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Concise calculations of the ground-state energy for the strongly bound exciton-phonon system
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A concise variational approach is presented for the calculation of the ground-state energy of the

strongly bound exciton-phonon system. By using the phonon coherent state to represent the phonon

wave function, which depends on the wave function of the relative motion P{r), a nonlinear

integrodifferential equation satisfied by P{r) is derived. Numerical calculations are carried out for a few

polar materials and the upper bounds to the true ground-state energy of corresponding excitons are ob-

tained. It is found that our method is especially suitable for the case of the strong binding.

where M and p are the total and reduced band masses,
P, p, and R, r are center-of-mass and relative momenta
and coordinates, respectively, a k and ak are, respectively,
the creation and annihilation operators of the LO pho-
nons with the wave vector k, and %coo is the LO-phonon
energy,

pl(r)=e ' —e ', s;=m;/M (i =1,2), (2)
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with e and eo the high-frequency and static dielectric
constants, respectively. As usual, we eliminate the
center-of-mass coordinate R from Eq. (1) by the unitary
transformation

The problem of a Wannier exciton interacting with an
LO-phonon field has been the subject of an enormous
number of investigations since the pioneering study by
Haken' in 1956. One reason is that it provides a
significant example for two interacting fermions in a bo-
son field. Another more serious one is that the obtained
energies can be used to explain the optical spectra near
the absorption edge of semiconductors. The main ap-
proaches applied to this problem can be divided into
three types: variational calculations' including the
path-integral method, the perturbation theory, ' and
Green's-function methods. " But this problem is still
far away from an exact solution up to now. Therefore it
is also necessary to develop new methods to this problem.
On the other hand, in our opinion, it is important to
study the exciton-phonon problem for the strong binding,
such as that in some polar materials.

The purpose of this paper is to present a variational ap-
proach to the calculation of the exciton ground-state en-

ergy for the strong binding. We start with the well-
known exciton-phonon Hamiltonian for an isotropic sys-
tem in a nondegenerate two-band model,
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where the total linear momentum of the system Q is a
constant of motion. Set Q=O for when only the ground
state is concerned, then the Hamiltonian (1) can be writ-
ten as follows:

where A, is a variational parameter. Indeed, some varia-
tional approaches can give good bounds to the true
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where the last term is referred to as the recoil term.
It is noted that the Hamiltonian (5) does not conserve

the total number of phonons, so a reasonable approxi-
mate choice of the wave function of the phonon part is a
coherent state of phonons. The next step in almost all
previous variational calculations was to factorize the to-
tal wave function by using the phonon coherent state and
the wave function of the relative motion

) =exp g [F),(r)a), —F),(r)a), ] ~0)$(r), (6)
k

where the ket ~0) denotes the phonon vacuum state.
Until now almost all authors have chosen the ampli-

tudes Fl, (r) to be functions of the relative coordinate r.
It should be admitted that these treatments contain the
underlying physics. But it results in some mathematical
difficulties. To overcome these difficulties, two approxi-
mations had been introduced in Refs. 1 —5. First, the
forms of F),(r) were chosen physically. For detailed
knowledge of these choices, one can refer to the litera-
ture. Particularly in Ref. 5, Iadonisi, Bassani, and Strina-
ti introduced a rather complicated technique of an expan-
sion of Fj,(r) in partial waves in correspondence to the
different angular momentum values. Second, all authors
assumed P(r) to take the hydrogenlike form,

1/2

P(r) = e
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ground-state energy of excitons for some parameter
values due to successful choices of Fi,(r).

In this paper, different from all previous variational ap-
proaches, the total wave-function solution to the Hamil-
tonian (5) is assumed to take the following form:

& =y(r)l A &,

I
A & =exp +[a'(k)a„—a(k)ai, ] IO&,

(8)

where a(k) is a variational function and will be deter-
mined consistently from the wave function of the relative
motion P(r). The key difference between Eqs. (6) and (8)

is that F&(r) is replaced by a(k). Obviously, the previous
wave function (6) is more universal than ours. But it is
very difficult to determine F&(r) from the relative motion,
so some approximations were introduced as stated before.
Based on Eq. (8), we will develop a more rigorous varia-
tional approach where no approximation is made. On
the other hand, in the strong-coupling theory of single
polarons, ' '' it has been proved that Eq. (8) is really a
quite good variational wave function. Therefore, as far as
the strong-binding case is concerned, we expect our ap-
proach is superior to the existing methods.

