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Magnetoresistance of a two-dimensional electron gas in a random magnetic Seld
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We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility

GaAs/Al Ga& „As heterostructure, where the externally applied magnetic field was expelled from regions of
the semiconductor by means of superconducting lead grains randomly distributed on the surface of the sample.

A theoretical explanation in excellent agreement with the experiment is given within the framework of the

semiclassical Boltzmann equation.

The response of a two-dimensional electron gas (2DEG)
to a spatially inhomogeneous magnetic field is a subject of
considerable interest both theoretically and experimentally.
One of the experimental techniques proposed is to deposit a
pattern of small magnets on the semiconductor containing
the 2DEG. This technique, however, only gives rise to a
very weak modulation. Another method is to grow the 2DEG
on a substrate with a modulated thickness. The applied mag-
netic field experienced by the electrons in the plane of the
curved 2DEG will vary with the thickness modulation. The
feasibility of this method is, however, limited by the techno-
logical difficulties of the molecular-beam epitaxy regrowth
techniques required. So far, the most simple technique, origi-
nally proposed by Rammer and Shelankov for studying
weak localization effects in inhomogeneous magnetic fields,
employs a type-II superconducting gate on top of the hetero-
structure containing the 2DEG. For a type-II superconduct-
ing gate an applied magnetic field will create the so-called
mixed state in the superconductor above the lower critical
field B,&. In this state the magnetic field penetrates the film
as flux tubes. Each flux tube will contain an integral number
of (superconductivity) flux quanta 4o=h/2e. For a perfect
type-II superconductor the mixed state is accomplished by
the formation of a two-dimensional hexagonal lattice of vor-
tices. In a real superconductor inhomogeneities will tend to
pin the vortices, so a random distribution of flux tubes is
more likely to occur rather than the regular lattice. The mag-
netoresistance of the type-II superconductor gated samples
have been investigated experimentally in various limits of
2DEG properties. Bending et al. and Geim have studied
the weak localization effects predicted by Rarnmer and
Shelankov for a low mobility GaAs/Al„Ga& „As hetero-
structure with a Pb gate and a thin Bi film evaporated on a
Nb/Mo substrate, respectively. Kruithof et al. have studied
the mechanisms of voltage induction in the 2DEG of a Si
metal-oxide-semiconductor field-effect transistor caused by
flux flow in a Nb/Mo superconducting gate. The above ex-
periments have probed the diffusive properties of the
2DEG's. In the ballistic regime, where the electronic mean
free path is much longer than the vortex diameter, a series of
experiments were performed by Geim et al. , and the re-
sults interpreted by treating the vortices as scatterers. The
effect of single vortices has also been studied both experi-
mentally and theoretically.

In this paper we demonstrate a very simple technique for
creating a strong magnetic field modulation. We also propose
a semiclassical model based on the Boltzmann equation to
explain the measured rnagnetoresistance caused by the inho-
mogeneous magnetic field. Our model gives excellent agree-
ment with the experiment, and in addition is applicable to the
results of Geim et al. '

The inhomogeneous magnetic field was achieved by
means of small lead grains randomly distributed on the sur-

face of a high mobility GaAs/Al„Ga, „As heterostructure.
The lead grains (approximated as spheres) used had a size
(average diameter) distribution as shown in Fig. 1. For these
grain sizes Pb is a type-I superconductor. Below the critical
field given by

r' Ti2
B,(T) =B,(0) 1—

I, Tcf

there will be (partial) flux expulsion from the grains, creating
an inhomogeneous magnetic field in the 2DEG. Below
3B,(T) the grains will no longer be in the intermediate state,
and they will exhibit full Meissner effect. For lead
B,(0)=80.3 mT. The T dependence in (1) holds to a good
approximation for our purpose with T,= 7.2 K. The mobility
of the investigated samples was 93.5 m /Vs at the lowest
temperature of 0.3 K in the experiment. At 7.2 K the mobil-
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FIG. 1. Distribution of lead grain sizes on the sample for which
data are presented in this paper. This distribution was simply ob-
tained by measuring the grain sizes on the sample on a photograph
taken through an optical microscope.
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ity had degraded to 82.6 m /Vs. In the whole temperature

range the carrier density of the 2DEG was 4.0X10 m

This corresponded to a mean free path of 1=9 p,m. The
experiment was thus performed in a regime where the mean
free path was comparable to the typical grain size lpb as well

as the average distance between grains np„, i.e.,
I~ lpb, npb', with npb being the density of lead grains. The
sample geometry consisted of a standard 400 p,m wide Hall
bar with three pairs of voltage probes, each pair placed on
opposite sides of the Hall bar. The voltage probe pairs were
displaced a distance of 1600 p, m (four squares) from each
other. In addition the Hall bar also contained two current

probes displaced another four squares from the voltage
probes. The resistance was measured by conventional small

