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We report on the results of molecular-dynamics simulation studies of the classical two-dimensional
electron crystal in the presence of disorder. Our study is motivated by recent experiments on
this system in modulation-doped semiconductor systems in very strong magnetic 6elds, where the
magnetic length is much smaller than the average interelectron spacing ao, as well as by recent studies
of electrons on the surface of helium. We investigate the low-temperature state of this system using
a simulated-annealing method. We 6nd that the low-temperature state of the system always has
isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for
a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former
is characterized by quasi-long-range orientational order, and the absence of disclination defects in
the low-temperature state, and the latter by short-range orientational order and the presence of
these defects. The threshold electric 6eld is also studied as a function of the disorder strength, and
is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of
the electron How in the depinned state is shown to change continuously from an elastic How to a
channel-like, plastic now as the disorder strength is increased.

I. INTRODUCTION

Sixty years ago, Wigner predicted that at low enough
densities, the ground state of a collection of electrons
should have a crystalline form. Convincing evidence of
this Wigner crystal (WC) was first reported by Grimes
and Adams2 45 years later for a collection of electrons on
the surface of He. This system is at such low densities
that exchange effects among the electrons are negligible,
so that for all intents and purposes, it may be regarded
as purely classical.

More recently, there have been a number of studies
searching for the WC in semiconductor systems, where
considerably higher densities may be obtained. A major
drawback of semiconductors is that one usually needs to
introduce (randomly located) dopants in order to put free
electrons into the system. These dopants then become a
source of disorder, which competes with the intrinsic ten-
dency of low-density electrons to form an ordered solid
in their ground state. Indeed, in a bulk doped semicon-
ductor, electrons usually bind to the charged donors at
zero temperature, forming a completely disordered state
in this limit.

Great progress has been made on semiconductor sys-
tems since the invention of modulation doping. In this
class of materials, a two-dimensional layer of electrons
("two-dimensional electron gas, " or 2DEG) is collected
at the interface of two different semiconductors (typi-
cally, GaAs and Al Gai As), with the donor atoms set
back by some distance d from the electron layer. By fab-
ricating a sample with a large ratio dias, where ao is the
lattice constant of a perfect electron lattice, the greatest
source of randomness is relatively far &om the electrons,

and disorder effects become much less pronounced. {In-
deed, in situations where they do not crystallize, the elec-
trons have remarkably high mobilities, suggesting that
the electrons undergo very little elastic scattering. 4 s)
This sytem has thus become one of the leading candi-
dates for the observation of a WC.

This paper studies, using computer simulations, the
low-temperature properties of the two-dimensional WC,
in the low-density limit, where the electrons may be
treated as classical. Many of our results will also be ap-
plicable for higher-density electron systems in the pres-
ence of very strong magnetic fields. Our primary focus
will be on low-temperature configurations and how they
are affected by disorder, and on the behavior of the elec-
trons in the presence of an electric field (i.e., depinning
properties) .

The application of a strong, perpendicular magnetic
field further enhances the prospects of stabilizing a WC
in the 2DEG. In the absence of a magnetic field, the
zero-point kinetic energy cost of localizing electrons at
lattice sites competes with the potential energy gained
by forming a lattice; at high enough densities, the for-
mer will always destabilize the lattice. By contrast, in a
magnetic field B electrons may be localized to within a
length scale Lo ——(,&), and simultaneously have their1/2

lowest possible kinetic energy. Since lo becomes arbi-
trarily small in the high field limit, one may form highly
localized wave packets, &om which a WC state may be
constructed. Furthermore, for /0 « ao, exchange effects
are negligible, and the ground state of the system may
in a sense be regarded as the classical ground state of
the electron system: the electron wave packets form a
crystalline state, and the potential energy of the configu-
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ration is given to an excellent approximation by the clas-
sical con6guration energy. Because most of the results
presented here —specifically, low-temperature configu-
rations and depinning fields —are essentially static prop-
erties of the electrons, they should be applicable in the
presence of strong enough magnetic 6elds that exchange
efFects may be ignored.

