

and binding energies (b,E). As expected, the HFS and
HFB methods provide a good estimate of the HF binding
energy while the correlated ones reasonably describe
E„„(Table II). The Vosko, Wilk, and Nusair (VWN)
(Ref. 60) correlation functional seems somewhat to
overestimate the binding energy as compared with the
gradient-corrected functional of Lee, Yang, and Parr
(LYP). ' The most accurate binding energy will be ob-
tained by the B-LYP method, with b,E=—0. 174513
hartree, as compared with the MP4 (

—0. 173019 hartree)
and exact ( —0. 174475 hartree) values, respectively. The
Slater exchange tends to overestimate the bond distance
(R), though this error will be reduced by the correlation
potentials. On the other hand, both the B-VWN and B-
LYP combinations provide very reasonable values for R.

In the case of the equidistant infinite chain, the expan-
sion of the lattice by 0.24—0.26 A (in going from H2 to
H„) as observed for the wave-function methods, will be
exactly reproduced by all DFT procedures (Table III). If
we take the MP4 value of R as reference for H „,we can
see both the B-VWN and B-LYP methods provide very
accurate lattice parameters, in agreement with the corre-
sponding observation above for H2. Further comparing
the performance of the PT and DI I' methods, we can ob-
serve that the B-LYP functional gives an excellent esti-
mate for the lattice energy: —0.571532 hartree vs—0.563 712 hartree (MP4 value for basis set B). The HF-
Fermi energy will be shifted by about —0.03 to —0.06
hartree for different DFT procedures. These values quite
reasonably compare with the correlation-induced quasi-
particle band shifts to be discussed below.

We have investigated the basis set dependence of the
structural and energetic predictions of DFT in more de-
tail for the B-LYP functional. It turned out that the
D&l' properties exhibit the same behavior as the HF
ones, and converge in this respect much faster than the
PT methods. A similar conclusion (but in a negative
sense) can be drawn concerning the dissociation proper-
ties of Dj.'I' functionals. Figure 6 compares the S-LYP
and B-VWN methods with the HF- and MP4-based pro-
cedures. Both Dl'I' methods behave HF-like in the ab-
sence of explicitly introduced spin polarization.

TABLE III. Energy per hydrogen atom (E), optimized lat-
tice constant (R), and Fermi energy obtained for the infinite
equidistant hydrogen atom chain using PT and DFT methods,
respectively, and the 6s 1p atomic basis set (energies in hartree,

0
distances in A).

Method

HF
MP2
MP4
HFS
HFB
S-VWN
S-LYP
B-VWN
B-LYP

—0.536 357
—0.559 326
—0.563 712
—0.514418
—0.549 528
—0.579 687
—0.536 276
—0.615 374
—0.571 532

0.9634
0.9711
0.9753
1.0175
1.0058
0.9902
0.9984
0.9796
0.9868

E(Fermi)

—0.126 71

—0.11922
—0.131 74
—0.174 11
—0.141 35
—0.18706
—0.153 88

Figures 7 and 8 present our results obtained by study-
ing the energetics of lattice dimerization (Fig. 3) within
DFT schemes using the (6slp) atomic oasis set. It ap-
pears that for DFT the correlation contributions depend
less strongly on the dimerization amplitude than their PT
counterpart. In the case of functional combinations with
Sister exchange (Fig. 7), the correlation terms prove to be
unimportant and lead to an optimized value of
d =0.40-0.45 A for all three functionals, shorter than
the MP4 prediction of d =0.59 A. The functionals using
Becke exchange (Fig. 8) show more diversity and a
stronger influence of correlation effects. Their minima lie
in the range of d =0.47—0.55 A. Their prediction of the
dimeric stabilization energy (

—7 to —9 mhartree) is
somewhat smaller than the MP4 value of —12.5 mhar-
tree but definitely better than that of the Slater exchange
group ( —3 to —4 mhartree).

At last, we have followed the development of the
single-particle energy gap E~ as a function of dimeriza-
tion using the B-LYP potential and the (6slp) basis set.
The HF values of E in Fig. 9 have been corrected for
correlation effects using the electron-polaron method at
the MP2 level. Besides a Frank-Condon-type band nar-
rowing due to polaron formation, this method predicts a
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E(hartree)

-0.400

E(millihartree)

0:
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— ~ MP4

~ B-LYP

~ B-VWN

-to

-15

-20
I i I i I i I

~ HF

~ HFB

~ B-VWN

~ B-LYP

~ MP4

FIG. 6. Comparison of the dissociation properties of the
infinite equidistant chain of H atoms obtained at the RHF and
MP4 levels, respectively, and using density-functional theory
with the B-LYP and B-V%N potentials, respectively. The ener-

gy per H atom has been computed using the 6s 1p atomic basis
set.