signal lock-in techniques in a current controlled four-probe
configuration. To check the homogeneity of the lead grain
distribution we measured the longitudinal magnetoresistance
between all three combinations of voltage probes along each
side of the Hall bar. Such measurements always gave the
same result within 5% when normalized with respect to the
number of squares between the voltage probes. We also
made control measurements on samples cut from the same
heterostructure, but without lead grains. Such samples
showed no magnetoresistance in fields below 0.1 T. The
measurements were performed in the following way. First,
we cooled down the sample in zero magnetic field to the
relevant temperature. Then we swept the magnetic field to
above the critical field while measuring the magnetoresis-
tance. This was followed by consecutive down and up
sweeps as exemplified in Fig. 3 below. Here we should em-

phasize that the first sweep after each cooldown procedure is
fundamentally different from the following sweeps. This dif-
ference is caused by the trapping of Aux in the superconduc-
tor. In fact, we believe that the magnetoresistance in the con-
secutive sweeps is dominated by the random magnetic field
caused by the frozen Aux. We exploit both experimental situ-
ations to test our theoretical model for two different realiza-
tions of a random magnetic field.

In Fig. 2 we show a set of "sweep-up" traces at different
temperatures. The pronounced magnetoresistance peak is
seen to vary in amplitude and width with temperature. More-
over, the peaks are asymmetric in the field. However, as seen
in Fig. 3 the corresponding "sweep-down" traces are asym-
metric as well but with the maximum resistance at negative
magnetic fields. As indicated by the vertical dashed lines
in Fig. 2 the magnetoresistance defined as 5p„„(B)
= p„„(B) po goes to zero —at B=B,(T) Here po is th.e re-
sistance at zero magnetic field prior to the first sweep after
the cooldown procedure. It is also seen from Fig. 2 that the
magnetoresistance peak vanishes for temperatures above the
critical temperature of lead (T,= 7.2 K). The observed mag-
netoresistance shown in Figs. 2 and 3 cannot originate from
any weak localization contribution to the magnetoresistance.
The weak localization magnetoresistance is extremely weak
for high mobility GNV/Al Ga1 As samples and is practi-
cally extinguished for magnetic fields B~4B~=10 T,
where B& is the characteristic magnetic field corresponding
to the phase breaking scattering time. Weak localization
effects will in addition not show the hysteresis effect dis-
played in Fig. 3. Moreover the observed magnetoresistance
is fundamentally different from the curves reported in Ref.
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FIG. 2. A series of sweep-up curves at different temperatures,

displaced for clarity. The temperatures were 0.3 K, 1.3 K, 4.4 K,
6.0 K, 7.2 K, and 8.5 K, where the upper curves correspond to the

lowest temperatures. The magnetoresistance anomaly disappears
when the sample is heated to above the critical temperature for lead

(T,= 7.2 K). The vertical dashed lines indicate the critical magnetic
field calculated with Eq. (1).
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FIG. 3. A set of magnetoresistance traces taken at 4.4 K (solid
lines). The "first sweep below T," curve is taken just after the

sample was cooled from above the critical temperature in zero mag-
netic field. The sweep-down and sweep-up curves are the subse-

quent sweeps, after the first sweep where the magnetic field was
taken to above the critical field. The dashed curves are calculated
with Eqs. (10—14) with lp„=11.5 ~m and np„=7.75X 10a m

The parameters are taken from the distribution of lead grain sizes
shown in Fig. 1, and the position of the maximum (used as a fitting

parameter) is consistent with the trapped flux interpretation. The
vertical dashed line indicates the critical magnetic field at the rel-
evant temperature.

10 with a continuous lead gate. This difference is most easily
seen on the "first sweep" curve in Fig. 3, which for small

magnetic fields has a 6p, ~ B dependence, while the mag-

netoresistance observed in Ref. 10 exhibits a 5p„(x B depen-
dence in the same regime of fields.

We now turn to describe the theory. Disregarding interfer-

ence effects and wave-vector quantization imposed by
sample boundaries, one can in general expect a classical ap-

proach to conduction in a magnetic field to be valid if
kFI &&1, where kF is the Fermi wave vector and I is the elec-
tronic mean free path. A randomly modulated magnetic field
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can be included in the Boltzmann equation either in the driv-

ing force term or as an effective impurity cross section, de-

pending on the correlation length a of the modulation (in our
case given by the size of the lead grains). If a&&1/kF, as
definitely is the case in our experiment, a modulation BB of
the magnetic field can be treated as an ordinary external field
in the driving force term of the Boltzmann equation. How-
ever, if a =1/kF, BB should be incorporated as an impurity
cross section. (When a&&1/kF we could of course also treat
BB as a scatterer, i.e., put it on the right-hand side of the
Boltzmann equation. By contrast it would be inconsistent to
put BB on the left-hand side when a-1/kF .)

Our starting point is thus the usual semiclassical Boltz-
mann equation in the relaxation time approximation. We in-
troduce polar coordinates u, P for the velocity and confine
ourselves to T=O. Then U only enters through a 8 function
and can be put equal to UF . Furthermore we will make the
usual assumption of a constant, external driving field E and
calculate to linear order in it. The resulting equation is [with
g(r 4' v)= g(r 4') ~(v "F)l

) cosP~ ) cosPl
uF . —+ o),(r) + — g(r, P) = — E'—

~sing) Br ' 8$ r '
m ~sing)'

(2)

Here cu, (r)=eB(r)/m is a function of position. Writing
co,(r) = coo+ Bcu(r), defined such that (Bcu) =0 (() denotes
an average over random magnetic field configurations) we
can write the Boltzmann equation as an operator equation

Di =(Do+—W)i =X, (3)

2em ) cosP~j= „2 v dv dP u . g(r, P) b(v —vF), (4)2 tran J ~
sin

g(r, P)= dr'dP' G(r, g;r', P')X(P').

