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Tight-binding total-energy method for transition and noble metals
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A general tight-binding total-energy (TBTE) method is presented that accurately predicts energy differences

caused by small perturbations such as those occurring in the evaluation of elastic constants and phonon spectra

as well as energy differences from large changes in structure such as structural energy differences, equations of
state, and defect energies. Unlike other quantitative TBTE models, no pair potential is required. In addition, we

only fit to the band structure and total energies obtained from fcc and bcc first-principles calculations, although

we could fit to other data as needed. We have applied the method to 11 transition and noble metals and obtained

elastic constants, phonon spectra, and vacancy formation energies in very good agreement with both local-

density theory and experiment.

A fast and accurate method of calculating total energies is
desirable for the study of large systems including surfaces,
extended defects, complex alloys, and amorphous solids; so
that molecular-dynamics computations of sufficient length to
acquire dynamical correlation functions may be done to
study liquids and phase transitions; and so that quantum path
integral simulations can be performed accurately. Fast self-
consistent techniques ' so far have not lived up to their ex-
pectations in that real finite temperature dynamics have not
been obtainable due to the enormous computational burden;

also, most such methods rely on plane wave bases, and thus

are limited to materials for which soft pseudopotentials are
available. Potential models have been successful for many

materials, but are often limited in accuracy. Improvements
are achieved by using three- and four-body potentials to ac-
count for d-orbital interactions, at the cost of increased
complexity.

Previous tight-binding total-energy (TBTE) models are

similar in many ways to potential models, in that a pair po-
tential is added to a band structure energy, both terms
determined from a set of parameters fit to first-principles
calculations or experiment. TBTE models have been applied
successfully to semiconductors and transition metals, but so
far they have proven to be less accurate than self-consistent
methods. Here we advocate a method that is an extension of
and an improvement on first-principles methods. It is at the
same level of accuracy as the first-principles methods. Our
method is not aimed at unraveling the complexity of first-

principles calculations as some other TB models do. Those
models do bring in more physical understanding but often
require more information, either from experiment or first-
principles theory, to make accurate predictions. We first de-
scribe the method, and then show applications to transition
and noble metals.

One essential feature of TBTE methods that has not been
emphasized is the choice of zero for the band structure term.
In density-functional theory' (DFT) the total energy can be
written as

E[n(r)]=+ e;+F[n(r)],

where the first term is the "band structure energy.
" In a

self-consistent calculation the eigenvalues a; and charge
density n(r) are determined self-consistently via the
Kohn-Sham' equations, whereas in TBTE, the a; are deter-
mined from a parametrized Hamiltonian, while the remain-

ing functional F[n(r)], which includes the remaining terms
from the DFT as well as the nuclear-nuclear repulsion, is
parametrized by other means.

Many TB'I'B models use a parametrized pair potential to
represent F[n(r)]. However, there is a fundamental problem
with this approach that appears not to have been widely rec-
ognized. The Kohn-Sham formulation of DFT (Ref. 16) al-

lows the eigenvalues to be shifted by an arbitrary constant

Vo, often called the "muffin-tin zero. " In self-consistent
total-energy calculations the value of this constant is imma-

terial because the contributions from the constant in each
term of Eq. (1) cancel. However, if one separately param-
etrizes the two terms, the treatment of Vo becomes all-

important.
We have solved this problem by eliminating the pair po-

tential from the tight-binding total energy. This is achieved

by choosing the arbitrary zero for each band structure to be
such that the total energy is given by the eigenvalue sum

E[n(r)]=+ e,.',

where ,
'=e+eF[n(r)]/N, is the shifted eigenvalue and

N, is the number of electrons in the system. The challenge is
then to find a parametrization which accurately reproduces
not only the band structure, represented by the a,-', but also
the total energy. We have found such a procedure and tested
it for several transition and noble metals. The method ap-
pears to be universally applicable and accurate.
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Previous TBTE models determined the tight-binding
parameters needed to reproduce the eigenvalue spectrum at a
fixed volume. The resulting parameters were then fit as a
function of the volume. Instead we construct a set of simple
functional forms for the parameters, then adjust the param-
eters to simultaneously fit the band structure and total energy
for a set of volumes and structures. We have used a two-
center, nonorthogonal Slater-Koster form. ' The hopping
Hamiltonian and overlap parameters are assumed to have the
form
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P; = (a;+b;r) exp[- c, r]f(r), (3) 0.02

where f(r)=(exp[(r —ra)//]+I} ' is a universal cutoff
function chosen to simplify the calculations. At present we
take ro= 16.5 bohr and 8=0.5 bohr. We restrict ourselves to
s, p, and d interactions in the two-center approximation,
whence the P; represent 20 parameters, ten each for the
Hamiltonian and overlap matrices. The overlap matrix is a
result of the nonorthogonal representation of the orbitals,
which we find improves the fit by up to an order of magni-
tude over the orthogonal representation.

