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We present a fully ab initio calculation of the thermodynamic properties for silicon within the
quasiharmonic approximation, making use of volume-dependent phonon frequencies obtained from
pseudopotential local-density calculations. The temperature dependence of the thermal-expansion
coefficient, specific heat (at constant volume), and other related quantities are studied. We confirm that
the thermal-expansion coefficient behaves differently in three temperature regions: positive for tempera-
ture below 15 K, negative between 15 and 125 K, and positive again above 125 K. This finding agrees
with experiment. The abnormal (negative) thermal-expansion coefficient at low temperatures is ex-
plained through a detailed study of mode Griineisen parameters. Both specific-heat and thermal-
expansion-coefficient values calculated are in excellent agreement with experiment up to a few hundred

kelvin.

Advances in electronic theories and computer technol-
ogy have made it possible to predict many physical prop-
erties of solids at T'=0 from first principles, yet there
have been few attempts to extend this predictive power to
finite-temperature thermal properties. Silicon is a proto-
type system for this study because accurate measure-
ments on high-purity samples exist over a wide tempera-
ture range, and, like other diamond and zinc-blende semi-
conductors, its anomalous (negative) thermal-expansion
coefficient at low temperatures is of fundamental interest.
Since the major contribution to entropy comes from pho-
nons, we need a fairly accurate description of lattice dy-
namics in studying various thermodynamic quantities.
Anharmonicity could be included at different levels, the
simplest being the quasiharmonic approximation.!
Within this approximation, atomic force constants and
phonon frequencies are renormalized by taking only
thermal expansion into account. The necessary input is
then zero-temperature phonon frequencies as a function
of volume. Recently, thermal expansion of silicon was
also studied directly by ab initio molecular-dynamics
simulations;? this approach is valid only at sufficiently
high temperatures (compared with the Debye tempera-
ture) where the ion’s motion could be treated by classical
mechanics.

Previous studies on thermal properties of semiconduc-
tors within the quasiharmonic approximation used
different methods to determine volume-dependent pho-
non frequencies. For example, Kagaya, Shuoji, and
Soma® used a perturbation treatment with a model pseu-
dopotential to calculate the specific heat and thermal-
expansion coefficient for Si and Ge; Biernacki and
Scheffler* employed a model of two distortion parame-
ters, which were extracted from local-density pseudopo-
tential calculations, to calculate the thermal-expansion
coefficient for Si; and Xu et al.’ used a tight-binding
model to calculate the thermal-expansion coefficient and
mode Griineisen parameters for Si and diamond. The
phonon dispersions obtained by these methods all exhibit
certain deficiencies (accuracy of optical modes or lack of
flatness in the TA modes at the zone boundary). Al-
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though the resulting thermal-expansion coefficients were
in fair agreement with experiment, namely, with negative
values in the right temperature range, it was unclear
whether the quasiharmonic approximation or the accura-
cy of phonon spectra was responsible for the remaining
discrepancies.

We recently developed a scheme to extract interatomic
force constants from ab initio calculations of planar
forces,® using the density-functional theory with the
local-density approximation (LDA); and calculated accu-
rately the full phonon spectrum for Si. In this work, we
apply this method to determine the volume variation of
phonon frequencies for the silicon crystal and evaluate its
thermal properties, including the thermal expansion
coefficient, the specific heat, and the Griineisen parame-
ters, within the quasiharmonic approximation. To our
knowledge, no calculation of the specific heat completely
from density-functional theories for Si has been reported.
Our results are in excellent agreement with experimental
data up to a few hundred K. In particular, the calculated
thermal expansion coefficient reproduces not only the
negative values below 125 K, but also the positive values
at very low.temperatures. Another ab initio approach
developed recently to obtain the phonon dispersion and
then the thermodynamical properties uses the linear
response theory.” Thermal-expansion coefficient and
mode Griineisen parameters for carbon have been report-
ed.® In comparison, our approach only requires straight-
forward force calculations using supercells containing
about 8—16 atoms for semiconductors.

