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Exciton properties and optical response in In Ga1 As/GaAs strained quantum wells
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Exciton binding energies and optical response in quantum wells and in multiple quantum wells

of GaAs/In Gay As/GaAs are computed by a variational envelope-function procedure using the
four-band model and the simpler two-band model. The eKect of hydrostatic and uniaxial strain are
considered from a virtual-crystal stress Hamiltonian. The physical parameters used for the alloy
(In Gaz As) are obtained by interpolating the parameter values of pure materials (GaAs, InAs).
We verify that band-oHset values in the range of 0.30—0.45 give exciton states and optical response in

good agreement with experiments. The light-hole exciton energy is also well reproduced by theory
and results are very close to the continuum states of the well, its binding energy being due to the
attraction of the electron, localized inside the well.

I. INTRODUCTION

Pseudomorphic epitaxial layers grown on a bulk sub-
strate have attracted great interest because lattice strain
can be considered an additional parameter for tailoring
the optoelectronic properties of nanoscale devices. In
the last five years, pseudomorphic In Gaq As/GaAs
heterostructures have been intensively studied 9 and
their physical properties have been shown to be related
to exciton localization and strain e8'ect. Some points
are still open, such as the confinement properties of the
light-hole excitons (first or second kind of exciton), the
plastic phase observed in large quantum wells~o'~~ (in
which range of dimensions this phase is stable with re-
spect to the strained and dislocated phases), and finally
the valence-band-ofFset value (different values in difFerent
samples are reported in the literature2 s).

All these open questions have prompted us to under-
take a systematic study of excitons and optical proper-
ties in these materials without using Gtting parameters.
This study is also relevant for the theoretical evaluation
of new phenomena, like second harmonic generation in
asymmetric quantum wells, exciton localization in the
barriers, etc. The aim of the present paper is twofold,
namely, (a) to infer from interpolated known bulk values
the relevant features of quantum well excitons necessary
to reproduce a large number of experimental results re-
cently appearing in the literature, and (b) to study the
light-hole exciton in In Gaq As/GaAs quantum wells,
in the absence of hole con6nement.

It is well known that excitons in In Gaq As/GaAs
confined systems can be described in the effective mass
approximation by a 3x3 matrix Hamiltonian which in-
cludes the Luttinger Hamiltonian~2 and the internal
strain Hamiltonian for the valence band, and a
spherical effective mass Hamiltonian for the conduction
band, as well as the finite conlnement potentials. The

basic new idea of this paper is to account for the strain
eEects in the exciton Hamiltonian, by using a virtual-
crystal model for the strain.

In Sec. II, this 3x3 matrix Hamiltonian is solved
variationally by an envelope trial function expanded in
electron-hole subband products. Since the light-hole en-

ergy is very close to the continuum of states, a quasi-
continui~m of electron and hole states is adopted with
a con6nement box. In Section III we compute exciton
polarizability and absorption spectra, solving Maxwell
equations and taking into account spatial dispersion ef-

fects for single wells and for multiple quantum wells. In
order to have a simpler exciton model and to include
intersubband contributions a simpMed two-band model
is also introduced for strained materials. The calculated
absorption spectra compare well with experimental data.
In Sec. IV numerical results for a large set of samples are
obtained. Our model is able to reproduce resonant en-

ergies of heavy- and light-hole excitons, as given experi-
Inentally. Conclusions are given in Sec. V.

II. EXCITON PROPERTIES

It is well known that the large lattice mismatch be-
tween GaAs (ao——5.654 A.) and InAs (ao=6.06 A) leads to
biaxial compression strain when an alloy of In Ga~ As
is grown on the (001) surface of a GaAs substrate. This
can be decomposed into a uniaxial and a hydrostatic com-
ponent. The uniaxial deformation potential removes the
degeneracy between heavy- and light-hole bands at the I'
point, and the hydrostatic component rigidly shifts the
band gap energies.