Calculating to second order in W using the Dyson equation

D =D '+D '(WD 'W)D

and performing the ensemble average (Bc'(r)8~(r'))~f(lr r'l), D ' becom—es diagonal in k, i.e., G is only a
function of r r'. From Eq. (5) we see —that only Gk o is
needed for the conductivity. When k=0, D is also diago-
nal in n and Eq. (6) is trivial to invert.

We find the resistivity tensor

m l 1 Curl

ne r( —Cur 1 )'

where we have defined the renormalized quantities

g=~, -Rem, , (8)

with W= i bee(r) 8/8$ (we have multiplied the equation with
i for convenience). The eigenfunctions (rglkn) and the
Green's function for Dp are readily found. The current in
terms of the full Green's function G(r, P;r', P')
=(r@lD 'Ir'@') is

1 1== ——ImX, ,
7 7

with the "self-energy" X& given by

i 1 "2~ I' 8

Mpm e " '—1gp (
'

2~

(10)

Here r, = v F /cua is the average cyclotron radius and

f(r) =(bee(r) Bcu(0)) is the correlation function, depending
on the nature of the random magnetic field modulation. We
see that the change in p is directly related to Xt'.

Pxx

PxxO

= —r ImX„

Ap, = —~, Rex, .
Pxyo

(12)

npblpbar r ) t r
f(r) =Bz 8 —8 —+ — e "~'». (13)32 ( pb) l pb)

At low magnetic fields we get 5p x ~ B in accordance with
the experiment. At higher fields (&P', for spheres) the
grains will be in the intermediate state, reducing the ampli-
tude of f until it vanishes at B=B,. This we model by
multiplying the correlation function in (13) by a factor going
to zero as 1 —gB/B, (T) when B~B,. The temperature de-
pendence of B,(T) accounts for the observed temperature
dependence of the magnetoresistance as shown in Fig. 2.

In the case when the magnetic modulation is caused by
frozen flux, the correlation function (13) should be replaced
by

f(r)=C(B)e "~», (14)

where C(B) is an asymmetric function of B going to zero for
lBl &B,, giving a phenomenological measure of the amount
of flux trapped in the lead grains. The position of the maxi-
mum of C is used as a fitting parameter. In Fig. 3 we have
shown a fit of the model to the experimental traces. The
correspondence is seen to be quite satisfactory.

Finally we demonstrate that our theoretical model is ap-
plicable to the experiments in Ref. 8, where the magnetic
modulation was produced by filaments of magnetic field

To proceed we now introduce a model for the modulated
magnetic field. We start by treating the situation with perfect
flux expulsion due to the Meissner effect applicable to the
first sweep curves. The lead grains had a distribution of sizes
as seen in Fig. 1.We represent this distribution by an average
size I pb. We model the magnetic field modu-
lation from a single lead grain by' Bb(r)=B[(r/lpb)

—r /l—1]e " ~'». This expression fulfills the necessary flux con-
servation condition Jdr r Bb(r)=0. The magnetic field
modulation can now be expressed by BB(r)=X;Bb(r R;), —
where R; is the position of the ith grain. R; is randomly
distributed, and the magnetic field modulation should be av-
eraged over different distributions of lead grains on the sur-
face of the semiconductor. This gives rise to the correlation
function
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emerging from a type-II superconducting gate. Each flux
tube may be modeled by the following expression' b(r)
=(4o/2m)t. r)It.o(r/Xl), where )~L is the effective London
length in the plane of the 2DEG and Ko a modified Bessel
function. In this case the correlation function turns out to be

(15)

where n„ is the density of vortices. Since n, (x B it is imme-
diately seen that the longitudinal rnagnetoresistance will be
proportional to B for small fields, as is also found in Ref. 8.
We can also find the density dependence of t~ip„„within this
framework, and find that Ap ~ n . However, when Eq.
(15) is used to fit the experimental traces with X.r as the
fitting parameter, the obtained values of X.L are approxi-
mately a factor of 5—10 larger than estimated in Ref. 8. This

may be a result of flux bundles containing several flux tubes,
as also reported by Stoddart et al. We would like to empha-
size both that our calculation is purely semiclassical, and that

we do not treat the vortices as scatterers to be included in a
scattering cross section, but rather as a perturbation to the

driving force term in the Boltzmann equation.
In conclusion we have measured the magnetoresistance of

a 2DEG subject to a random shielding of the externally ap-
plied magnetic field. We have modeled our results by solving
the semiclassical Boltzmann equation with an appropriately
chosen random magnetic field in the sample. We have dem-
onstrated that our model can be applied in electrical transport
problems with other types of magnetic field modulation.
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