Within the quasiharmonic approximation,' the free-
energy of a crystal is

F(T,V)=E( V)+%2ﬁw,,(k,V)
k,n

#iw,(k, V)
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where E (V) is the energy of a static lattice and w,(k, V)
the phonon frequency of mode n and wave vector k for a
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given volume V. The equilibrium volume is obtained by
minimizing the free energy at a fixed temperature; one
then determines the linear thermal expansion coefficient
a(T). Alternatively, a may be written as’

1

a(T)= (T)hzny,,(k)c.,,,(k,T) , )

3B
where B(T) is the isothermal bulk modulus, 7 ,(k) the
mode Griineisen parameter defined as
d[lnw,(k, V)]
d[InV] ’

and c,,(k,T) is the mode contribution to the specific heat
defined as
-1
|
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The total specific heat of the crystal will be the sum of all
modes over the Brillouin zone

Ya(k)=— (3)

fiw, (k, V)
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C(D=3 c,(k,T). (5)
k,n

The overall Griineisen parameter is the weighted average
of mode Griineisen parameters
a(T)

1 —
CU(T)Ey"(k)c”"(k’T)_SB(T) C.(T) (6)
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In our calculation, we first extract the interatomic
force constants from planar Hellmann-Feynman forces!®
obtained by direct supercell LDA calculations.® Phonon
frequencies are then obtained by diagonalizing the
dynamical matrix, which is the Fourier transform of
these real-space force constants. The real-space cutoff is
set at the eighth-nearest neighbor to ensure the real space
convergence (for details of the force constants calcula-
tion, see Ref. 6). We use an energy cutoff of 18 Ry for the
plane-wave expansion and an equivalent ten special k
points in the diamond structure for the Brillouin-zone in-
tegration. The calculated zero-temperature bulk
modulus B and equilibrium volume V| are 0.950 Mbar
(experiment 0.99) and 156.07 A® (experiment 160.10), re-
spectively. Phonon frequencies for 408 special k points in
the irreducible Brillouin zone (equivalent to a total of
16384 k points in the whole Brillouin zone) are evalu-
ated. Their volume variation is determined by a linear fit
through the calculated frequency values for three
volumes: ¥V, and (1+3%)V,,.

The calculated phonon dispersion curves along three
high-symmetry directions ([100], [110], and [111]) for
the equilibrium volume V,, are shown in Fig. 1(a). Also
shown is the calculated density of states (DOS). The ex-
perimental data'!"'? are marked by circles and crosses in
the figure. Our calculated curves are in excellent agree-
ment with the experimental data. The flattening of the
TA modes at the zone boundary (X and L points) in the
calculated results indicates that the real-space conver-
gence has been reached. (See Ref. 6 for the full phonon
spectrum.)
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FIG. 1. (a) Phonon dispersion and density of states at the
equilibrium volume of Si. Experimental phonon frequencies are
denoted by open circles (Dolling, Ref. 11) and ‘crosses (Nilsson
and Nelin, Ref. 12). (b) Mode Griineisen parameters for Si.
Dashed lines correspond to TA modes, dotted lines to LA
modes, solid lines to optical modes, and the star corresponds to
the frozen phonon calculation for the TA mode at X. The ex-
perimental data are denoted by solid squares (Weinstein and Pi-
ermarini, Ref. 15) and open circles (Chandrasekhar, Renucci,
and Cardona, Ref. 16).

Our calculated thermal expansion coefficient a(T) of
silicon is shown in Fig. 2. Two experimental results are
also plotted (circles and crosses).!*'* The inset shows the
detail for temperatures below 20 K. From Fig. 2 we can
see that our calculation reproduces accurately the anom-
alous negative thermal expansion coefficient between 15
and 125 K, and also correctly gives the positive behavior
at very low temperatures (below 15 K), as observed ex-
perimentally. From Egs. (2)-(4) it is apparent that for
very low temperatures, only the very-low-frequency pho-
nons contribute to the summation, since the high-
frequency contribution decays exponentially. As illus-
trated in Fig. 1(a) only the zone-center acoustic modes
have energy low enough (1 THz=47 K) to contribute.
The correct results at very low temperatures indicate that
the low-frequency phonon mode’s volume dependence is
correctly determined in our calculations.

(107%)

0 100 200 300 400 500 600 700 800
Temperature (K)

FIG. 2. Temperature dependence of the thermal expansion
coefficient, a(T), of Si. The inset gives the details for tempera-
tures below 20 K. Experimental data are denoted by open cir-
cles (Ref. 13) and crosses (Ref. 14).
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FIG. 3. Temperature dependence of the specific heat, C,(T),
of Si. The inset shows the details at low temperatures. Experi-
mental data are denoted by solid triangles (Flubacher, Lead-
better, and Morrison, Ref. 17), open circles (Hultgren, Ref. 18),
and crosses (Desai, Ref. 19).