Many investigations of systems in the limit lo &( ao
for the GaAs system showed some signs of behavior
associated with the WC. In particular, samples with
setback ratios d/as of the order 3—4 and larger have
been found to be strongly insulating in the limit of low
temperature. @ This behavior is consistent with a crys-
talline ground state, which is pinned by an arbitrar-
ily weak impurity potential, and hence will not carry
current in weak electric 6elds. Experiments on sam-
ples with still higher setback ratios d/ao, and remark-
ably high mobilities, have shown other signatures of WC
behavior. ' A depinning threshold as a function of
applied voltage has been observed, ' ' and broadband
noise in the current is seen to emerge above the depin-
ning transition. i4 (However, narrow-band noise —often
seen in charge density wave systems —has not been
observed. i4) Our simulations address this phenomenol-

ogy, and in particular attempt to sort out both the qual-
itative and quantitative changes in depinning behavior as
the strength of the disorder is varied.

As pointed out above, in the low-density limit, the
2DEG may be treated as classical. Using a combina-
tion of molecular-dynamics (MD) methods and analysis
using continuum elasticity theory, we have studied the
eH'ect that a disorder potential has on the classical WC.
In this work, we report the results and details of our
numerical simulations. Our continuum elasticity theory
analysis will be presented in detail elsewhere, although
some of the results of that work will be explained be-
low. Some of the results discussed here have been re-
ported previously. The questions we wish to address
are as follows: (1) Is there a qualitative difference among
the ground states of samples subject to diH'erent levels
of disorder, or are they the same, with different corre-
lation lengths'? (2) How does the depinning threshold
electric field vary with the strength of disorder'? (3) How
does the current flow when the crystal is depinned, and
in what situations might one expect to observe narrow-
band and/or broadband noise?

To be speci6c, we focus on modulation-doped semicon-
ductors as our model system, and control the strength
of disorder by varying the ratio d/ao. Experimentally,
this may be controlled either by fabricating several sam-
ples with difFerent values of d, or by varying the den-
sity of electrons in a single sample (for example, via a
gate geometry). Our study is also directly applicable to
studies of electrons on thin helium films, where disor-
der may be introduced by using a glass slide substrate
as well as to charged polystyrene sphere systems sus-
pended in water. We focus on the extent of order in
typical low-temperature states, which are generated us-
ing a simulated-annealing method. We will present evi-
dence that there is a zero-temperature phase transition
in this system as a function of d/ao, from a state with

power-law behavior in the orientational correlation func-
tion to one with an exponential falloK, as d is decreased.
We call the former state a hexatic glass, and the latter
an isotropic glass. This transition suggests that there is
not just a quantitative, but rather qualitative difFerence

among the zero-temperature states of electron layers sub-
ject to difFerent levels of disorder.

We also study how current flows at low temperature
for the difFerent types of ground states, using our MD
simulations, in the presence of an electric 6eld. We com-
pute the depinning field Eii, as a function of d/ao, and
there find direct evidence of the phase transition. To
our knowledge, this is the first suggestion that depinning
properties of a solid may be used to probe a structural
phase transition. We will demonstrate a striking difFer-

ence in the current flow patterns of the two cases. For
the hexatic glass, we find an essentially elastic flow of
the electrons just above the depinning transition; i.e., all
the electrons participate in the conduction, and maintain
roughly a constant position with respect to the moving
center of mass. In the isotropic glass, we 6nd a more
plastic flow, in which the crystal "tears"; in the most
strongly disordered cases, large patches of electrons may
be completely immobilized, while the rest of the electrons
carry the current. Some consequences of the motion for
the noise spectrum will also be discussed.

This paper is organized as follows. For readers inter-
ested just in our results, Sec. II describes our model, and
then discusses our principal 6ndings. Readers interested
in the details of our calculations may find our molecular-
dynamics and simulated-annealing methods described in
Sec. III. Section IV describes the calculations of depin-
ning 6elds and current patterns, and we conclude with a
summary in Sec. V.

II. MODEL AND RESULTS

Our model system for the disordered WC is motivated
directly by the modulation-doped systems described in
the Introduction. We consider two planes of charges
(Fig. I). One contains 1V electrons that are free to move
within the plane in response to any forces exerted upon
them. The other contains N positively charged ions
which are quenched; i.e., 6xed in position. These ions are
placed in the plane completely randomly, with no corre-
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FIG. 1. Model system of N electrons and N quenched pos-
itively charged ions, in planes separated by a distance d.
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lation among the ion positions. The ion layer is set back
&om the electron layer by a distance d, which controls
the strength of the disorder. The electrons and ions in-
teract via the usual Coulomb potential, with a dielectric
screening constant K = 13, as would be appropriate for a
GaAs system. We focus on the low-temperature states of
the electrons using a simulated-annealing method, which
will be described in detail in Sec. III. We have studied
system sizes up to %=3200 electrons (and 3200 ions), and
employ periodic boundary conditions. Our electron den-
sity in these simulations is taken to be 5.7 x 10 cm
We study both the low-temperature configurations of the
electrons, and their response (i.e., motion) when an elec-
tric field is turned on. The latter is studied using direct
molecular-dynamics simulations of the classical motion
of the electrons; this is described in detail in Sec. IV.