The on-site terms vary as a function of a local "density"
around each atom, given by

2
pk= g exp[ —d-. -r]f(r),

J

(4)

where d jk depends on atom types k and j. (j symbolizes the

type of atom j.) The on-site terms D~k for I = s, p, and d
for each atom k are then fitted to a finite strain polynomial

DI,k=eik+gII p~ +hII p
2/3 4/3 (5)

The parameters a;kk, b;kI, , c;kI, , d, k, elk, gik, and hik
above are simultaneously fit to the band structures and total
energies at different structures and volumes. For the metals
reported here we fit to 4 —6 volumes in each of the fcc and
bcc structures. We have used eigenvalues derived from uni-
form k-point meshes consisting of 85 and 55 k points for the
fcc and bcc structures, respectively. For a monatomic mate-
rial there are 70 parameters, which must fit approximately
4000 weighted input data. Typically the squared residuals of
the occupied or partially occupied bands are weighted ten
times more than the completely unoccupied high bands,
while the total energies are weighted 200 times more than a
single band. Although the parametrization (3) does not re-
quire the overlap matrix to be positive definite, we include a
penalty function in the fitting procedure which forces the
overlap matrix to have this property. Our fitting program
used the Minpack package. For the metals reported here, we
have achieved average rms errors in the fit of 5 mRy for the
occupied bands and 0.5 mRy for the total energies.

The 6t is highly nonlinear with many multiple minima,
and great care is needed to test the resulting model for rea-
sonable behavior outside the range of the fit. We find that
fitting a number of unoccupied bands helps constrain the
parameters to have physically reasonable behavior. Similar
problems appear when fitting atomistic potentials, so we do
not feel that the necessary care will reduce the applicability
of the method.
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FIG. 1.The equation of state for Ru in several structures, using
the TB method outlined in the text. The points indicate total ener-

gies obtained from APW calculations. The lines indicate TB ener-

gies in the indicated phases. The c/a ratio in the TB hcp phase has
been relaxed to a value of 1.58 to minimize the total energy.

We have applied this method to the study of several met-
als. For Ti, Nb, Mo, Ru, Rh, Pd, Ta, and Ir, we fitted the
parameters (3—5) to the band structures and total energies of
the fcc and bcc lattices computed by the muffin-tin
augmented-plane-wave (APW) method. ' For Cu, Ag, and
Au we used the full-potential linearized-augmented-plane-
wave (IMPW) results. ' In all cases we used the
Hedin-Lundqvist parametrization of the local-density-
approxirnation (LDA) to the DFT. As a check of the method,
we used the parametrization to calculate the energy/volume
relationship for the fcc, bcc, hcp, simple cubic, and diamond
phases for each metal.

In all of these cases, including the hexagonal metals Ti

and Ru, the TB method correctly predicted the ground state
structure, even though we used only first-principles data
from the fcc and bcc phases. We show the results for Ru in
Fig. 1. Note that the TB method gives the hcp structure
(which was not fitted) lower than the fcc, in agreement with
experiment, but it increases the hcp-fcc energy difference by
2 mRy over the APW values, as shown in Fig. 1.The sirnple-
cubic and diamond structures are well above the bcc struc-
ture in energy, as expected. In the case of Ti we obtain again
the hcp structure in the correct order, but the hcp-fcc distance
is increased by 4 rnRy. This is possibly a result of fitting to a
muffin-tin first-principles calculation. We are currently refit-
ting the parameters to the full-potential energies and eigen-
values to determine if this will improve the hcp-fcc energy
difference.

