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Statistical treatment of dynamical electron diffraction from growing surfaces
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Statistical methods developed previously for the evaluation of the electrical conductivity of metals
and the description of the propagation of waves through random media are applied to the problem of
scattering of high-energy electrons from a rough growing surface of a crystal where the roughness is
caused by local Buctuations of site occupation numbers occurring during the growth. We derive the
relevant Dyson and Bethe-Salpeter equations and define the short-range order correlation functions
that determine the behavior of the reliection high-energy electron difFraction (RHEED) intensities.
To analyze the temporal evolution of these correlation functions, we employ an exactly solvable
model of the local perfect layer growth [A. K. Myers-Beaghton and D. D. Vvedensky, J. Phys. A
22, L467 (1989)j. Our approach makes it possible to separate individual contributions of various
processes that give rise to oscillations of the RHEED re6ections. We found that provided that the
Bragg conditions of incidence are satisfied, it is the diffuse scattering by the disordered surface layer
which is largely responsible for oscillations of the RHEED intensities. The temporal evolution of
the angular distribution of the difFusely scattered electrons exhibits the effect of enhancement of the
intensity of the Kikuchi lines with increasing surface disorder, as was observed experimentally [J.
Zhang et al. , Appl. Phys. A 42, 317 (1987)]. An explanation of the origin of this phenomenon is
given using the concept of the final-state standing wave pattern.

I. INTRODUCTION

In recent years it has been recognized that reflec-
tion high-energy electron difFraction (RHEED) provides a
unique tool for in 8itu monitoring of the molecular-beam
epitaxial growth of surfaces of semiconductor crystals. '

The observations carried out by Harris, Joyce, and
Dobson3 and Van Hove, Lent, Pukite, and Cohen, and
subsequent studies have shown that in many cases there
exists an explicit one-to-one correspondence between the
number of maxima or minima on the curve describing
the temporal evolution of the specular RHEED intensity
and the number of new atomic layers grown on the sur-
face of the crystal. Several theoretical models have been
developed in order to understand the origin of these in-
tensity oscillations, and it is now a well established
fact that a theoretical consideration of the problem must
include multiple scattering of electrons by atoms of the
crystal. There exist two distinct types of scattering,
namely, elastic or coherent scattering, which is associated
with the long-range order in the distribution of atoms in
the substance, and diffuse or incoherent scattering, re-
sulting &om local fluctuations of the parameters charac-
terizing the structure of bulk and surface atomic layers.
Both types of scattering have to be included in a con-
sistent theoretical treatment of scattering of high-energy
electrons in order to give a realistic description of the
observed evolution of the difFraction pattern.

To simulate the effects of multiple coherent scatter-
ing one needs to calculate the intensities of the RHEED
diffraction spots by the dynamical theory of electron
diffraction. Such calculations for a surface growing dur-
ing molecular-beam epitaxy have been carried out re-
cently by Peng and Whelan and Mitura et al. The
former authors employed a systematic" approximation
in calculating dynamical RHEED intensities, and only a
layer coverage factor 0„for the nth layer was taken into
account in calculating the interaction potential between
the fast electron and that layer. During growth O„varies
between zero and unity as the arriving atomic species 611
the layer and the interaction potential for the nth layer
in the systematic approximation is proportional to 0„.
No statistical fluctuations of the atomic site occupation
probabilities within atomic layers were considered.

At the same time there were 6rm experimental
indications, ' con6rmed by the results of more recent
studies, that fluctuations of surface morphology and
other processes leading to incoherent scattering strongly
affect the temporal evolution of the RHEED pattern, and
in many cases the efFect of these fluctuations actually de-
termines the entire form of the observable intensity distri-
bution. One of the erst attempts to include the effect of
such fluctuations in the dynamical difI'raction approach
was that of Ichimiya, ' who applied Kirchhoff's approx-
imation to the description of scattering by a crystal the
surface of which consisted of relatively large flat regions.
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Ichimiya showed that the effect of fluctuati. ons of surface
morphology can lead to a modification of the effective in-
teraction potential between the high-energy electrons and
atoms belonging to partially filled atomic layers2o (in a
more rigorous forxn this idea has been analysed later2i).

An alternative formulation, which emphasizes the im-
portance of the scattering processes by the disordered
surface layer has been developed by Meyer-Ehmsen et
al. , in which a two-layer model is used to qualitatively
explain the origin of the efFects of difFuse scattering ob-
served by Zhang et aL2s and Larsen et aL24 (see also Ref.
25). In Ref. 22 it was noted that there exist various types
of incoherent scattering, some of which can be attributed
to the efFects of surface disorder, while others result from
inelastic scattering followed by vibrational and electronic
excitations in the crystal bulk (for a discussion of the ef-

fects of inelastic scattering in RHEED, see Ref. 26). A
simple qualitative model which takes the surface disorder
into account in terms of re&action and total reflection of
waves was proposed by Lehmpfuhl et at.~~

Recently, Korte and Meyer-Ehmsen 3 have devel-

oped an approach which is based on the first-order per-
turbation expansion of the nonlinear equations for the
so-called R matrix. The difference between the exact
and the configuration averaged potential was considered
as a perturbation, giving rise to a contribution to the
surface reflectivity resulting &om the nonperiodic part of
the interaction. This approach requires averaging bilin-
ear combinations of the first-order terms thus obtained
which, in some cases, can be performed analytically. In
other cases, the problem of averaging bilinear combina-
tions of the nonlinear R-matrix equations may encounter
difficulties (e.g. , when interlayer correlations have to be
taken into account), in which case the application of the
technique described in Refs. 28—30 would require explicit
numerical computation of the intensity distributions for
various statistical configurations of the system.