Let us consider a multiple quantum well of
In Gaq As/GaAs grown along the [001] crystallo-
graphic direction, which we take as the z axis of our kame
of reference. The exciton Hamiltonian may by written as
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a 3x3 matrix,

A. Electron and hole states

We must first of all compute the electron and hole
states, and consider the in8uence on them of the strain
potential due to the lattice mismatch. This is done by
adding a strain contribution to the usual confining po-
tential due to the different band gaps.

The usual confining potential is the same as in the lat-
tice matched QW's, and is given by the difFerence in band
gaps AEg, subdivided between electron and hole states
according to a universal factor Q~, which is expressed
as a ratio between the shift AE of the fourfold degen-
erate I'8 valence band and the band gap shift DEg. We
will show that the exciton binding energy is not strongly
dependent on Q„"M, and will choose a value Q„which
accounts also for the strain.

The lattice mismatch introduces an additional term in
the confining potential, which is known in perfect crys-
tals. Using the virtual-crystal model we introduce this
term as an x-dependent interpolated potential, related
to the parameter

where ao(x) is the lattice parameter of the alloy.
The strain potential for the conduction band is

S =a (s +syy+r ),

(2)

with strain components given by

H,„=T„( i~—,„)—8„+[T,(—i~, ) + S + Eg (x)
+Vg „)(~r, —rh~) + V; (r„rh)]I . (1)

In the above expression T„ is the valence 3x3 Luttinger
Hamiltonian matrix, and S„ is the strain matrix of the
valence band. Analogously, T, is the electron kinetic en-

ergy in the conduction band, S is the corresponding hy-
drostatic energy, and Eg (z) is the unstrained alloy band
gap inside the quantum well (QW), which for z = 0 be-
comes the GaAs band gap. The electron-hole potential
is given by a Coulomb term Vc „~, and an image charge
contribution V;, produced by the dielectric function mis-
match. In order to preserve the matrix dimensionality in
Eq. (1), the terms in square brackets are multiplied by
the unitary 3x3 matrix I.

We compute the exciton envelope functions as a linear
combinations of the electron and hole subband products.
These subbands are the eigenstates of the Hamiltonian

(1) when the electron-hole interaction is neglected.

where the hydrostatic (bE~) and the shear (bEs) ener-

gies are given by

bEH = a, (s..+ ~yy+ ~„), bEs = b, (~..—~„). (6)

The strain by itself removes the fourfold degeneracy of
I's splitting it into heavy-hole (hh) and light-hole (lh)
states, separated by 2bE„and shifts the split-ofF (SO)
band. The hydrostatic component shifts rigidly all va-

lence states by bE~, and the conduction states by S,.
Consequently, we can fully account for the stress ef-

fect and band mismatch by introducing three different

band gaPs E s(z) (P =hh, lh, SO) between the conduc-
tion band and the corresponding P valence band inside
the quantum well. They result in the following expres-
sions:

E,"," = E,(*)+bE„—bE„
E'" = E""+2bE

+ [b,o —bEs — —(Ao —bEs) 2 + 8bEs2],
2

ESO Elh + (~ bE )2 + 8bE2

where Ao is the unstrained split-off energy, and the strain
energies are given by

bE~(z) = 2a(1 —Cg2/Cgg)bL, ,

bEs(x) = b(l + 2Cq2/Cgg)bL„

where a(x) (a = a, —aq) and b(z) (b = bq) are the alloy
deformation potentials. The above gaps imply different
confinement potentials for the electron (V,) and for the
holes (Vp), which are determined from the band-offset pa-
rameter Q„"M. On the other hand, in the case of strained
Gaq In As/GaAs quantum wells both bE~ and b'Es are
positive quantities, and hence the fundamental band gap
in the well region Egs(z) coincides with E"s. This means

that the experimentally measured valence band ofFset Q„
is given by Q„= ~b, Ehh~/[Eg(0) —Egs] = Vhh/(Vhh+ +e)~
where V„Vp ) 0. The knowledge of Q„ together with

Eqs. (8) determines the electron [V, (z)] and hole [Vp(z)]
quantum well shapes.