0.2 0.4 0.6 0.8
0

Dimerization (A)

FIG. 8. The energy per hydrogen atom obtained at the HF
and MP4 levels in the bond-alternating infinite chain compared
with the results of density-functional theories using the Becke
exchange potential (atomic basis set: 6s 1p).

correlation-induced upward shift of the valence band and
a downward shift of the conduction band leading to an
effective reduction of the (obviously too large) HF gap.
Since this method has provided quite reasonable Es
values for a number of polymer crystals where experi-
mental values could be cited for comparison, we
may assume that the MP2 curve in Fig. 9 gives a good

E(millihartree)

orientation for the E (d) function. A similar reduction
of the HF gap for H „by about 0.03 hartree due to corre-
lation has also been observed by Liegener at the MP3
level of theory. We have to conclude, therefore, that the
single-particle gaps provided by the DFT method are
much too low (approximately by a factor 2). This is not
an unusual observation, and it may serve as a motivation
to further correct the E results of DFT by introducing
appropriate schemes.

IV. DISCUSSION AND CONCLUSIONS

0 8 ~

-5

The purpose of this study was the critical comparison
of perturbation theoretical and density-functional
methods in describing the role of electron correlation in
various physical properties of solids both for equilibrium
nuclear configurations (cohesive properties, lattice dimer-

-10

-20
I

0.2 0.4 0.6 0.8
0

Dimerization (A)

~ HF

~ HFS

~ S-VWN

~ S-LYP

~ MP4

FIG. 7. The energy per hydrogen atom obtained at the HF
and MP4 levels in the bond-alternating infinite chain compared
with the results of density-functional theories using the Slater
exchange potential (atomic basis set: 6s 1p).

Eg (haxtzee)

0.4

0.2 ~ MP2

~ B-LYP

0.2 0.4 0.6 0.8
Q

Dimerization (A)

FIG. 9. Dependence of the single-particle energy-band gap
on the dimerization parameter at the HF, MP2, and DFT/B-
I.YP levels, respectively (atomic basis set: 6s 1p).
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ization effects, etc.) and nonequilibrium ones (large ampli-
tude vibrations, elongation, dissociation, etc.). Besides
many-electron properties, we also calculated single-
particle ones like Fermi energies, energy bandwidths, and
forbidden band gaps. For model systems we chose the
equidistant (metallic) and bond-alternating (semiconduct-
ing) infinite linear chains of H atoms. In addition to be-
ing the simplest solids, these models have the great ad-
vantage that their molecular counterpart, the Hz mole-
cule, is the theoretically best understood model, provid-
ing an excellent opportunity to check the accuracy of any
theoretical approach to be applied to the infinite system.

Also, to gain insight into the atomic basis set depen-
dence of these methods, we have performed most of the
calculations for five basis sets starting with a quadruple-g
basis contracted from six s-type Gaussians, and systemat-
ically extended it with polarization functions up to f-type
orbitals. This procedure allowed for the extrapolation of
some quantities to the "infinite basis set limit. "We found
that our best basis set, the (6s3p2d lf), reproduces the
HF energy limit of H2 with an accuracy of 99.98% and it
provides 80, 93, and 96.6% of the full correlation at the
MP2, MP3, and MP4 levels, respectively. The MP4 bond
distance has an error of only 0.0003 A and the molecular
binding energy is accurate to 99.17% (Table I). From the
Dt T' methods, Becke's exchange potential (HFB pro-
cedure} excellently approaches the HF binding energy
(hE ) of Hz (within 2%%uo) and, combined with the
gradient-corrected correlation potential of Lee, Yang,
and Parr, ' it nearly exactly reproduces the correlated
limit of )LE (Table III). As expected, the PT methods de-
pend sensitively on the size of the basis set, while both
the HF and DFT procedures practically converge at the
(6s lp) level.