At present, therefore, there exists no consistent ap-
proach to describing the scattering of high-energy elec-
trons &om a growing surface which takes into account
both multiple coherent and multiple incoherent scatter-
ing, and which would in principle allow us to avoid per-
forming statistical averaging of the numerically computed
scattering cross section over all possible configurations of
the system. The stimulus for formulating such an ap-
proach is provided largely by recent progress in the un-

derstanding of the statistics of the microscopic dynamics
of molecular-beam epitaxial growth 34 and the nonlin-
ear kinetics of transport of atomic species on growing
surfaces. 3 In fact, there are now available both an-
alytical approaches (see, e.g. , Ref. 34) and numerically
manageable techniques, which make it possible to ana-
lyze the temporal evolution of the many-particle correla-
tion functions characterizing the nonequilibrium density
fluctuations in the growing surface layer. The remaining
and largely unsolved question concerns the possibility of
reliably determining these correlation functions &om the
experimentally observed RHEED patterns.

In this paper, we develop a method which makes
this problem more tractable for analytical and numerical
study. Our method is based on a generalization of the

techniques developed previously for the evaluation of the
conductivity of metals containing randomly distributed
impurities, the calculation of amplitudes and phases of
waves propagating through a random medium for
the case of diffraction of high-energy electrons by a sta-
tistically disordered growing surface. We formulate the
Dyson equation describing multiple coherent scattering
of electrons by the averaged distribution of atoms over
the lattice sites, and the Bethe-Salpeter equation, which
takes into account the processes of multiple incoherent
scattering of the electrons by fluctuations of the interac-
tion potential occurring in the surface layers of the crys-
tal.

One feature of our formulation which distinguishes
our method kom previous approaches to the problem is
the possibility of proving the statement that the system
of Dyson and Bethe-Salpeter equations is self-consistent
and satisfies the requirement of conservation of the to-
tal current density. The importance of this point follows
from the simple observation that the total intensity of
the RHEED diffraction spots in many cases does not ex-
ceed several percent of the incident beam intensity, while
it is well known that the total probability of an elec-
tron being scattered towards the backward hemisphere
at grazing incidence often exceeds 80%. An ixnplemen-
tation of the probability conservation principle makes it
possible to classify various processes according to their
contribution to the RHEED pattern and to determine
which of them are responsible for the observable tem-
poral evolution of the RHEED intensities. One of our
conclusions is that, provided the Bragg conditions of in-

cidence are satisfied, it is the disuse (incoherent) scat-
tering by fluctuations of the interaction potential in the
disordered surface layer which gives rise to the RHEED
intensity oscillations. We establish the form of the corre-
lation functions which describe the evolution of the sur-
face morphology in relation to the temporal behavior of
the RHEED diffraction pattern. We show that in the
case where the short-range disorder dominates, the dif-

fuse scattering cross section is a functional of the two-

particle connected correlation function characterizing
the distribution of pairs of atomic species among the lay-
ers of the growth front. Making use of an exactly solvable
model, we can evaluate this correlation function ana-
lytically, and follow the temporal evolution of the difFuse

RHEED intensity distribution. We find that, provided
the position of the specular reflection lies in the vicin-

ity of a particular Kikuchi line, the intensity of this line
is enhanced strongly with increasing surface disorder, as
was observed by Zhang et al.

II. THE DYSON AND
THE BETHE-SALPETER EQUATIONS

As is well known the wave function of the electron is

not an observable quantity and it is the bilinear combina-
tion of two wave functions which is relevant to the prob-
ability distribution and which can be employed for evalu-

ation of the matrix elements of any quantum-mechanical
operator (see, e.g. , Ref. 46), for instance, the current
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density of scattered electrons. In the statistical theory of
scattering we are therefore interested in the determina-
tion of the function which describes the propagation of
an electron &om the source towards the detector through
a medinm, only the statistical properties of which (i.e.,
some average values and their momenta) are known. If
G(r, r') is the Green's function which describes the prop-
agation of an electron from the source S(r') towards the
observation point r through a particular statistical con-
6guration of a medium, then the wave function is given
by

e(r) = f dr c(r'r )s,(r')'
and the quantity to be evaluated in order to calculate the
scattered intensity is

II(r, rq~r', rI ) = (G(r, r')G'(rq, r~))
=—(G(r, r')G (r~, rq)),

where ( ) denotes an average over all the possible con-

6gurations of the system and Gt is the Hermitian conju-
gate of G. Here we are primarily interested in the case
where Buctuations result &om statistical disorder occur-
ring in the distribution of atoms over the lattice sites
and we do not consider dynamical fiuctuations, partic-
ularly electronic excitations, methods of treating which

I

have been developed recently. ' If the wave function
4(r) satisfies the Schrodinger equation

h V' + U(r) @(r) = E%'(r),
2m

where E = h k2/2m, then G(r, r') can be defined as a
solution of the equation

hE+ V —U(r) G(r, r') = 6(r —r').
2m

(4)

where K and U denote kinetic and potential energy op-
erators. We now consider the product GGt and proceed
to find the average of this quantity. We define the fiuc-
tuating part of the interaction by

6U= U —(U),

and expand each of the Green's functions entering (GGt)
in a Born power series over hU, namely,

Formally, the solution of (4) can be represented in the
form

A 1G= A A )E —K —U+ i0

II=(GG) = . . + . . hU
E —K —-(U) +i0 E —K —(U) +i0 E —K —(U) +i0

hU 6U
E —K —(U) +i 0 E —K —(U) + i0 E —K —(U) + i0

1 1 1
x . . + . . hU

E —K —(U)-—i 0 E —K —(U) —iO E —K —(U) —iO

+ . . hU . . hU
E —K —(U) —i 0 E —K —(U) —i 0 E —K —(U) —i0

+ ~ ~ ~ (7)

where we have taken account of the fact that both K and
U are Hermitian operators.