In the present work, the parameters of the In Ga~ As

alloy are obtained by a linear interpolation of the corre-
sponding bulk values given in Table I; for the band gap
and the split-off energies at temperature T = 2 K we

adopt the following expressions:

&yy bl & +sz 2bLC12/Cll (4)
Eg(x) = Eg(0) —1.5837x + 0.475x

EH —~Es 0 0
bEH + bEs ~2bEs

0 v 2bEs &o + bE~
: (5)

Here, c is the strain tensor, a, is the hydrostatic defor-
mation potential of the conduction band, and C~q and
Cq2 are the elastic stiffness constants.

For the valence band, we can write the strain Hamil-
tonian as

D (x) = A(0) —0.09x+ 0.14x .

The strained gaps can then be found for all alloy concen-
trations. We report in Fig. 1 the confinement potentials,
with a value of Q„=0.45. We observe that V, and Vhh

are much greater than Vih, and in the range of indium
concentrations adopted (x=0.05—0.3), the light hole is

not confined. To investigate the role of the band off-

set we have performed our further calculations with two
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ap (4)
C11 (dyn/cm )
C12 (dyn/cm )

a (eV)
b (eV)

Pl
3'2

E (eV)
b, p (eV)

GaAs

5.6533
11.88 10
5.38 10

-9.8
-1.7
6.85
2.10
12.5

1.5192
0.341

InAs

6.0584
8.33 10
4.30 10

-5.8
-1.8

19.67
8.37
14.6

0.4105
0.391

Prom Ref. 11.

TABLE I. Parameter values adopted in the exciton calcu-
lations (from Ref. 21).

~ex ~lh ~lh- SO
~SO-lh ~SO

Here, the diagonal matrix elements are given by

52
HP = — ~' +H, (z, ) + Hp(zh)2'

+V,.„,(~r. -r, ~)+V; (r„r,), (12)

gp + z2, p = (x, y) is the in-plane two-dimensional vec-

tor, and u; (z, ) and u (zh) are the electron and P-hole en-
velope functions, respectively. In this representation we

I

choose the coeKcients t PP to diagonalize the total ex-
citon Hamiltonian (1), which can be written in the form

different values of the offset parameter, Q„= 0.30 and
Q„= 0.45. These values are chosen among those sug-
gested in the recent literature, and we adopt them
without further justification. The energy is convention-
ally referred to the top of the heavy-hole subband inside
the well, taking the strain into account.

B. Four-band exciton model

where @Is denotes the in-plane electron P-hole reduced
mass, Hp is the hole-confining Hamiltonian in the z di-
rection,

t9 1 8
Hp(zh) = —— + VIs(zh)

2 Bzh, mp Bzg

and similarly for the electron-confining Hamiltonian H, .
The hole effective masses in the z direction mp as well
as the corresponding in-plane masses m~~p are related to
the Luttinger parameters by the relations

Let us consider the exciton envelope function O'P ex-
panded in the form

4~(r, z„zh) = ) C,, u;(z, )u (zh)F, (r),

mp mp
mhh/lh m)( hh/lh ) mSO =

+1 + 2+2

mp

(i4)

/3 = 1111, 111, SO, (10)

where F~(r) denotes the exciton amplitude,

The off-diagonal elements in Eq. (11) provide the lh-SO
exciton interaction

a'8 (1 1) 8
Hlh-SO HSO-Ih =

g I I ~ (15)
2 I9zh (rr11 russo) I9zh

0.2

I I I I

f

I I I I

(

I I I I The electron (E;) and hole (E~) energies produced
by quantum confinement and the corresponding envelope
functions are obtained as solutions of the following equa-
tions:

H,u; = E;u;, Hpu. = E~pu,p . p

0
0

g —0.2
o

—0.4
0 0. 1 0.2

X

V,„

I I I I I I I I I

0.4

i, j = 1,2, . . . , P = hh, lh, SO, (16)

where the matching conditions on the well-barrier sur-
faces consist in the continuity of the wave envelope func-
tions and the conservation of the current. ' In order to
obtain discrete numerable states also in the continuum,
we consider our system of single or multiple quantum well
to be placed inside a large one-dimensional box of thick-
ness Lb „and apply the so-called "no-escape boundary
conditions" ' given by

u;(+Lh „/2) = u, (+Lhp„/2) = 0.

FIG. &. Electron (V, ) and hole (Vp, P =hh, lh, SO) confine-
ment potentials as functions of the indium concentration x in
an In Gap As quantum well, where the valence band offset
is Q =0.45. Strain effects are included.

We calculate the exciton states in a system of single or
multiple QW by means of a variational procedure, which
is carried out in two steps. First, we take the exciton
amplitudes E~(r) in the form of a three dimensional ls-
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like wave function

F~ (r) = exp( —r/A~ ),

where the effective exciton radious A,. - is obtained by min-
%

imization of the H&" matrix element. The second step
consists in diagonalizing H'" in the basis 4~ with the
appropriate boundary conditions. Thus we obtain a set
of exciton energies E and the corresponding envelope
functions 4'", which are classified by the quantum num-
ber v (v = 1, 2, ...). In Table II we show results for the
lowest exciton binding energies R in a variety of quan-
tum wells, and compare them with available experimental
data.

C. Taro-band exciton model

m, = 0.067 —0.044x, m~b ——0.08 —0.04x,

mba ——0.454 —0.044x.

All the in-plane reduced electron-hole masses pp are cal-
culated as explained in Ref. 22 by relating them to the
Luttinger parameters [as shown in expression (14)]. The
other physical parameters used in the calculations are the
same as adopted in the four-band model and reported in
Table I.

(a) Heavy hole-ezcitons Th.e two-band Hamiltonian

IIhh is given by Eq. (12), and the masses m„mhh, and
p, gg are calculated as shown above. Then, we consider
exciton states 4,"-" attached to the ith electron and the
jth heavy-hole subband. The exciton envelope function
is taken as a quasi-two-dimensional 18-like function of
the form

In this section we use two decoupled Hamiltonians

Hzb and H&'„" to calculate the heavy-hole and light-
hole excitons, respectively. The effect of the split-off
band is included into the band effective masses and the
conduction —light-hole band gap E s. %e calculate the
alloy electron m, (z) and hole mp(z) effective masses
along the z direction by a linear interpolation of the cor-
responding values in bulk4 ~s GaAs (z = 0) and InAs
(z = 1) and obtain

TABLE II. Binding energies R of the lowest heavy-hole
exciton for a large number of quantum wells, where experi-
mental results are available. In the fourth, fifth, and sixth
columns we report theoretical results computed by four-band
(FB), two-band (TB), and mixed two-band (MTB) models.
All energies are given in meV.

0.05
0.05
0.05
0.05
0.05
0.10
0.13
0.13
0.135
0.135
0.135
0.15
0.15
0.15
0.22
0.22

L
(nm)
7.2
10.2
14.2
16.4
18.4
8.0
10.7
15.0
1.0
2.0
3.0
1.4
2.5
4.8
5.0
7.5

expt.
74
7.4
7.4
7.0
6.1
7.45'
7.0'
6.6'
4.2'
7.0'
7.8'
6.5'
8.8
9.2'
9.0'
8.3'