In the next step, we average the Hamiltonian (5) over
the wave function (8) and have the energy expectation

fi k 2k k'
8 [a*(k),a(k}]=E„+g %coo+ a*(k)a(k)+ g[U„(pi,(r) &a(k)+H. c. ]+giri a'(k)a*(k')a(k)a(k'), (9)
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where

E„=fdr/*(r) P(r)
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is independent of a(k) and a'(k),

(p&(r) & =4nfdr . roti (r)
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In the following we will neglect the last term, which
comes from the recoil term, in the energy expectation.
We will prove that this term vanishes exactly in our ap-
proach subsequently. Then, minimizing the energy ex-
pectation with respect to a(k) and a'(k) results in

Vq (pi'(r) &

Ak
0%co +
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0

a(k)=—

a'(k)=—

According to Eqs. (3), (10), and (11), we know that
both a'(k) and a(k) are only related to the module of the
vector k, namely, a*(k)=a'(k), a(k)=a(k). Therefore

I

if we perform the angular integration first, there must be
an angular integral in the last term of the energy expecta-
tion (9) which gives

f d 0 sine cose =0 .
0

Such a term really vanishes exactly. In our opinion, for
the variational wave function Eq. (8) where a"(k) and

a(k) are determined by Eq. (11), the neglect of the recoil
term in the Hamiltonian (5) does not violate the varia-
tional principle.

If averaging the Hamiltonian (5) over the phonon
coherent state

I
A &, we have the following effective Ham-

iltonian in the representation of the relative coordinate:

p2 e 2 g2k2
H, if= — +g fico()+ a'(k)a(k)

2p e r „2M
+y[U„p„(r)a(k)+ H. C. ] .

It is of some interest to note that the effective Hamiltoni-
an contains the wave function of relative motion P(r).
Substituting Eq. (11) into Eq. (13), transforming the sum-

mation gi, into an integral v/(2m. ) fdkand , performing

all angular integrals analytically, the Schrodinger equa-
tion for P(r) is finally obtained as follows:
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This is a nonlinear integrodifferential equation satisfied

by the wave function of the relative motion P(r). It is

easily found that the hydrogenlike form wave function is

not an exact solution to this equation. It is noticed that

I

Eq. (14) cannot be solved analytically. Therefore a nu-

merical solution is clearly called for.
Given the values of the material parameters, in princi-

ple, the upper bounds to the true ground-state energy can
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TABLE I. Some parameters of LiF, CuCL, and Cu20 (notations are shown in the text).

Material

LiF
CuC1
Cu20

0.78
0.44
0.61

m2

10.0
3.60
0.84

E'p

9.3
7.4
7.1

2.9
3.7
6.2

A&Op

56.4
27.2
75.1

Ri

17.59
33.72
17.23

R2

4.91
11.79
14.69

113.8
97.4
95.4

be evaluated by solving the Schrodinger equation numeri-
cally. Here we briefly describe the numerical procedures.
Choosing an initial wave function, substituting it into Eq.
(10), Eq. (14) is tgen reduced to a two-point boundary
value problem. The boundary conditions are P'(0)=0
and P( 00 ) =0. For each iteration, by the shooting
method, we can get a new solution for the wave function.
In general, it is not the true solution of the Schrodinger
equation (14), because they are different from that in

(pl, (r)) according to Eq. (10). But it is believed that
after sufficient time iterations the obtained solution is
brought into close agreement with the true one. In the
following calculations, based on our extensive tests, we
believe that our results for the energy are very accurate.