To carry out the averaging in Eq. (7) we use
the diagrammatic approach proposed by Edwards39
and described in detail by Abrikosov, Gorkov, and
Dzyaloshinskii. We represent each of the Green's func-
tions G and Gt in the form of the series of diagrams as
depicted in Fig. 1. The meaning of each diagram is ev-
ident from comparison of Fig. 1 with the structure of
each of the two series in the right-hand side of Eq. (7).
Performing step-by-step averaging of various terms re-
sulting &om multiplication of these two series, and using

I

I+ I

I

I

(b)

+ l ~ +
~

+V
I I

I I / X / I

(c) (d) (e)

the rules described in Ref. 39, we arrive at the sequence
of diagrams shown in Fig. 2.

There exist explicit analytical expressions correspond-
ing to each of the diagrams shown in Fig. 2. For example,
the diagram marked (f) in Fig. 2 can be represented in
the analytical form as follows:

I I I I I

I I I I I

I I I I I

I I I I I

I I + I I I

/ I I I

I I I+ ) + + iii + V +
I I I I II I I I I

(f) (~) (~) ( )

I

(j)

FIG. 1. The diagrammatic representation of the Green's
function G.

FIG. 2. The series of diagrams representing various terms
resulting from averaging of the product of two Green's func-
tions.
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FIG. 3. The Bethe-Salpeter equation.
FIG. 5. The Dyson equation.

l

bU
E —K —(U) + i0 E —K —(U)

E —K —(U)

I

bU - '-
. bU-

+ i0 ( E —K —(U) + i0 E —K —(U) + i,0
l„ 1

bU—i0 E —K —(U) —i0

& && ~acr& (9)

which results in the scattering cross section of electrons

where each pair of operators bU connected by a dashed
line corresponds to the correlation function of the form
(bUbU) [note that in accordance with the definition (6)
we have (bU) = 0]. Analyzing the structure of various
combinations of diagrams we see that the entire infinite
sequence of diagrams can be generated. by iterating the
equation shown in Fig. 3, where the filled rectangle rep-
resents the sequence of nonrepeating diagrams depicted
in Fig. 4. The thick lines in Figs. 2, 3, and 4 correspond
to the averaged Green's functions (G) and (Gt) satisfy-
ing the equation shown in diagrammatic form in Fig. 5.
In Fig. 5 the filled circle represents the series of nonre-
peating diagrams depicted in Fig. 6. The diagrammatic
relationships shown in Fig. 3 and Fig. 5 are the Bethe-
Salpeter and Dyson equations, respectively. The basic
advantage of the diagrammatic representation of these
equations consists of the possibility of classification of
various processes of incoherent scattering with respect to
their contribution to the averaged direct product of two
Green's functions II = (GGt).

Considering the problem of scattering of a fast electron

( 104—10s eV) by an atom, we notice that there exist
two inequalities which make it possible to separate the di-
agrams entering the Dyson and the Bethe-Salpeter equa-
tions into two groups, with one of these groups giving
the major contribution to the cross section. The first in-
equality follows &om comparing the electron wavelength
A with the efFective radius of screening r„,of the poten-
tial of an atom. For high-energy electrons

by atoms being strongly peaked in the forward direction,
i.e., If(x)I/If(0)I (( 1, where f(8) is the amplitude of
scattering.

Another inequality which often holds for fast electrons
(the kinetic energy of which is in excess of 10 keV) is the
condition for the validity of the Born formula, namely,

h'k/r. „m) (IbU(r) I), (10)

where Go ——(E —K —(U) + i0) . It should be noted
that Eq. (12) coincides with Eq. (39.7) of Ref. 40, which
was derived by making use of arguments similar to those
outlined above.

Using (2), we can define the statistically averaged one-
particle density matrix of the high-energy electron as

where k = 2vr/A. This justifies the acceptability of the
approximation which is quadratic in bU and which in
many cases makes it possible to obtain reliable qualitative
results even beyond the liinits defined by inequality (10)
(see, e.g. , the discussion in Refs. 40 and 21).

Application of the inequality (9) to the series of di-

agrams shown in Fig. 6 and Fig. 4 rules out all the
diagrams containing crossing lines, which describe pro-
cesses involving at least one large-angle scattering event.
The second inequality (10) makes it possible to neglect
all the diagrams containing more than two connected
dashed lines, each of which corresponds to the Quctuating
part of the interaction. As a result, the Bethe-Salpeter
and Dyson equations acquire the following forms, respec-
tively:

II = (G)(G ) + (G)(bUIIbU)(G ), (11)
and

(G) = G() + G()(bU(G)bU)(G),

I

I

I

I

I

/
V
/k

/
p(r, rr) = f dr dr(II(r, rr~~r', 'r()S(r')S*(r(). (13)

Y g /
+ ~I + + +

/

As follows f'rom (ll), this density matrix satisfies the

FIG. 4. The sequence of nonrepeating diagrams entering
the Bethe-Salpeter equation.

