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Excitons in a spatiotemporal lattice
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A spatial superlattice becomes a spatiotemporal lattice and the minibands (MB s) change to quasiener-

gy MB's under intense laser pumping. The width of the quasienergy MB collapses at a particular ratio of
the field to frequency of the driving laser. It is shown that both the excitonic binding energy and the ab-

sorption oscillator strength reach maxima at this particular critical ratio. Optical studies may, therefore,
lead to a verification of the laser-induced miniband collapse.

The advent of sophisticated techniques for the growth
and characterization of ultrathin layers of semiconduct-
ing materials has made it possible to fabricate superlat-
tices (SL's) with accurately controlled compositions and
widths of the individual layers. ' Such a structure pro-
duces an artificially created periodic lattice superposed
on the host lattice. This necessarily leads to the formation
of bands of allowed and forbidden energies, called the
minibands (MB's), in a similar fashion to what happens in
crystals. The widths of the MB's may, at the most, be a
few meV only. The narrowness of these MB's gives rise
to several nonlinear electrical and optical properties
which make these structures useful in device applica-
tions.

The response of a periodic superlattice to coherent ra-
diation has been the subject of investigation since
1976. ' While Ignatov and Romanov calculated the
current in a SL driven by a monochromatic laser from
classical kinetic equations and showed that the current
may reach zero for certain laser fields, a truly quantum-
mechanical model valid in the nonperturbative regime is
due to Holthaus and co-workers. ' The authors pre-
dicted that at certain values of the field-to-frequency ratio
of the driving laser there will be a complete collapse of
the MB's. Indications for such an MB collapse, accord-
ing to these authors, may be found by measuring elec-
tronic transport properties in the SL and also by observ-
ing intraminiband absorption. As far as the authors are
aware no such verification has been reported in the litera-
ture. In this paper we propose an alternate scheme for
verifying this concept by using interband optical absorp-
tion. Since it is established that the excitonic processes
dominate the band-edge optical response of quantum
confined structures, we find it important to explore the
effect of electron-hole Coulomb interaction in the present
system. This paper reports a theoretical treatment of the
excitonic resonance in a periodic SL in the presence of an
intense laser pump having much smaller energy than the
inter-MB gap. We have explored the response of such a
system to a probe beam which is tuned to the excitonic
band gap. The main conclusion that emerges is that the
excitonic MB collapses in a laser-driven SL and that
there is a maxima in the absorption oscillator strength to
register the collapse associated with a blueshift of the ab-
sorption threshold. The scheme is thus an optical analog
of that used to observe the Wannier-Stark localization

where Vst (z) is the SL model potential, e is the electronic
charge, and F(t) is the electric field associated with the
laser:

F (t) =Fo sin(to&at), (2)

to&a being the angular frequency of the infrared (IR)
pump laser.

The Hamiltonian is periodic in both space and time
due to the periodicity in Vst (z) and F(t):

Ho(z, t) =Ho(z+L, t) =Ho(z, t + T),

where T =2m /to&a and L is the period of the SL. We also
note that both the spatial and temporal translation opera-
tors commute with the Hamiltonian Ho(z, t). It has been
pointed out by Holthaus and co-workers ' that such a
system is described by spatiotemporal Bloch functions in-
stead of the usual spatial Bloch functions. They have also
pointed out that this system should behave as a new ob-
ject with its own quasienergy dispersion relation.

The electronic states without the Coulomb interaction
may be expressed as

P(z, t) =exp ( i(kz gt) ] ttp(z, t), — (4)

where P(z, t) is periodic in both space and time and k and

g are the quasimomentum and quasienergy, respectively.
These states play the role of the stationary states in a
quantum system having both spatial and temporal
periodicities.