The interatomic distance in the equidistant infinite
chain (H„) is larger by about 0.25 A than in Hz, and,
consequently, the binding energy will be smaller in H„
than in the isolated molecule. Our estimated HF limit
for the cohesion energy of H „ is —0.036 746
hartree/atom, somewhat larger than the value of—0.0361 proposed by Karpfen, ' who terminated the
basis sets at the (6s lp) level. On the other hand, hEH„
of H2 is —0.066834 hartree/atom. As expected, the
electron correlation will reduce the difference in the
cohesion between H„and H2. The correlated binding
energy of H„ is —0.067524 hartree per atom at the
MP4/6s3p2d 1f level (Table II), as compared with—0.086450 hartree per atom in H2 (Table I). Similar to
the case of H2, for polarized basis sets the major part of
E„~ (about 85%) originates from 8' ', 8' ' and 8' ' con-
tribute about 10% and 5%, respectively. A similar ob-
servation was made by Liegener for the second- and
third-order terms, respectively. For the DFT methods,
the 8-LYP functional combination gives the best estimate
of the cohesion energy in H „(—0.073 730 hartree/atom)
and also its equilibrium distance of 0.9868 A reasonably
reproduces the MP4 value of 0.9746 A.

In order to explore the capabilities of the above
methods for atomic configurations differing from equilib-
rium structures, the lattice of H „was uniformly expand-
ed. Not only the HF and MP2 (Fig. 2},but also the DPI'

methods fail to reproduce the correct behavior of the
cohesion at larger internuclear distances (Fig. 6). In fact,
from the methods operating with closed-shell
configurations or with PT based on such configurations,
only the MP4 procedure could properly predict the disso-
ciation of H„(Fig. 2). The situation is completely
different, however, if an open-shell (spin-unrestricted)
many-electron wave function is used as the starting point
for PT. As demonstrated by Fig. 5, all versions of this
theory (UHF, UMP2, and UMP4) lead to correct dissoci-
ation. It turns out, on the other hand, that the UHF
method does not provide a good basis for the computa-
tion of E„„around the equilibrium, where the UMP
series converge significantly slower than their MP coun-
terparts.

Since different structural phase transitions like bond
dimerization (Peierls instability} play an important role in
several interesting polymer crystals, we investigated the
energetics of such processes again using parallel PT and
DPI'. For the symmetrical distortion of the H„ lattice
about equilibrium (R0), the HF method predicts an op-
timal dimerization of dH„=O. 59 A (Figs. 3 and 4) and a
parallel energy gain of EHF = —18.9 mhartree. Correla-
tion effects somewhat reduce both quantities leading to
d~p~ =0.56 A and E~~p'~ = —12.5 mhartree (Fig. 4). The
combinations of the VWN or LYP correlation potentials
with the local exchange (S) quantitatively underestimate
this effect both from the energetic and structural points
of view (Fig. 7}. After correction of Ez with gradient
terms, the results obtained with the DFT methods will be
improved substantially. The best agreement with the
MP4 ones can be observed for the 8-VWN potential:
EB'-AN = 9-4 mhartree and do-vwN=0. 55 A. A simi-
lar bond alternation of d =0.6 A has been predicted for
H by Liegener using a minimal basis set at the MP3
level and by Ye, Forner, and Ladik using coupled clus-
ter doubles (CCD) theory. As can be seen from Fig. 4,
E„„steadily decreases with increasing bond alternation
a feature also reasonably reproduced by the DFT
methods (Fig. 8) but not by the CCD theory. We attri-
bute this difference partly to the limited lattice sums
(third-neighbor cutoff) in Ref. 33 leading to the reported
numerical instabilities for larger basis sets due to linear
dependences, and partly to the transformation to Wan-
nier functions in the case of the equidistant (metallic)
chain. This point emphasizes again the importance of
using the Bloch basis for PT calculations in metallic sys-
tems.

Besides energetically stabilizing the lattice, the Peierls
distortion also introduces a gap into the single-particle
energy spectrum. Our preliminary calculations per-
formed only with 8-LYP potentials reveal that this gap
seems to be underestimated when compared with the cor-
responding values obtained at the MP2 level. Similar
comparative investigations (using PT and DFT methods)
are also in progress in our laboratory for other polymer
crystals, to gain more insight into the capabilities and
limitations of these theoretical procedures. Our special
interest will be devoted to systems in which ample experi-
mental results will further facilitate such comparisons.
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