FIG. 6. The sequence of nonrepeating diagrams entering
the Dyson equation.
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equation

~ = ~0+ (G)(6U~«}(G'}

the real space representation of which is

potential defined later [Eq. (35)].
Consider the operator Q defined by

Q = (G) '~ 1—(G') '. (22)

p(r, r') = pr(r, r')+ J f dRdR (G'(rR,))(G'(r', R'))

x (6U(R)bU(R')) p(R, R'). (i5)

The first term on the right-hand side of Eq. (15) repre-
sents the incident wave and the associated elastic scatter-
ing. The second term on the right-hand side has the same
meaning as the collision integral in the classical Boltz-
mann transport equation. In other words, the approach
employing Eq. (15) can be considered as the quantum-
mechanical generalization of the theory of multiple scat-
tering, the classical counterpart of which is based on the
transport equation. An important difference between the
classical approach and the present quantum-mechanical
consideration lies in the fact that Eq. (15) describes mul-
tiple incoherent scattering in the averaged potential field

(U(r)), and generally speaking there exists no inequality
restricting the rate of variation of this field within the
effective range characterizing separate scattering events
by statistical Buctuations of the interaction potential.

Before deriving approximate solutions of Eqs. (12)
and (14), we first prove that these equations are self-
consistent and that they conserve the total number of
particles in a closed system. The quantum-mechanical
current density is given by

We evaluate TrQ by substituting from Eqs. (19) and

(20) and noting that Tr{(U)p) = Tr{p(U)). This leads
to an expression for Tr[Kp] in terms of TrQ and addi-
tional terms. Alternatively, TrQ can be obtained by sub-
stituting from Eq. (14) for p, noting that from (21) both

(G) ip() and p()(Gt) i are zero, since the source function
S vanishes inside E. We obtain

Tr[Kp] = Tr{(G)(hUpbU}) —Tr{(6UpbU} (Gt) )
+T {p(6U(G'}6U)) —T {(6U(G)6U)~) (»)

Since the trace remains invariant under cyclic interchange
of operators and p and (G} (being statistically aver-
aged) may be moved freely through the angular averaging
brackets, we arrive at the result

T [Kp] =0, (24)

which leads to the conservation of the total number of
particles. In what follows we use this condition for the
quantitative evaluation of individual contributions to the
cross section resulting &om various processes of incoher-
ent scattering and for identifying the dominant mecha-
nism behind the temporal evolution of the RHEED in-
tensities.

j(r) =
2

(V' —V) p(r, r')

Therefore

(V —V' ) p(r, r')

=
q [K)ol

div{j(r)) =—

(17)

where [Kp] = Kp —pK is the commutator of K and p.
The conservation of the total number of particles requires
the Hux of j to vanish over an arbitrary surface Z with
area element da and volume V enclosing the crystal. This
aux is given by

~ ~ ~
~da j(r) = dr div{j(r)) = —Tr[Kp].

E V
(18)

Therefore we need to show that the trace of the com-
mutator [Kp] vanishes. We first note that according to
Eq. (12)

(G) = Go —(bU(G) 6U).

We alse have

G() ——E —K —(U), (20)

pp ——(G)SSt(Gt),

where S is the source function defined in Eq. (1), and

(G) i = E —K —U ir, where U, ir is the non-Hermitian

III. THE LOCAL PERFECT LAYER
CROW'TH MODEL

As follows from Eqs. (11) and (12), or (15), within the
approximation which is quadratic in bU, it is the correla-
tor (6U(r)hU(r')) which is responsible for the contribu-
tion of (multiple) incoherent scattering to the RHEED
pattern. Representing the interaction potential in the
form of a sum of potentials of separate atoms

U(r)=) n U(r —R ), (25)

where the summation is performed over all the sites of
the infinite three-dimensional lattice of the crystal, and
n is the occupation number of a particular site, we arrive
at

(hU(r)bU(r')) = ) U(r —R )U(r' —Rs)
a, b

x((n ng} —(n )(ns}). (26)

The averaged occupation number (n ) in this equation
represents the probability 0 of finding an atom at the
lattice site a, which in the case of a growing surface has
the same meaning as the coverage of the layer contain-
ing the site a. The quantity v & = (n ns) denotes the
probability of finding both atomic sites a and b occu-
pied. The function E g ——v g

—0 Og is the two-point
connected correlation function, 45 and it is this function
which primarily determines the form of the cress section
of incoherent scattering.
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Finding F s [which in the case of epitaxial growth de-
pends on time, i.e. , F g = F s(t)] requires the many-
particle distribution function characterizing the nonequi-
librium evolution of the growing surface. To evaluate this
quantity, we consider an exactly solvable model, namely,
the model of local perfect layer growth, which provides
a reasonable approximation to the actual evolution of
the surface morphology, and for which the many-particle
correlation function can be found exactly. ' In this
model the surface is divided into square subsections of
side length N, each containing N2 sites. We impose the
condition that an atom arriving in a particular subsection
must go into the lowest unfilled layer in that subsection,

I

and within a particular subsection only two heights may
coexist at a given time. Taking into account the fact that
subsections are statistically independent and assuming
that the rate of deposition is v monolayers per second,
the probability of 6nding I atoms in a given subsection
at the time t is given by the Poisson distribution

P~(t) = [(N'tlat)'/L'] exp(-N't/T).

To determine the coverage 0 (t) of a particular layer a
we note that, according to our de6nition, provided that
roe have L atoms in the subsection, the probability p (L)
of finding an atom at the site a belonging to the layer o.

1S

0, when L ( N2(n —1),
p (L) = & [L —N (a —1)]/N2, when N2(o. —1) ( L ( N2n,

1, when I & N2o. .