The fact that the vector potential A (t} is independent
of z leaves k a good quantum number. An additional
condition that Ae,R && inter-mini-band-gap is set so that
the adiabatic approximation remains applicable. The
spatiotemporal Bloch waves may, then, be written as '

g„k(z, t) =exp . ikz i' ' fdr E„[k —eA (~)/A']—
Xp„(z, tk),

(WSL} in a SL."
The Hamiltonian for an electron in a SL exposed to a

laser polarized along the growth direction (z) is

fi 8
Ho(z, t)=- + Vs„(z) eF(t)—z,

2m Qz
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Under the nearest-neighbor tight-binding approximation,
which is a very good approximation for a narrow MB SL,
the quasienergy dispersion relation is obtained as

g„k =gp„—(5„/2A') cos(kL)Jp(eFpL/AtoiR) . (7)

The appearance of the zeroth Bessel function in Eq. (7) is
an interplay between the spatial and temporal periodici-
ties in the system. It can be easily noted that the effective
widths of the quasienergy minibands are proportional to
Jp(eFpL /RcpiR ) and hence they go to zero at the zeros of
the Bessel function. This implies zero-group velocity of
electrons which in turn signifies localization.

We now turn our attention to the excitons in a periodi-
cally driven SL. The Hamiltonian may be expressed as

g2 Q2
H(z, t)=-

2m
+ VsL(z, )+ Vsi (zi, )

2m' Bzi,

eF(t)(z, —
zh

—
) e /—4ms~r, rI, ~

. —

ln writing the Harniltonian the in-plane (along the lay-
er plane} center-of-mass motion is separated as usual. The
Hamiltonian without the electric field has been solved by
a few workers for SL's. "' ' In essence, the excitonic
MB is formed due to the presence of the periodic poten-
tial along the z direction. An excitonic reduced mass

p, (0), totally different from the in-plane reduced mass,
may be defined using the effective masses of electrons and
holes along the z direction derived from the MB disper-
sion relations. The SI., therefore, behaves as an effective
anisotropic medium, ' ' the anisotropic factor tending to
zero for the purely 2D system. An approximate scheme
has recently been developed' to describe a switch
over from a SL to a multiple quantum-well (QW) struc-
ture by introducing a fitting parameter g. This empirical-
ly deduced dimensionality parameter g is 3 for isotropic
bulk medium and is 2 for a purely two-dimensional sys-
tem, while the intermediate cases are described by a frac-
tional dimensionality.

In considering the effect of the dynamic laser field on
the excitonic behavior, we assume that the lifetime ~ of
the excitons are much larger than the time period T of
the driving laser field. The available data for quantum
confined structures" indicate that the excitonic lifetime is
about a few ps. This sets a lower limit for the frequency
of the driving laser. When v. »T (—=2n/co, R), time can
be taken as a continuum even if it is measured in the
units of a laser time period. This condition then allows
us to define a new effective mass tj,,(F) which takes care
of both the spatial as well as the temporal periodicities.
The excitonic reduced mass can, therefore, be derived
from the quasienergy MB dispersion relations for elec-
trons and holes which are given by Eq. (7). The medium,

where E„(q) is the functional form of SL dispersion rela-
tion.

For a periodic field as expressed in Eq. (2) spatiotem-
poral Bloch waves assume the form as in Eq. (4) where
the quasienergies are given by

J d~E„[k —eA(r)/iri] .
T

V2
r& 'Br Br

I.2

g2r 2

with angular momentum operator 1. defined as

L =—, sin" (8)
sin" '(8) ~8

(ty
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FIG. 1. Normalized values of opacity ( ), excitonic bind-
ing energy ( ———), and e6'ective dimension (—.—} versus y
(=eFL/fico); L is the superlattice period and I' and co are the
field and frequency of the driving infrared laser, respectively.