FB
7.18
6.81
6.53
6.37
6.19
6.98
6.80
6.38
4.67
6.99
7.32
6.26
7.88
7.99
7.83
7.50

Rhh11
TB
6.9
6.8
6.5
6.3
6.1
?.4
7.19
6.65
5.6
?.1
7.68
6.6
7.7
8.1
8.1
7.7

Rlhh

MTB
7.4
7.8
7.5
7.6
7.5
8.2
8.3
8.1
5.6
7.1
7.68
6.6
7.7
8.7
8.5
8.4

M. J. Joyes, Superlatt. Microstruct. 12, 293 (1992).
H. Hou, Y. Segawa, Y. Aoyagi, S. Namba, and J.Zhou, Phys.

Rev. B 42, 1284 (1990).
'J. Reithmaier, R. Hoger, and H. Riechert, Phys. Rev. B 43,
4933 (1991).
K. Moore, G. Duggan, K. Woodbridge, and C. Roberts,

Phys. Rev. B 41, 1090 (1990).

@hh( ) ( ) hh( )Fhh( (2O)

where u, and u"h are the solutions of Eq. (16), and

the 1s-exciton amplitude is F;""(p) = g2/+exp( —p/
A,z)/A, ~, with a similar expression for the 2s exciton.
The effective exciton radius A,~ is determined by a vari-
ational procedure as in the previous section, minimizing
the exciton energy Eh". Results for the same QW's pre-
viously treated with the four-band model are given in Ta-
ble II. We can observe that in the thickness range where
strong confinement occurs the results obtained with the
two-band model agree fairly well with those of the four-
band model and with experiments, thus justifying the use
of this simple model.

In the case of subband levels very close in energy (e.g. ,

QW's with large L ) the two-band approximation is not
sufBcient to give the precise exciton energy, and we may
improve the model by considering interaction between
subbands. The exciton envelope function is

@hh( ) ) Chh ( ) hh( )F

and the exciton energies E ""are determined by diago-
nalization of Hgg. Results kom this second step in the
calculation of the first heavy-hole exciton state 4 ""are
given in the last column of Table II.

(b) Light hole ezci tons: -Confinement from eLectron

loca/ization In widel.y used lattice matched QW's

(e.g. , GaAs/Ga(q )Al As), the above described two-

band model gives good results also for light-hole exci-
ton states. The main approximation in these models is
to neglect the small off-diagonal elements H~h s~ in Eq.
(11). In the present case of strained QW's, the light-hole
band always interacts with the split-off band because the
uniaxial strain component Eg gives a nonzero component

S~h so in the strain Hamiltonian (5). In the present two-

band approach, the strain effect infIuences the light-hole
band gap E~hs, according to Eq. (8). It yields a small

rigid shift of the exciton position toward the lower en-

ergies. Another feature of the light-hole states is that,
because of the strain, they are not confined by the well

potential Vjh alone. For this reason the light-hole qua-
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sicontinuum u'." is used, as deterxnined by the no-escape
boundary conditions of Eq. (17) and the contribution of
the well potential. Consequently, the xnain potential con-
fining the light hole is the Couloxnb potential of the elec-
tron, which is well localized inside the QW. As discussed
for impurity acceptors the convergence in the expan-
sion of the exciton function in the quasicontinuum states
is enormously improved when the confinement box is cho-
sen to have an appropriate length. We use this fact to
consider the box length lb „as a second variational pa-
rameter. In this way, we perform a minimization of the
exciton energy

Ei"[~~~ ~'~i&h] = ()d~uq"F~ithlII+IF~i&huq u~) (22)

with respect to the exciton radius and to lb „. The re-
sulting lb „may be interpreted as the length along the z
axis where the light hole is confined due to the electron
Coulomb field. Further improvement in the calculation of
Ezj may be obtained by inc luding more than one quas i-
continuum state; however in the interesting range of QW
widths, where the exciton states are well confined, this
procedure yields small corrections to E;",as well as to the
corresponding oscillator strengths. Thus, the above pre-
sented variational xnethod gives a possibility to classify
the exciton states by the corresponding subband indices
(ijP), as well as to discuss the optical properties of QW's
in terms of heavy-hole and light-hole excitons separately.