Averaging this over the distribution (27), we obtain

0 (t) =).p (l)P((t)
I,=O

N a N2t & N (a—1)+1
=1 —) [(N t/~)'/l!]exp( —N t/~) +),(l/N ) exp( N t/~—)

L=O l= 1

To evaluate the two-site connected correlation function,
we need to distinguish between two possibilities, that
both the site a and the site b can belong to the same
subsection by a suitable location of the subsection, and
that a and b are separated. in the lateral direction by a
distance exceeding the size of a subsection and therefore
cannot belong to the same subsection whatever its loca-
tion. In the latter case F s(t) = 0, due to the statistical
independence of difI'erent subsections.

Considering two sites belonging to the same subsec-
tion, we introduce the coordinates characterizing the po-
sition of each site in a three-dimensional crystal lattice:
a = (i,i„,a) and b = (i', i„',P). Having considered
three cases a = p, a ) p, and o. ( p, and averaging var-
ious configurations with the distribution function (27) as
well as taking into account the possibility of an arbitrary
choice of the origin, we obtain

F;;~(t) = [O i sl(t) —0 (t)0~(t)] ~

1—
r

(N2t/~)"'(--')+'
+~ &). (N ( 1)+l) 'IN ~

'1 N 1)~' p( N'/ )
/=—1

where hu is the Kronecker delta symbol, and max(a, P)
denotes the largest of the two integers a and P. As
expected, the function F;;p(t) in (29) vanishes at the
edges of a subsection, i.e., if (i —i'

I

= N or Iiz —i„[=¹ At each particular time this function can be repre-
sented in the form of the four-dimensional array of size
N x N x N~ x N~, where N~ is the number of partially
filled atomic layers.

In some cases it is more convenient to consider the tem-
poral evolution of a scalar quantity which characterizes

I

the morphology of the growing surface, rather than the
time dependence of the elements of a large matrix. The
density of steps was defined in Ref. 52 as a phenomeno-
logical scalar parameter, which makes it possible to fol-

low the temporal transformations of the growing surface
between Hat and rough states, and which was shown to
provide a good qualitative (and in some cases even a
quantitative; see, e.g. , Refs. 18 and 53) approximation
to the observable evolution of the specular RHEED in-

tensity. Within the framework of the local perfect layer
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growth model this quantity is de6ned as follows:

N —1N—1

D = N ) ) ([1—b(h~, l, h„l+z)] + [1 —b(h~, l, h~+l. ,l)])
n,=1 l=1

N —1 N —1

+N ) [1 —b(hN, l) hN, l+1)] + N ) [1 —b(hn N) hra+1 N)] q (30)

where h„,l is the integer height of a column at position (n, l) on the surface. Averaging of (30) results in

(N2t/r)" -' +'
1 ) 2, ,

exp( N t/r)

4(N —1,) . .(N t/r) a l+' t f E —1

N ~-~- (N2(n 1)+))I N2 ~( N2 1)a=1 l=1

. (N t/7) (a l+

'N~= ~-( ( -).~)
'"'(""'

(N2t/r)N (a—1)+l (N2t/r)N (a—1)+I' () + )

N - (N (n —1)+l)! (N (n —1)+l')! I, N2 (31)

In the limiting case N ~ oo the local perfect layer
growth model coincides with the perfect layer growth
model, in which only one layer is not completely 61led
at a particular time. In this case formula (31) reduces to
D(t) = 40(t) [1—8(t)], where O(t) is the coverage of the
growing layer. At the opposite limit N = 1 we obtain

f 2t&
D(t) = 2 1 —exp( —2t/r)Ip

~ ).
where Ip(2:) is the modified Bessel function.

In the following section we apply the results obtained
above to the analysis of the temporal evolution of the
RHEED pattern.

IV. NUMERICAL RESULTS AND DISCUSSION

U,B = (U) + (b'U(G)b'U),

a method of nuxnerical evaluation of which was consid-
ered in Ref. 21. The asymptotic behavior of (34) at large
distances &om the specimen is given by

exp(ikr) . exp( —ikr')
r rl

(36)

where each function X(n, np), representing the amplitude
of coherent scattering, can be found by carrying out the
dynamical RHEED calculations.

To evaluate the asymptotic form of the second term on
the right-hand side of Eq. (15) we employ the spectral
representation of the Green's function (see the Appendix
for the derivation)

We start from the definition of the scattering cross sec-
tion. It is well known that in order to de6ne the ampli-
tude of scattering one needs to consider the asymptotic
behavior of the wave function of the continuous spec-
truxn at large distances &om the region occupied by the
interaction potential. In a similar way, in order to define
the cross section of scattering, we need to consider the
asymptotic behavior of the density xnatrix given by Eq.
(15).

The first term on the right-hand side of Eq. (15) de-
scribes the coherent scattering. For the case of a plane
wave incident on the specimen,

dsq exp(iq r)4 z(r')
G r, r'

(27r)s El, —Ev + i0 (37)

where El, = h k2/2m and Ep = h q2/2m. The asymp-
totic form of (37) is

(G('")) - —, ~"' (")
2xh

where n = r/]r]. The cross section of scattering is then
the suxn of two terms, the Grst being the cross section of
xnultiple coherent scattering, and the second one being
the cross section of multiple incoherent scattering:

p. (r, r') = ~&'..'(r) 5'&+.'. (r')]' (34)

4';, (r) = exp(iknp. r),

the first term on the right-hand side of Eq. (15) is given
by (see, e.g. , Refs. 54 and 50)

(, )['+
~do (2nh )

x dRdR'e+ R e R'

x (bU(R) bU(R')) p(R, R'). (39)

where 4&(+! (r) is the solution of the Schrodinger equation
with the effective non-Hermitian potential

There are two processes contributing to the second term
on the right-hand side of this equation, namely, difFuse
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scattering caused by Quctuations of the lattice site oc-
cupation numbers n occurring during the growth (dis-
order diffuse scattering, DDS) and the diff'use scattering
resulting from thermal disorder (thermal diffuse scatter-
ing, TDS). In this paper we consider the first type of
diffuse scattering, no consistent treatment of which has
been given so far within the framework of the statistical
dynamical diffraction theory.