In order to test our approach, we will apply it to the
problem of excitons in some polar materials with a
variety of parameters. In Table I we list the parameters
of these materials, which are directly cited from Ref. 5.
In columns 7 and 8 the single polaron radii R

&
and R2

for the electron and the hole are given, which are calcu-
lated from R, =(h /2m;coo)'i2, i =1,2. In the last
column, we present the exciton Rydberg R =pe /2h co.
In our paper energies are in meV, masses and lengths are
in atom units.

Our numerical results are reported in Table II. In the
first column, our variational results for the total exciton
energy are given. Because the actual exciton radius has
not been obtained so far, we will calculate it from the ob-
tained wave function for the relative motion by fitting it
with a hydrogenlike form (7), as shown in column 7. For
obtaining the binding energy, we also list the sum of two
polaron energies g of the free electron-hole pair in
column 4, which results from the Feynman theory. '

Hence we can easily get the exciton binding energy in
column 5. For comparison, in columns 3 and 8 we list
the more recent variational results for the total exciton
energy and the exciton radius obtained by Iadonisi, Bas-
sani, and Strinati. Besides, the experimental values for
the exciton binding energy are listed in column 6.

It can be seen from Table II that, in LiF, our result for
the total exciton energy is considerably lower than the re-
cent well-known one ET, the binding energy is much
closer to the experimental data. In addition, our result

for the exciton radius is nearly equal to the previous one

a,'„. In CuC1, our results for the total exciton energy,
the binding energy, and the exciton radius agree with the
previous variational ones. Also, like previous variational
approaches, our exciton binding energy Eb in CuC1 is

larger than the corresponding experimental data Eb" .
This is perhaps partially due to the neglect of central cell
corrections which increase the total energy by enlarging
the exciton radius. Unfortunately, in Cu20, our method
yields worse results for excitons.

As is well known, the larger the values of R~/flu and

R, /a, „, the stronger the exciton-phonon binding in the
system should be. It is very interesting to note from
Table II that exciton-phonon binding in LiF is the
strongest among the materials listed, because of the larg-
est values of Ro/1m=2. 02 and R&/a, „=6.49. As a re-
sult, we get very good results for the excitons. In CuC1,
the exciton-phonon binding is the next stronger, due to
ratios R /fico=3. 58 and R, /a, „=3.47. We obtain as

good results as those in the recent variational ones. But
in Cu20, the exciton-phonon binding is not strong
enough, for the reason that the values of R /fuo=1. 27
and R&/a, „=0.98 are relatively smaller than those in

LiF and CuC1. Consequently, we got unsatisfactory re-
sults. It follows that as the exciton-phonon binding be-
corne stronger, our method becomes more useful.

In summary, we have presented a variational approach
to the strong-binding exciton-phonon problem. The wave
function of the phonon part is assumed to take the form
related to the wave function of the relative motion, which
is intrinsically different from those taken by all previous
authors. Moreover, the wave function for the relative
motion is numerically calculated from the derived
integrodifferential equation rather than select a hydro-
genlike form to minimize the energy expectation, which
is also different, to the best of our knowledge, from all
previous approaches. Most importantly, compared to
previous rather involved methods, although our ap-
proach is very simple, to the best of our knowledge, in
some strong binding materials, our variational approach
can give the best results for excitons. We admit that for
the weak-binding case, our approach is inferior to some
previous ones. It is also possible that a more general

TABLE II. Some results for excitons in LiF, CuCL, and Cu20 (notations are shown in the text).

Material

LiF
CUC1

Cu20

E
—2922
—424
—129

EIBS
T

—2816
—428
—136

—1282
—195
—32

E

1640
229
97

EexP
b

1800
194

&ex

2.70
9.73

17.6

g IBS
~ex

2.7
10.1
184

R I/a, „
6.49
3.47
0.98

Ry /Aa)

2.02
3.58
1.27
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form of a(k), leading to a finite recoil term, could im-
prove the result for the weak-coupling limit. We will dis-
cuss this problem elsewhere.

Finally, we would like to point out that the variational
method developed in this paper is also suited for the
treatment of bipolarons, because bipolarons are known to

exist in the strong-coupling range. ' These calculations
are in progress.
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