III. OPTICAL RESPONSE OF EXCITONS IN
MULTIPLE QUANTUM WELLS

We now consider the problem of computing the optical
properties, and to be close to the experimental situation,
we consider the case of multiple QW's. The Maxwell
equation for an electromagnetic wave at normal incidence
on the QW plane to be solved is

~2E(z) +, E(z) + —,P.„(z) = 0, (23)

where S',„ is the exciton polarization, and the steplike
function e's(z) takes the value s~ in the barrier and ss in
the well. We express the exciton polarization by means of
the exciton energies E" and the corresponding envelope
functions 4'") as given by Eq. (10) and obtain

where the coefficients c p are related to the Kane en-

ergy E~, the moment»m matrix elements in the bulk

l(clP~IP)l = c &Eamo/2, and c hh = 1/~2, c ~h

1/~6, and c so = 1/~3. The integral I"~ accounts for
the nonlocal character of the optical response and is ex-
pressed by

I"~((u) = ) dz [4'"~(z)]'Eg((d, z).
J

(27)

In the above equation, the subscript J labels the diferent
regions in the sample (barrier, well, substrate, etc.) and
the integration on z is performed in the corresponding
region.

We solve Eq. (23) in two steps: (1) we determine the
electric field in each Jth region of the multiple QW intro-
ducing two plane waves of opposite direction with arbi-
trary amplitudes Ag and Bg, and (2) we match the elec-
tric fields at each interface and solve exactly the Maxwell
equation as in Ref. 19. Thus, the electric field inside the
Jth region is given in the form

Ez(z) =
s

dz'(exp[iqg(z —z')]
2QJ 0

—exp[ —iqg(z —z')])F~(z'), (29)

where zJ is the begining of the Jth region, and

2

F&(z) = ——,) S„4 "~I"~. (30)

We apply the operator f dz4") to Eq. (28) and sum-

ming on J obtain a linear system of equations for the
unknown coefficients I"~. The axnplitudes AJ and BJ
are deterxnined by the boundary conditions on the inter-
faces, involving E~ given by Eq. (28).

Then, we calculate the re6ectivity r and transmission
t coefficients of the sample, and the absorbance A. The
absorbance A is given by

A = exp( —aLT') —1 = (1 I"I Itl )/(1 Irl ) (31)

Eg(z) = d4.g exp(iqgz) + Bg exp( —iqgz) + E~(z), (28)

where the wave vector qg = (d~eq/c, and sg is the value
of es(z) inside the region under consideration. The field
E&~ is a particular solution of Eq. (23) and gives

J'. (tz, z) = f y. (tz, z, z')X(z')dz'

= ) S"(ur)C "~I"'~ (ur),
vPP'

(24)

where the resonant part

has been separated from the spatial contribution

@"~( ) = ): ~ &;; '( ); ( )F;, (o)

SpS"((d)=,S() ——e Elc/4 z(um, o(25)

where o. is the absorption coefficient, and LT is the to-
tal length of the sample. We show in Fig. 2 the results
for a typical multiple QW, computed from the four-band
model of the previous section; the experimental data
for the same saxnple are also reported. The nonradiative
linewidths I'" to be inserted in Eq. (25) are taken to be
I'"" = 0.8 meV and I'~" = 0.7 meV. The total damp-
ings I'~ which result from our calculation are very close
to those given by the experiment;~ I'"" = 1.4 meV andI'" = 0.8 meV. We also see from Fig. 2 that the the-
oretical spectra are in good agreement in their exciton
positions and oscillator strengths.