The ground states that we find, for arbitrarily large val-
ues of d, are never crystalline: the positional correlation
function falls oK exponentially; i.e., there is short-range
positional order. Such states are most properly classified
as glasses. It is well known that any coupling of ran-
domness to an otherwise perfect crystal will destroy the
long-range positional order normally associated with a
crystal in two dimensions. However, at a minimum this
occurs because of smooth fluctuations that are forced into
the crystal to optimize the total energy (including cou-
pling to the disorder). These may be described by a dis-

placement field u(R), where (R) are the lattice sites of
the perfect crystal, which varies slowly on the length scale
ao. Such a state has a power-law decay in the positional
correlation function, ' which is sometimes character-
ized as quasi-long-range order. Because of this property,
such a state is usually called a crystal, 2 in spite of the
fact that this state is not crystalline in the sense of clas-
sical crystallography.

The states we find, however, are never of this form,
regardless of how weak the disorder (i.e. , how large d)
is. The reason is that isolated dislocations become in-
cluded in the ground state configuration, which cannot
be characterized by smooth displacements from a per-
fect crystal. (A dislocation is a site at which a line of
electrons along a principal axis of the crystal comes to
an end. ) This type of defect spoils the quasi-long-range
order associated with the "crystal" state.

Figure 2 illustrates several of the low-temperature
states we have generated using our MD method, for dif-
ferent values of d/ao. For large values of this parameter
[Fig. 2(a)], isolated dislocations (denoted as bound pairs
of + and x in the figures) may clearly be seen in the
configuration. As d is further increased, we have found
that the density of dislocations decreases, until the aver-
age spacing between them exceeds our sample size. It is
interesting to note that grain boundaries do not appear
in our configurations. Some of the present literature on
the WC has assumed that the efkct of disorder is to in-
troduce well-ordered microdomains, separated by sharp
boundaries. This would be reflected in our configura-
tion if the dislocations collected together to form grain
boundaries. ' %'e have found that this is not energet-
ically favorable.

As the ratio d/ao is decreased [Figs. 2(b) and 2(c)], we
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FIG. 2. Sample ground state configurations, for difFerent
levels of disorder. Locations of disclinations are marked by x
for a sevenfold site, and + for a 6vefold site. Bound pairs of
these defects are equivalent to dislocations. Pictures contain

1600 particles; actual simulation samples contained 3200
particles. (a) d/ao = 1.5, (b) d/uo = 1.2, and (c) d/ao = 1.0.
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FIG. 3. Orientational correlation functions for various set-
back distances. DifFerent symbols represent data for sam-
ples with different setback distances. Prom top to bottom,
d/ao = 2.0, 1.7, 1.5, 1.3, 1.2, 1.1, 1.0, 0.9, and 0.8.

have found that the ground state of the WC undergoes a
zero-temperature phase transition, from a "hexatic glass"
to an "isotropic glass. " Both states must be characterized
as glasses, because there is only short-range order in their
positional correlation functions. The difFerence between
these states may be understood in terms of defects called
disclinations. ' These are lattice points which have the
incorrect number of nearest neighbors. In a perfect WC,
which has a triangular lattice as its ground state, discli-
nation points may have (for example) five or seven near-
est neighbors, whereas the perfect lattice points have six.
A charge s may be assigned to the disclinations, so that
8+ 6 is the number of nearest neighbors surrounding the
disclination. In the hexatic glass state, disclinations are
present in tightly bound pairs ("neutral, " in terms of
disclination charge, ) separated by a distance of order of
a lattice constant. Such a bound pair is equivalent to a
dislocation. One never finds isolated disclinations in this
state. As the ratio d/ao is decreased, one may see discli-
nation pairs which ate separated by more than a single
lattice constant, but are clearly still bound together. Be-
low the critical setback distance, one can find isolated
disclinations in the system.