We next applied the TB method to the calculation of elas-
tic constants. The LDA successfully reproduces experimental
elastic constants, if the calculations are performed at the ex-
perimental volume. Using tight-binding parameters ob-
tained from fits to the fcc and bcc structures, we calculated
the elastic constants within the TB using the same techniques
as in previous first-principles calculations. No strained
structures were included in the input data set, so the elastic
constants are predictions of the model rather than tests of the
fit. In Fig. 2 we show the shear elastic constants for the
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FIG. 2. Shear elastic constants computed with the TB formula-
tion of this paper, compared to first-principles LAPW calculations.
On the left we show C» —C&2, and on the right C44. Points de-
noted by 0 are from TB parameters fitted to full-potential LAPW
band structures and energies, while points marked X are from TB
parameters fitted to muffin-tin APW results.

nonmagnetic cubic materials in our sample, compared to our
first-principles full potential LAPW results. The best TB
elastic constants are for Cu, Ag, and Au, where all elastic
constants are within 10 GPa of the LDA values, and where
we fitted the TB parameters to match the full-potential ener-
gies and band structures in the fcc and bcc phases. Several of
the APW fitted materials (Nb, Mo, and Ir) are of comparable
accuracy. On further analysis, we find that in these cases the
muffin-tin APW prediction of the fcc-bcc energy difference
is almost identical to the full-potential LAPW energy differ-
ence. From this we conclude that fitting to full-potential first-
principles calculations will produce elastic constants in
agreement with the LDA values.

Our next calculations used the tight-binding method to
determine the phonon spectrum. We anticipate that this will
be one of the major applications of this method in the future,
since first-principles calculations are rather slow, while at-

omistic potential models have difficulty in reproducing the
phonon spectra of bcc metals, unless many-body interac-
tions are included. We used supercells of up to 16 atoms
to calculate ~honon frequencies in the frozen-phonon

approximation. Figure 3 compares our results with
experiment, and to a limited set of first-principles re-
sults. Our phonon frequencies are mostly larger than the ex-
perimental values, especially near the edge of the Brillouin
zone. Our most encouraging result is the prediction for the
behavior of Nb near the zone edge. In particular, we repro-
duce the experimentally observed crossing of the longitu-
dinal and transverse modes near H. This behavior is not
observed in standard embedded atom models (EAIM), and
only a careful choice of parameters reproduces this result in
empirical tight-binding calculations. We note that our cal-
culations may have some difficulties in other parts of the
Brillouin zone not shown here. We are continuing this work
to determine if a better fit to the first-principles fcc and bcc
results will improve our calculations. If extremely accurate
phonon frequencies are desired, of course, we can fit our TB
parameters to self-consistent frozen phonon calculations at
high symmetry points in the Brillouin zone, where the super-
cell method allows us to use a small number of atoms. In this
way we should be able to obtain higher accuracy, comparable
to that of the EAM in fcc metals.

As a final demonstration of the power of this method, we
use it to calculate the vacancy formation of silver within the
supercell approximation. First-principles calculations
using this method are difficult because of the "order N "
problem. Large unit cells, required to limit the interaction
between vacancies, are not generally possible, especially for
d metals. We used the TB method to calculate the vacancy
formation energy for silver, both with and without relaxation
around the vacancy, using unit cells containing up to 216
sites, although for this problem the formation energy was
essentially converged for unit cells with 128 atoms. Without
relaxation, we found a vacancy formation energy of 1.31 eV.
Including relaxation, our predicted formation energy was
1.24 eV, somewhat larger than the experimentally observed
value of 1.05 eV.

8-
Cu Au Nb

FIG. 3. Phonon frequencies computed by the
TB method in the [100]direction for Cu, Au, Nb,
and Mo. The (solid, dashed) lines are spline fits to
the experimental data for the (longitudinal, trans-
verse) mode. The (+, 0) indicate the TB (lon-
gitudinal, transverse) frequencies. The dotted
lines are spline fits between these points. The X
represent full-potential LAPW calculations at se-
lected points and polarizations, with our estimate
of the uncertainty.
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In conclusion, we have developed a total-energy tight-

binding method which allows an accurate interpolation from
the fcc and bcc structures to the hcp and simple cubic struc-

tures, as well as the distorted phases necessary to obtain
elastic constants, phonon spectra, and vacancy formation en-

ergies. The method correctly predicts the ground state struc-
ture of many metals, including the prediction of an hcp
ground state for Ti and Ru, without using the hcp phase as
input. The method has also been applied to the calculation of
elastic constants, phonon frequencies, and vacancy formation
energies. We have obtained good agreement with both first-

principles results and experiment for structures far removed
from the fcc and bcc lattices used to determine the param-
eters. Some of the discrepancies can apparently be removed

by fitting the parameters to full-potential results rather than
muffin-tin calculations. If this is not sufficient, the method
can be easily extended including other crystal structures in

the parameter fit. It should be emphasized that the proposed
method is orders of magnitude faster than the state-of-the-art
LDA-based electronic structure methods, and when extended
beyond monatomic it will efficiently and accurately calculate
phonon spectra and defect energies for metals. The method is
comparable in accuracy to the best atomistic potential
model.
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