We consider the initial stage of growth when the disor-
dered surface layer remains relatively thin (this implies
explicit limitation on the value of t, for in the local perfect
layer growth model the effective interface width increases
as tif 2 for any finite N) and the probability of incoherent
rescattering of electrons by the density Huctuations in the
surface layer remains relatively small. In this case, sub-
stituting (26) for (bU(R)bU(R')) and (34) for p(R, R')
in the second term on the right-hand side of (39), we
arrive at the cross section of single diffuse scattering

dcr(n, np)
CLO DDS

= ) F.e J dRdR q"e' '(R)„
a,b

x [}If(+„„(R')]*f (R —R )f (R' —Rs)

x @(+„'(R) [@s(+'(R')]', (40)

where we have de6ned the real space representation
of the atomic scattering amplitude as f(r —R )—(m/2nh )U(r —R ). In principle, as shown in Ref.
21, Eq. (40) must also be averaged over all the possible
thermal displacements u of atoms from their equilibrium
positions R . However, a simple estimate shows that if
we are interested in the differential cross section of inco-
herent scattering through relatively small angles (of the

I

order of the Bragg angle), this averaging has almost no
effect on the computed intensity distribution.

It should be emphasized that in accordance with our
proof (20), formula (40) is consistent with Eq. (12) in
the sense that the total cross section of scattering can be
evaluated either by integrating (40) over all directions of
n, or by evaluating the rate of "absorption" of electrons
by the non-Hermitian part of the effective potential in the

Schrodinger equation for }If& (R) [see, e.g. , Eq. (16) of
Ref. 21]. The second method appears to be less demand-

ing computationally, and we will follow this approach in
order to estimate the relative contributions of DDS and
TDS to the total cross section of incoherent scattering.

In q space the eff'ective non-Hermitian potential (35)
can be represented in the form of a sum of three terms,

U (U) + U(TDs) + U(DDs) (41)

The first term is the ordinary interaction between the
fast electron and the atoms of the crystal averaged over
all the statistical configurations, viz. ,

2vrh' ).eofo(q —q')

x exp[ —i(q —q') R ]

x exp[ —M (q —q')],

(U(q q')) =—

(42)

where f (q) is the Born electron-atom scattering arn-

plitude and exp[ —M (q)] = exp —((q u)2)T/2 is the
Debye-Wailer factor.

The second term results Rom the thermal motion of
atoms, viz. ,

2

"(q q') = —C —) 0 J dC}f (q —C})f (C}—q')d(Qe —ke) exp] —C(q —q') . R, ]m a
x(exp[ —M (q —q')] —exp[—M (q —Q)] exp[ —M (q' —Q)]).

The third term arises as a result of statistical disorder in the distribution of atoms over the lattice sites, viz. ,
2

'(q q ) = —'—) (o- —O.') f dQf. (q —Q)f.(Q —q')
m a

x exp[ —i(q —q') R ] exp[ —M (q —qf)]c))(Q2 —k2).

(43)

(44)

Note that this term does not appear in models where
each atomic potential is assumed to depend on time
via a deterministic factor 0 (t).ii i2 To evaluate U(TDs)

~e

and U| ~ numerically, one needs to perform two-
dimensional integration over the entire solid angle of 4m

as described by Bird and King. For the purpose of nu-

merical evaluation of }I}&+ (R) and clf
& (R) it is more

convenient to use the Doyle-Turner representation of the
effective interaction potential, which consists of an ana-
lytical 6t to the atomic scattering factor of the form

2~5' (4~) ') a.
~

—
~

exp( —4n. r /b. ), (46)
mp ) b~)

where mo is the electron rest mass. In the present study
we used the following representation for f(s):

U(r) =—

f(s) = ) a, exp( —b, s'), (45)
2

where s = q/4vr. In real space the potential of a single
atom can be expressed in terms of a set of coeKcients

ab') ~

5 3

f(' )(s) = O) a '
exp( —[b( ') + ](c]s ) +i 8 ) a exp( —

[b~ + p/2]s )
j=1 j=1

3

+i(0 —8') ) a( ) exp( —[b(- ) + p]s'),
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TABLE I. The coefFicients of the Doyle-Turner expansion (47) for atomic As and Ga for E = 14
keV and T = 800 K.

2.236807
2.839050
1.445425
0.637972
0.153667

2.131248
2.512511
1.605124
0.691159
0.156772

(TDS) gaAs
0.378741
0.644963
-0.091111

0.0
0.0

(TDS) gaa
0.268100
0.667653
-0.114010

0.0
0.0

(DDS) gaAs
1.013115
0.967085
0.285496

0.0
0.0

(DDS) gaG
0.899768
0.831471
0.245848

0.0
0.0

As
47.638923
13.820734
2.673381
0.619943
0.071465

Ga
69.589595
17.413796
3.170213
0.704249
0.076906

b(TDS) g2
As
2.902726
1.396553
0.184380

0.0
0.0

b(TDS) g2
Ga
3.317216
1.314195
0.224565

0.0
0.0

b(DDS) g2
As
2.967957
0.327727
0.023353

0.0
0.0

b(DDS) g2
Ga
2.584799
0.309689
0.022662

0.0
0.0

where y, = 82rz(uz). All the parameters (a2, b2) enter-
ing (47) have been deterxnined by Levenberg-Marquardt
fitting5~ to the Doyle-Turner form of data taken either
from the International Tables for z-nxy Crystallograrjhy
or evaluated by two-dimensional integration of (43) and
(44). The results obtained for Ga and As atoms are sum-

marized in Table I (note that the coefficients a( ) and(TDS)