To determine where the negative thermal expansion
originates, we focus on the logarithmic volume derivation
of the phonon dispersion—the mode Griineisen parame-
ter defined in Eq. (3). Since c,,(k,T) as defined in Eq. (4)
is always positive, from Eq. (2) the only negative contri-
bution to a has to come from the mode Griineisen pa-
rameter. In Fig. 1(b) the dispersion of the mode
Griineisen parameter is plotted along three high-
symmetry directions ([110], [110], and [111]), solid
squares and circles being two different experimental re-
sults.!>16 The dashed lines represent the acoustic TA
modes, dotted lines the acoustic LA modes, and solid
lines the optical modes. Except for the TA mode at X,
the agreement between our calculation and experiment is
excellent. We also performed a direct frozen phonon cal-
culation of the mode Griineisen parameter for TA(X) and
the result [denoted by the star in Fig. 1(b)] is consistent
with that obtained from force-constant calculations. It is
clear from Fig. 1(b) that the largest negative contribution
to a comes from the zone boundary TA modes (X and L).
These negative values of the mode Griineisen parameter
werg attributed to a larger contribution by the central
force than the angular force.® The Griineisen parameters
for the zone-center modes are mostly positive, which ex-
plains the positive thermal-expansion coefficients at very
low temperatures, where only the phonons in the acoustic
modes near the zero center (I" point) are excited.

As the temperature increases, between 15 and 125 K,
the excitation of other TA modes increases. From the
DOS plot in Fig. 1(a), we can see a peak of the DOS
around 4 THz whose contribution to « is negative, lead-
ing to a negative thermal-expansion coefficient for this
temperature range. As the temperature increases further,
higher-energy states (mostly optical modes which have
positive Griineisen parameters) start to contribute; the
thermal-expansion coefficient changes sign again to posi-
tive and increases with temperature. The quasiharmonic
result is expected to saturate at high temperature for
neglecting phonon-phonon interactions, yet the agree-
ment with experiment is very good up to 800 K.

In Fig. 3, the calculated specific heat according to Eq.
(5) is compared with experiments.!”~!° The inset shows
the detail at low temperatures. The agreement between
theory and experiment is excellent below 300, and fair up
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FIG. 4. Overall Griineisen parameter y(T) of Si. The inset
gives the details for temperatures below 20 K. Experimental
data are denoted by open circles (Ref. 13).

to 800 K. When the temperature increases, the quasihar-
monic result is expected to approach a constant 3Nk,
and the agreement with experiment will deteriorate at
high temperatures where anharmonicity becomes impor-
tant. At 800 K, the difference between the quasiharmon-
ic result and experiment is about 10%. For the whole
temperature range, the isothermal bulk modulus changes
only by a few percent.

Finally, from Eq. (6) the overall Griineisen parameter
y(T) is calculated for silicon. In Fig. 4, the calculated
value is plotted and compared with experiment. The
agreement with experiment!® is excellent. The inset
shows the detail for temperatures below 20 K (where no
reliable experimental data are available). As the tempera-
ture goes to zero, the overall Griineisen parameter ap-
proaches a constant in our calculation. The nonzero
value at 0 K indicates that the thermal-expansion
coefficient and the specific heat approach zero in the
same asymptotic way. In fact, y(0) is proportional to the
logrithmic derivative of the T coefficient in the specific
heat with respect to volume.?

In conclusion, we have presented a pseudopotential
local-density calculation of thermodynamic properties of
Si within the quasiharmonic approximation. The calcu-
lated thermal expansion coefficient, specific heat, and the
overall Griineisen parameter agree perfectly with experi-
ment below 300 K. The agreement is still good up to 800
K. A detailed study of the mode Griineisen parameter
shows clearly that the (negative) anomaly in the thermal-
expansion coefficient at low temperatures results from the
zero-boundary TA phonons, in agreement with previous
observations. Our calculation also confirms a positive
thermal-expansion coefficient at very low temperatures,
in agreement with experiment.

Note added in proof. It was brought to our attention by
Dr. T. W. Barbee III that in a comment?' to Ref. 4,
Fleszer and Gonge presented the calculated thermal-
expansion coefficient for Si from the perturbed density-
functional theory.” The agreement with experiment was
also very good.
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