As in the case of isolated dislocations, isolated discli-
nations tend to spoil correlations. The relevant corre-
lation function for this disclination-unbinding transition
measures the orientational order in the system. In the
absence of isolated disclinations, the orientational corre-
lation function falls off only as a power law (quasi-long-
range order); when they are present, it falls off expo-
nentially (short-range order). Figure 3 illustrates the
orientational correlation functions for several values of
d/ao. (Precise definitions of the positional and orienta-
tional correlation functions will be given in Sec. III be-
low. ) We estimate &om this that the transition between

the states occurs near d, /ao ——1.15. It must be noted
that our simulations include neither the finite thickness
of the layer, nor the finite value of the magnetic length lo
when a magnetic field is present. Both these efFects tend
to soften the electron-electron interaction relative to the
electron-ion interaction, so we expect the actual value of
d to be somewhat higher than this value. Nevertheless,
it would be useful and interesting to look for this tran-
sition in real samples —either in heterostructures or on
He film systems —as a function of d/ao. A novel way of
detecting the transition by measuring the depinning field
is described below.

Readers familiar with the Kosterlitz- Thouless-
Halperin-Nelson- Young (KTHNY) theory of two-
djmensjonal meltjng2 ' ' 6 wjll recognize the phe-
nomenology of this transition. In the KTHNY theory,
a two-dimensional crystal in the absence of quenched
disorder but at finite temperatures undergoes two phase
transitions as temperature is raised. At the lowest tem-
peratures, thermally activated dislocations are bound
together into pairs with equal and opposite Burger
vectors. This state is a crystal in the sense described
above; there is a power-law decay in the positional cor-
relation function. Furthermore, there is long-range or-
der in the orientational correlation function. Above the
Kosterlitz-Thouless melting temperature, these pairs
become unbound, and the crystal melts into a "hexatic"
phase, characterized by short-range positional order and
quasi-long-range orientational order. There are no iso-
lated disclinations in this state. Finally, at a second
higher temperature, the disclinations that make up the
dislocations themselves unbind, and one finds both iso-
lated dislocations and disclinations in typical configura-
tions. Both the positional and the orientational correla-
tion functions are short ranged, so that this state may be
appropriately characterized as a liquid.

Clearly, the zero-temperature behavior of the electron
solid in the presence of quenched disorder (i.e., the inher-
ent disorder due to the random locations of the dopant
ions) is partially analogous to this. In particular, we see
an analog of the disclination-unbinding transition; how-
ever, the dislocations never pair together, even in the
very weakly disordered case. It has been argued pre-
viously, based on a renormalization group analysis of a
model closely related to ours, that a crystal is unstable
with respect to the formation of free dislocations in the
presence of arbitrarily weak quenched disorder. 2 Both
these results —the absence of the crystal state, and the
disclination-unbinding transition —may be understood
from a continuum elasticity theory model of the elec-
tron crystal. The details of this analysis will be given
elsewhere.

It is interesting and instructive to see how the impurity
driven disclination-unbinding transition is analogous to
the temperature driven Kosterlitz-Thouless transition.
Here we present only the result; details will be presented
elsewhere. When one takes into account screening by
dislocations, it may be shown that the energy to create
an isolated disclination (along with its screening cloud)
has the form Ei ——E, ln(A/a02), where A is the sys-
tem area and E is the core energy of a dislocation.
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However, there is also an energy of interaction E2 be-
tween the disclination and the &ee dislocations created
by the impurities. If we consider an ensemble of disor-
der realizations, there will be a probability distribution
P(E2) for E2 to take on a particular value. The dis-
tribution of these energies we find to take the form
exp[—E22/4vrpsaoE, 1n(A/ao2)], where ps is the dislocation
density (in the absence of the disclination). The prob-
ability that it will be energetically favorable to create a
disclination at a given site (Ei + E2 ( 0) thus scales as

A / l" 0
~ Noting that the number of available sites

to create a disclination scales as A, the total number of
sites in a sample for which it is favorable to create a
disclination scales as A / ~~' 0, and is nonvanishing in
the infinite size limit if

psao ) ——1/14.
1

4x

This is the analog of the original Kosterlitz-Thouless
result. We have found in our simulations that the tran-
sition appears to occur at slightly lower dislocation den-
sities, around psao = 1/(20 + 2).