in this case, is strongly anisotropic and the extent of an-
isotropy can be altered by changing the laser field. The
anisotropic efFective-medium model used in Refs. 14 and
15 may be used over a large range with the exception that
this model breaks down at the extreme anisotropy. We
note that the periodically time-dependent Hamiltonian as
in Eq. (8} may be reduced to a time-independent one by
absorbing the periodic temporal variation into properly
defined effective masses for both electrons and holes. We
first calculate the binding energy of excitons in a spa-
tiotemporal lattice by using the anisotropic effective-
medium model. A conclusion derived from this model is
that the binding energy is determined by the anisotropy
parameter y=@~~/p, . The reduced masses p, are deter-
mined from the MB dispersion relations for electrons and
holes. Since the values of

p~~
remain unaffected by the

laser field, it is only the value of p, that is to be evalu-
ated. A plot of binding energy as a function of y
(=eFpL/%pi, „) given in Fig. 1 shows an increase with
laser field. An increase in binding energy is associated
with an increase in absorption. However, a calculation of
absorption needs the knowledge of an exciton envelope
function for different laser fields, that may be obtained
through lengthy numerical work. Since our interest is
only in illustrating the idea, we make use of the already
established expression for opacity in terms of the above-
mentioned empirical dimensionality parameter q.

In a medium of dimension g the Wannier equation for
excitons may be written as'

$2 ~2
g(r, 8)=Eg(r, 8),

2p " 4m sr

where V„ is defined as'
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where g is a function of the laser field in the present case,
az is the undriven value of the exciton Bohr radius in the
SL, co is the angular frequency of the probe laser which is
being absorbed, I is the Euler's gamma function, and
A (ri) is as defined in Ref. 20.

A simple method for the evaluation of the dimensional-
ity factor g is discussed in Ref. 19. The effect of the laser
field on g is introduced through the parameter y which is
defined in that paper as ls, (0)/p, ,(Fo). In the present
context y may be expressed as

y =Jo (eFoL /A'cotR) (13)

y, therefore, goes to zero at the zeros of the Bessel func-
tion thereby making the system effectively a two-
dimensional one (i}=2) while without the laser it remains
a strongly anisotropic three-dimensional (3D) medium.

In Fig. 1 we have plotted the ratio of the opacity values
in the presence of the infrared laser to that in its absence
against y (=eFoL /fico, R). It shows a monotonic increase
in the excitonic absorption with y, i.e., with increasing
laser field for a constant frequency until y reaches the first
zero of the Bessel function when the absorption reaches
a peak. It is found that there is an increase of absorption
by a factor of about 8.5 in the event of MB collapse. In
our calculation the efFect of broadening of states due to
various homogeneous and inhomogeneous processes has
not been included. The efFects remain present both with
and without the laser. There are indications ' that exci-

In Eq. (9), p is the exciton-reduced efFective mass derived
from the quasienergy MB dispersion relations, c, is the
effective dielectric constant, and r (0 & r & ao } and
8 (0 & 8 & sr ) are the pseudodistance and pseudoangle, re-
spectively. '

Equation (9) can be solved by separating the variables
to obtain the 0 solutions in terms of the Gegenbauer po-
lynomials while the r solutions (for the bound states) are
given by the Laguerre polynomials. Since in this paper
we are interested in the extent of variation in the exciton-
ic absorption, we would like to focus on the correspond-
ing spectral opacity of the medium which in a fractional
dimensional space may be expressed as

2 " I (ii/2)I ((ii—1)/2)
'9~~ (q+ 1)/2

g I 9( 1 )
0 „ fico =2 sl

I'(n +i}—2} . „+,5(fico —E„), (12)

(n —1}! n + ~-3 "
2

tonic peaks are more sharp in two dimensions than in a
SL. The peak in Fig. 1 will, therefore, be enhanced fur-
ther if broadening is included. Quenching of the first MB
leads to a blueshift in the absorption threshold. The
effective dimension g of the system as calculated in the
present work is also plotted in Fig. 1. It appears as ex-
pected that the dimension becomes 2 when the MB col-
lapses showing a peak in the opacity and the binding en-

ergy.
It may be mentioned at this point that a similar dimen-

sional crossover with a SL at one end and a quantum well
at the other may be accomplished by applying a dc elec-
tric field. " ' The effect named as Wannier-Stark locali-
zation is associated with a rise in the absorption oscillator
strength and a blueshift in the absorption threshold.
Some optoelectronic device applications ' of WSL have
already appeared in the literature. The present concept
of MB collapse is thus an optical analog of WSL. Apart
from testing the concept, device application may be en-
visioned if experimental work is pursued in this area.