In order to give a simpler interpretation of the absorp-
tion spectra which also takes into account the continuum
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o.„'(i,j,p, (u)

I

I i 460.0

I

I
I

I

I

I

t

I

I

0.6 I

0.4

L = 3 flIT1

x =-0. 1:35

lhh
'P'ex

1 1lh

1450 1460 1470 1480
h~ [meV]

1490 1500

contribution, we calculate the absorption coef6cient a by
means of the two-band model described in the previous
section. As shown in Ref. 23, o, is proportional to the
imaginary part of an averaged QW dielectric function
and may be written in the form

FIG. 2. Exciton absoption spectra of sn In Gai As/
GsAs multiple QW with L = 3 nm, x = 0.135, and s bar-
rier region of length 60 nm. The solid line shows the exciton
spectrum calculated for the four-band theoretical model; the
dashed line reproduces the experimental absorption (Ref. 7)
in the same sample. The energy levels and some electron and
hole states are given in the inset, where the light-hole exciton
level is also indicated. The value of the band mismatch is
Q„= 0.30.

2e EKc ~ppkd
QE~Epc7l (L~ + L~)7Ap

I';,' C(e)/E~ (c)
X CL6'

[E~ (e) —(fun) ] + 4(hu))21"

Here the index n labels the exciton ls (n = I) and 2s
(n = 2) bound states, t (e) is the Coulomb enhancement
factor, and the coefficient c,hh = 0, c,ih

——g2/3, and
the other c p coefficients are the same as in Eq. (25).

We show in Fig. 3 the absorption spectrum of various
polarizations for the same sample considered in Fig. 2.
%e can observe the remarkable agreement between theo-
retical and experimental line shapes and peak positions,
taking into consideration the fact that no adjustable pa-
rameters have been used. We see that the 28 states have
a very small intensity in comparison with the 18 excitons
and the continuum. Also the continuum absorption is
in a fair agreement with the experiment, but the light-
hole continuum is relatively weaker just near the edge.
That could be explained by a strain enhancement of the
in-plane masses and bulk matrix elements. The relative
shift of the lh exciton peak towards higher energies is
related to the choice of m~g and to the lh-So interaction.

IV. CALCULATIONS ON DIFFERENT SAMPLES

Calculations are performed both in the four-band
model and in the two-band model for a large number

I
' I T T T

t
T T T T t

'T &' T"" .
'

1
'T

(32)

where the index p (p = x, y, z) ref'ers to the polariza-
tion of the electric field, a„'" gives the contribution of
the bound exciton states, and a„' is the contribution of
the free electron-hole pairs (continuum). Expressing the
exciton matrix elements in terms of the Kane energy as
shown before, we obtain the exciton contribution, which
given in the electric-dipole presentation has the form
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FIG. 3. Absorption spectra of the same QW sample as in
Fig. 2, calculated by the two-band exciton model. The solid
line gives the absorption coefBcient n for an in-plane po-
larized electromagnetic wave (p = x, y), and the dotted line
presents the corresponding spectrum when the electric 6eld is
polarized in the z direction (n ). The interband contribution
is also given in this model. The dashed line gives the exper-
imental spectrum (Ref. 7). The value of the band mismatch
is Q„=0.45.
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of samples reported in the literature, with indium con-
centrations that range I'rom 5%%up to 22% and making use
of two difFerent valence band ofFsets, Q„= 0.45 and
Q„=0.30. The purpose is to better clarify the accuracy
of the two models and to decide on the role of the valence
band ofFset Q„, besides investigating the range of validity
of the virtual-crystal method for the strain calculation.
We observe from the results of Table II that the exciton
binding energies computed by the four-band model are
contained in the range of +0.5 meV with respect to the
experimental values and only for two samples is the dis-
crepancy greater than 1 meV. We obtain good agreement
also using the two-band model, while the interaction be-
tween subbands is required only for very large wells and
very small indium concentration, as expected &om the
fact that the cylindrical symmetry is less relevant in these
cases.