Beyond the ground state structure of the WC in the
presence of quenched disorder, we have also investigated
the depinning properties of this system. Figure 4 illus-
trates the trajectories of the electrons over a Gnite time
interval for difFerent values of d/ao, for electric fields just
above the depinning threshold. Figure 4(a) shows these
trajectories for d/ao ——1.5. The motion of the electrons is
quite uniform, and may be described as an elastic flow. It
is important to note, however, that in the time domain,
this flow is not as uniform as it appears in this Ggure:
different patches of the WC actually move at different
moments, so the motion is more of a "creep" than a flow.
However, when averaged over a long enough time, the
flow is uniform.

As the disorder increases [Fig. 4(b)], this creeping mo-
tion becomes more pronounced, with the waiting time
for motion of certain patches sometimes becoming quite
long. There is also an interesting and somewhat surpris-
ing phenomenon that becomes important as we pass from
the hexatic to the isotropic glass: the direction of mo-
tion is correlated with the local crystal axis directions,
so that the the local velocity is not exactly along the
direction of the applied electric Geld. Because the sys-
tem does not possess long-range orientational order, this
means that different regions will slide in diferent direc-
tions, and in particular will at some locations "crash"
into one another. For such grains, there may be long
waiting times before the electrons at the regions where
these merge can rearrange themselves and continue on.
The rearrangement is often accompanied by the tempo-
rary formation of defects (dislocations or disclinations)
which appear in the process of rearrangement. These
regions clearly represent bottlenecks in the flow of the
electrons, since crystal must become highly strained in
order for the different Bow directions to resolve them-
selves. Because of the rearrangement of the lattice in the
process of sliding, this low must be described as plastic.
The importance of plastic flow in determining depinning
properties has been emphasized recently for charge den-
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FIG. 4. Trajectory plots for 3200 particles for depinned
WC with various levels of disorder. (a) d/ao ——1.5, (b)
d/&0 = 1.2, and (c) d/ao ——0.9, taken over a center of mass
shift of EX/ao ——0.56, 0.44, and 0.36, respectively.

sity wave (CDW) systems. si

At still stronger disorder strengths [Fig. 4(c)], the creep
behavior completely dominates the motion of the elec-
trons. In this limit, the wait time for some patches to
move is longer than our simulation times; i.e., certain
regions of the crystal never move at all. This means
the solid "tears" when it depins. The flow in this limit
appears channel-like, with only certain regions partici-
pating in carrying the current. Such channel-like motion
has been observed previously in studies of the depinning
properties of (and diffusive motion in) Rux lattices in
thin superconducting films. Another important aspect
of the motion that is not obvious &om the trajectory
plots is that the channels do not remain constant as a
function of time: diBerent channels appear to open and
close as the simulations progress. Thus most of the par-
ticles do participate in the current, although at any given
moxnent only a small percentage of them have a signifi-
cant velocity.

Another interesting result of our work is the behav-
ior of the threshold electric field Etp, for depinning as a
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function of d/ao. We find that the depinning field scales
exponentially with the setback distance, as may be seen
in Fig. 5. This effect may be understood if one assumes
that the pinning is roughly determined by the strength
of the electron-ion potential interacting with a perfect
WC. This interaction scales approximately as e
where G is a typical primitive reciprocal lattice vector
magnitude, of order 2m/ao. It should be noted, however,
that the defect structures induced by the disorder are also
important in deterxnining the strength of the depinning
field. Configurations generated by relaxing an initially
perfect crystal in the presence of the disorder potential,
which does not allow isolated dislocations or disclinations
to form in the resulting state, tend to have signi6cantly
smaller depinning 6elds than those containing these de-
fects. The great sensitivity of Eix, to d/ao may potentially
explain the rather large disparity found in measurements
of the depinning field in diBerent samples.

A very unusual property of E&h is its behavior in the
vicinity of the transition &om the hexatic to the isotropic
glass. One can see a break in the curve in the vicinity
of d = 1.15ao, which we associate with the transition be-
tween states. Physically, we associate this break with the
change in the orientational correlation functions in the
vicinity of the transition. Since the Bow patterns of the
electrons as they depin follow the local orientational axes
of the crystal, the bottlenecks in the How occur where
the electron xnotion must change directions, as described
above. The number of such bottlenecks clearly will pro-
liferate rapidly as the orientational order changes from
exponential behavior to power-law behavior. This ex-
plains the increase in slope in Fig. 5 as d/ao drops below
about 1.15. We note that the break is somewhat rounded,
which we associate with the finite number of particles in
our simulations. We have found that the break becomes
slightly more rounded for smaller systexns (although our
error bars also increase for these sixnulations). We believe
it is likely that this break will become sharper in the limit

of in6nite systexn sizes. An observation of such behav-
ior in the depinning 6eld would give direct evidence of a
transition between the hexatic and isotropic glass ground
states.