6 are temperature dependent, while the other coef-(TDS)

ficients are not).
As follows from (43) and (44), the efFective interac-

tion U(' ) is periodic within any plane parallel to the
initially Hat surface of the crystal and so can be ex-
panded as a two-dimensional Fourier series U('s)(r) =

Us(z) exp(ig x), where g is a two-dimensional re-

ciprocal lattice vector and x = (x, y). Each of the wave

functions 4&+ (R) and i'~+&~ (R) can be represented in a
sixnilar form as two-dimensional Bloch functions,

~".'. (R) =).C',")( ) p('lk( .) +gl ) (48)

resulting in a system of coupled second-order differen-

tial equations for the functions Cz (z). This system of
equations in most cases has to be studied numerically,
and two types of approximation have in the past been
employed. Oness requires the expansion (48) to include
as many terms as possible (e.g. , xnore than a hundred),
while the other (see, e.g. , Refs. 11 and 60) is essentially
a one-dimensional approxixnation, i.e., it includes only
one term of the series (48), namely, 4o (z). In princi-
ple the first approach should be followed, but in many
cases this involves substantial computation which some-
times hinders a qualitative understanding of the results
obtained. The second approach has the serious disadvan-
tage of being basically qualitative, and, in particular, does
not take into account the phenomenon of the resonance
scattering. However, numerical implementation of
this techmque is far simpler, which is particularly advan-
tageous if, as here, a prelixninary analysis of dynamical
effects has to be performed. All the results described
below have been obtained using this one-dimensional ap-

proximation @&(
) (R) = C'o (z) exp[i)'c(no)~~ x], which

was described in detail in Refs. 11 and 60.
We start from an evaluation of the total diffuse scat-

tering cross section. Following Mott and Massey, we
express the total current of difFusely scattered electrons
in terms of the imaginary part of the effective interaction
potential as

da (
~ (DDs) + ~ (TDs)

)

dr ImU(' ) (r) I
i'&+„(r)I . (49)

V

In the case of one-dimensional diffraction the diffuse scat-
tering cross section per unit surface area is

=(Avsia(o) ~/ daj aa

d U'""( )I~o"'( )I' (50)
h k ins( o

where (o is the grazing angle and A is the area of the
surface. Taking into account the conservation law (24),
we obtain that IRI + ot t + o't t = 1, where IRI
is the coherent intensity. This equality makes it possi-
ble to evaluate the relative contributions of diffuse and
thermal diffuse scattering to the total incoherent scatter-
ing cross section for any particular value of (o, avoiding
the necessity of carrying out direct numerical integra-
tion of the second terxn on the right-hand side of Eq.
(39) over the entire solid angle 42r. Figure 7 shows the
dependence of the coherent intensity IRI2 and the cross

sections o't
&

and o'& t on the grazing angle (o at(DDS) (TDS)

various times. As follows &om the results shown in Fig.
7, in the region where the surface reBectivity is apprecia-
ble the TDS cross section (ot t ) is almost insensitive
to the conditions existing at the surface, and the coher-

ent intensity varies in antiphase with respect to o~ ~

This points clearly to the fact that it is the variation
of the surface morphology which is largely responsible
for oscillations of the specular RHEED intensity in the
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FIG. 7. The probabilities for various channels of scatter-
ing versus the grazing angle of incidence for a singular GaAs
(001) surface. The parameters are T = 800 K, N = 16,
E=14keV, a dna =1ML/s

FIG. 8. Temporal evolution of the step density, the cross
section 0DDs of the disorder diffuse scattering, and the spec-
ular (coherent) intensity ~RO~ for the GaAs (001) singular
surface. The parameters are T = 800 K, N = 16, E = 14
keV, and (0 = 3.72'.

vicinity of the Bragg conditions of incidence (i.e. , where
the coherent part of the surface reBectivity is sufFiciently
large) .

To understand this in more detail, we analyzed the
temporal evolution of the coherent intensity ~R~2 and the
diffuse scattering cross section o~ ~ for the (008) Bragg
condition, where the peak of the reaectivity at E = 14
keV corresponds to (o ——3.72'. The results obtained for
two different sizes of a subsection are depicted in Figs.
8 and 9. For comparison, the upper curve in each 6gure
shows the temporal evolution of the step density (31),
and there is an apparent similarity between the curves
describing the dependence of the diffuse scattering cross
section o'~ ~ (t) and the density of steps D(t). It should(DDS)

be emphasized that elimination of the contribution of the
diffuse scattering [i.e. the term (44)j from the effective
interaction potential U~ +~ changes the phase of the os-
cillations of ~R(t) ~2 by n and there remains no similarity
between the behavior of iR(t) ~

and —D(t).
A possible explanation of this phenomenon (note that

the existence of a strong correlation between the tem-
poral evolution of the specular intensity and the density
of steps for the Bragg conditions of incidence has been
observed recently; see, e.g. , Refs. 18 and 53) can be ob-
tained by analyzing the form of the standing wave pat-
tern, i.e. the inhomogeneous distribution of the density
of high-energy electrons in the vacuum. This distribution
appears as a result of interference between the incident
wave and the wave re8ected &om the crystal surface, the