It may be of interest to compute the values of laser fre-
quency co&R and the power needed to observe the effect.
We take any common system like GaAs/Al&Ga& „As
and take X,„=100pm to give ~,R=12.4 meV. The
photon energy must be less than the inter-MB separation.
With L =14 nm, the needed value of the electric field is
2.2X 10 V/m which requires that the intensity should be
63 X 10 W/m . Assuming minimum spot diameter = 100
pm (=A,,R) this requires a laser with about 63 W of out-
put.

In conclusion, a theoretical model is presented for the
exciton problem in a periodic semiconductor superlattice
in the presence of a strong infrared laser whose energy is
much less than the inter-mini-band-gap. It is noticed
that the absorption increases as the field to frequency ra-
tio of the laser is increased and attains a maximum as a
particular value is reached, which is the signature of the
laser-induced collapse of minibands. There is a similar
behavior of the excitonic binding energy. Some device
applications of this phenomenon are alluring, but the ex-
perimental verification of the phenomenon itself might
stand in its own merit.

The authors are indebted to Dr. M. Holthaus of the
Center for Nonlinear Sciences, University of California,
Santa Barbara for unpublished materia1. P.R. also ac-
knowledges the financial support extended by the Council
of Scientific and Industrial Research, India through
Award No. 9/28 (375) 94-EMR-I.

'L. Esaki, J. Phys. (Paris) Colloq. 48, C5-1 (1987) and references
therein.

iC. Weisbnch and B. Vinter, Quantum Semiconductor Struc
tures (Academic, New York, 1991).

L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).
4R. Tsu and L. Esaki, Appl. Phys. Lett. 19, 246 (1971).
SF. Capasso, S. Sen, F. Beltram, and A. Y. Cho, in Physics of

Quantum Electron Devices, edited by F. Capasso {Springer-

Verlag, Berlin, 1990),p. 181.
A. A. Ignatov and Yu. A. Romanov, Phys. Status Solidi B 73,

327 (1976).
7J. F. Lam, B. D. Guenther, and D. D. Skatrud, Appl. Phys.

Lett. 56, 773 (1990).
M. Holthaus, Phys. Rev. Lett. 69, 351 (1992).
M. Holthaus and D. Hone, Phys. Rev. B 47, 6499 (1993).
M. Holthaus, Z. Phys. B 89, 251 (1992).



14 598 BRIEF REPORTS

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Adv.
Phys. 38, 89 (1989).

i2J. Bleuse, G. Bastard, and P. Voisin, Phys. Rev. Lett. 60, 220
(1988}.
E. E. Mendez, F. Agullo-Rueda, and J. M. Hong, Phys. Rev.
Lett. 60, 2426 {1988).

'~M. F. Pereira, Jr., I. Galbraith, S. W. Koch, and G. Duggan,
Phys. Rev. B 42, 7084 (1990).
Partha Ray and P. K. Basu, Phys. Rev. B 47, 15 958 (1993}.
F. H. Stillinger, J. Math. Phys. 18, 1224 (1977).

' X. F. He, Phys. Rev. B 43, 2063 (1991).
'~P. Lefebvre, P. Christol, and H. Mathieu, Phys. Rev. B 46,

13 603 (1992).
H. Mathieu, P. Lefebvre, and P. Christol, J. Appl. Phys. 72,
300 (1992).
P. Lefebvre, P. Christol, and H. Mathieu, Phys. Rev. 8 48,
17 308 (1993).

~ Partha Ray and P. K. Basu, Phys. Rev. 8 46, 13 268 (1992).
G. R. Olbright, T. E. Zipperian, J. Klem, and G. R. Hadley, J.
Opt. Soc. Am. B 8, 346 (1991).

2~F. Devaux, E. Bigan, M. Allovon, J. C. Harmand, P. Voisin,
M. Carre, F. Huet, and A. Carenco, Electron Lett. 28, 48
(1992).