To first investigate the role of the band onset we have
carried out a systematic analysis of samples at 5'%%uo indium
concentration with the four-band model, and both band-
o8set values. The computed exciton binding energies as
functions of the well width are reported in Fig. 4, where
the experimental results are also given. We have chosen
the four-band model because for large wells and small
barriers the two-band approximation is less accurate. By
comparing the theoretical curves with the experimental
values as functions of well thicknesses we can confirm
the goodness of the interpolation scheme adopted for de-
termining the alloy parameter values. In Fig. 5 exciton
binding energies as functions of well thickness are given
for samples with larger indium concentration (x = 0.135)
with the two-band and the four-band model; we choose
Q„= 0.45, since the difFerence in Q„ is not significant, as
shown also in Fig. 4. The agreement between theory and
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FIG. 5. Exciton binding energy as a function of the quan-
tum well width I in the four-band model (solid line) and
in the two-band model (dashed line). Theoretical results are
given for an In Ga& As quantum we11 with z = 0.135 and
Q„=0.45. Experimental results are shown for QW's with
x = 0.135 [full squares (Ref. 7) and triangles (Ref. 3)] and
z = 0.13 [open squares (Ref. 7)].

experiment is excellent if we consider only the samples of
Ref. 7; in fact we reproduce the exciton binding energy
in the whole range of quasi-two-dimensional transition.
The samples of Ref. 3 are shifted by 0.5 meV, and
the systematic energy difference reported in Fig. 5 be-
tween our calculations and the experimental results can
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FIG. 4. Exciton binding energy as a function of the
well width L . Theoretical curves are computed for an
In Gai As quantum well with x = 0.05, and Q =0.45 (solid
line) and Q„=0.30 (dashed line). Experimental results are
shown for QW's with x = 0.05 [full squares (Ref. 8)] and
a = 0.07 [open square (Ref. 3)].

FIG. 6. Calculated absorption energy of the lowest
heavy-hole exciton state as a function of the well width L
in QW samples of In Gaq As strained (solid curve) and
unstrained (dashed curve). Experimental results are shown
for x = 0.13 [full squares (Ref. 7)], x = 0.135 [full triangles
(Ref. 7)], and x = 0.14 [empty triangles (Ref. 9)].
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be due to a diH'erent evaluation of the continuum thresh-
old, while the uncertainty between nominal and real pa-
rameter values of the saxnples has a minor role. It is
also worthwhile to observe that the values for very small
thicknesses (I ( 20 A) are computed on multiple QW's
(K ) 7) in the four-band model calculations.

To emphasize the role of strain efFects we finally report
in Fig. 6 the theoretical values and the experimental en-
ergies of the absorption peaks of the heavy-hole exciton
as a function of well width for quantum wells with indium
concentration z = 0.135 (Ref. 7). The theoretical exciton
energies computed with the four-band. model are shown
for strained samples (solid curve) and for unstrained ones
(dashed curve). The good agreement between theory and
experiments underlines the validity of the model adopted
for the calculation of the strain eKects.

V. CONCLUSIONS

in In Gai As/GaAs strained materials without fitting
parameters.

Results obtained with the four-band and the two-band
model compare very well with a large set of experi-
mental energies measured in samples with diferent well

thicknesses and diferent indium concentrations. Mul-

tiple quantum well calculations of the optical response
function give an excitation spectrum and a line shape
structure in good agreement with experiment showing ev-

idence for heavy-hole and light-hole excitons. The light-
hole exciton is con6ned because of the electron attrac-
tion, while the light hole alone would be delocalized.

Exciton energies are well reproduced by the theory in
a set of quantum wells with large indium concentration
(about z = 0.13); this agreement is obtained for a set
of samples grown in the same apparatus under the same
conditions (Ref. 7), provided the heavy-hole band-offset
value is in the range Q„= 0.30 —0.45.

We would like summarize the results obtained above
as follows.

Exciton variational calculations are carried out with
difFerent degrees of accuracy including the efFect of in-
ternal strain by a virtual-crystal approach. This allows
us to reproduce the heavy-hole exciton binding energies
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