0.9::-

t0 0.8-
C

o 0.7,:-
I 0.6::-

0.5::-
04:J I ~ ~ ~ ~ I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1 0.0

0.2

t~ 0.1

0.05

O
& 004

0.03 I ~ ~ I el I sa I ~ ~ ~ ~ alt ~ & ~ s ~ I ~ a ~ a I ~ as ~ ~ ~ ~ 3 ~ I a

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

t(sec)

FIG. 9. Same as for Fig. 8 except that N = 64.

o.o
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 B.Q 9.0 10.0

0.
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FIG. 10. The distribution of probability density in the
one-dimensional standing wave pattern. The upper curves
correspond to the Bragg condition of incidence (0 ——3.72'
(i.e., there is a peak in the surface refiectivity at (0 ——3.72').
The lower curves show the structure of the standing wave
pattern existing for the angle of incidence which is far away
from the Bragg condition. Six curves shown in each 6gure
correspond to t =4.0, 4.1, ... , 4.5 s, and v = 1 ML/s

effect of which was discussed by Peng and Cowley. For
(p = 3.72 this standing wave (the upper curve in Fig.
10) has intensity maxima in the vicinity of centers of
imfilled atomic layers [the GaAs(001) surface consists of
consecutively distributed layers of Ga and As atoms oc-
cupying the positions zA, ——Md and zG~ = (M + 1/2)d,
where M is an integer and d = 1.41 A]. In the crystal

bulk, the corresponding solution O'I,
+ (R) has intensity

minima in the vicinity of atomic planes, resulting in a
substantial decrease in the probability of phonon scat-
tering (the so-called "anomalous transmission" effectsr),
and in an increase in the cross section of diffuse scatter-
ing by fluctuations of the lattice site occupation numbers
occurring in the growing layer.

It is important to emphasize that standing waves of the
form shown in Fig. 10 arise not only in the initial state
of scattering, but in the anal state as well. This follows
from the apparent symmetry of formula (40) with respect
to the rearrangement no ++ —n. In particular, the wave

function of the final state 4 +& (R), corresponding to
the grazing angle of scattering („tt ——3.72', has exactly
the same form as the wave function shown in the upper
part of Fig. 10. Arlp~~ents similar to those discussed
above indicate that we can expect not only some relative

enhancement of ot~, l in the vicinity of (e = 3.72', but
also some enhancement in the differential scattering cross
section for (,«tt 3.72'.

Equation (40) shows that in order to calculate the
difFerential scattering cross section, we need to evaluate
the two-dimensional Fourier transform of the correlation
function (29). Performing summation over the lattice
sites, we arrive at

(N2t/7-) '~~ ~l+ t' ( ) t' ) —]. )F p(q~~)= ~ p) 2 & 2 [ ]
1 2 lexp( —N &/r)¹a —1 +/! (¹y g ¹—1)

+ 1 + 2 ) (1 —j /N) cos[(qll) oj]
N

1+ 2 ) (1 —j /N) cos[(q~~)„oj]

(51)

where a is the period of the crystal lattice in the lat-
eral direction. The first term on the right-hand side of
(51) does not depend on q~~ and describes the homoge-
neous background of diffusely scattered electrons. The
second term can be evaluated using the Euler-Maclaurin
summation formula, es g. ~(1 —j /N) cos(jqa) = 2[l-
eos(qaN)]/N(qa)2, and exhibits a notable maximum in
the vicinity of q~~

——O. This maximum exists at any value

(„qtand appears as a vertical streak in the angular dis-
tribution of the diffusely scattered electrons. This streak
is distinguishable in Fig. 11, where the distribution of
incoherently scattered electrons is plotted as a function

I

of azimuthal and grazing angles for a coverage of half a
monolayer. The bright horizontal lines in Fig. 11 are
the horizontal (004) and (008) Kikuchi lines which re-
sult &om the aforementioned effect of formation of the
standing wave pattern in the final state of the scattering
process.

An interesting question concerns the temporal evolu-
tion of the pattern shown in Fig. 11. In Fig. 12 three
curves are shown representing the distribution of the dif-
fuse intensity along the streak corresponding to q~~

——O

at various times with increasing surface disorder. As fol-
lows from the results shown in Fig. 12, it is the (008)
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1

E —K —U+ iO

can be represented by an infinite series of the form

g = gp + gpUgp + gpUgpUgp +

where

10— Jls

E —K+i0
In real space gp ——gp(r, r') can be written as

we can write explicitly for (A5) and (A2)

s~+~(r) = f d r"r(rr"), exp(ig r"),

(A2) and

g(r, r') = f d r"P(r, r'")go(r", r').

A3
Substituting (A4) into (A8) we arrive at

g(, ') =,d "P(
(2~)s E —E, + io

(A7)

(A8)

dsq exp[iq (r —r')j
(2gr)s E —Eq + i0
m exp(iIg )r —r'))

2grh'
(A4)

where Eq ——h qs/2m. By definition, the function 4(+)
is the sum of the series

@' ' = P+ goUP+ goUOoUP+ ", (AS)

'P = 1+gpU+ gpUgpU (AB)

where 4) represents the incident wave. Introducing the
operator

Using Eq. (A7), we transform (A9) as follows:

dsq 4&+ (r) exp( —iq r')
(2n.)s E —Eq+io

(A9)

(A10)

Using the symmetry property of the Green's function
g(r, r') = g(r', r) and changing the variable of integra-
tion q -+ —q, we arrive at (37). Note that in our deriva-

tion we did not assume the operator U to be Hermitian,
so that formulas (A10) and (37) are valid for the general
case of a non-Hermitian and nonlocal interaction poten-
tial.
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