Finally, it is interesting to speculate what effect the
creeping motion has on the noise spectrum in the cur-
rent. In the simplest case of a sliding CDW, one ex-
pects the noise spectruxn to have a narrow-band corn-
ponent, corresponding to the sliding of the (periodically
arranged) electrons over the impurities. xx The frequency
of this noise component is proportional to the average
velocity v of the electrons.

Certainly for the case of our more disordered samples,
this picture breaks down. The now of electrons when
they are depinned is plastic rather than elastic, so that
the electrons do not preserve a local crystal symmetry
particularly well as they are sliding. Furthermore, the
opening and closing of various channels through the sys-
tem introduces many time scales, contributing to a severe
broadening of the noise spectrum.

Even at larger values of d/ao, we do not observe a per-
fectly uniform motion of the electrons; we still observe a
kind of creeping, jerky motion. Near the threshold volt-

age, the average time for the crystal to move one lattice
constant, ao/v, will become longer than the average time
an individual electron remains stationary. In this cir-
cumstance one does not expect to observe narrow-band
noise. Thus narrow-band noise should only be expected
at voltages well above the threshold voltage for sliding.
We have observed narrow-band noise in this circumstance
in our simulations. Experixnentally, however, it must be
noted that finite currents can "heat" the electrons, which
would lead to a melting of the crystal. ' At present it
is unclear whether the currents required for the narrow-
band noise to become visible over the noise introduced by
the creeping motion are low enough to avoid such effects
in realistic samples. More detailed investigations of this
issue are currently underway.

0
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FIG. 5. Depinning threshold electric field,
in units of Eo = e/cacao. Dotted lines are
guides to the eye.

4
()

I I I
()

I I I I

0.0 0.5 1.0 1.5
d/ao

2.0 2.5



14 374 MIN-CHUL CHA AND H. A. FERTIG

III. MOLECULAR-DYNAMICS
AND SIMULATED-ANNEALING METHODS

Molecular dynamics is a powerful and well-known
method for studying the motion of classical particles.
The central idea is the discretization of time, so that
Newton's law F;{t) = m "&~ l and the kinematic rela-

tion "& ——v; may be rewritten as di8'erence equations.

Here, F;{t), v;(t), and r, {t) are, respectively, the total
force acting on particle i, the velocity of particle, and
its position, at time t. The forces on a given particle
in our simulations come f'rom one of three sources: (1)
interactions with other electrons,

where the prime in the sum indicates that r; should not
be included in the sum over r~, e is the electronic charge,
and K is the dielectric constant of the host medium; (2)
interactions with the ions,

U=-) e'

1+-)
Note that the sums are over all the particles and ions
in all the unit cells, and hence are a sum over an infi-
nite number of particles. The last term in U is indepen-
dent of the electron positions and so does not contribute
to its changes (the ion positions are quenched, and do
not move in our simulations), but it is necessary to keep

where the Bz's are the ion positions in their setback
plane; and (3) interactions with external forces (e.g. , an
external electric field. ) We assume periodic boundary
conditions, so that our system size is formally infinite,
although it is periodic with a large but finite number of
particles in each unit cell. The number N of electrons
(and ions) is taken to be 3200 in all the simulations re-
ported here, except where specifically stated otherwise.
Because of the long-range nature of the Coulomb inter-
action, the forces in (1) and (2) have to be computed
using the Ewald. sum technique, which constitutes the
bottleneck in our computations.

Part of our simulations require us to work at finite tem-
peratures, which can be accomplished in one of two ways.
In the microcanonical ensemble, we fix the total kinetic
energy of the system to NkI3T, where k~ is Boltzmann's
constant, and T is the temperature. This is accomplished
by rescaling the velocities by the rule v, (t) ~ nv, (t), such
that P, 2mv; = Nk~T at every time step The tem. per-
ature of the system can be checked by examining the
changes in the internal potential energy per particle of
the system U(t)/N, where

this term in order to get a finite result. When the sys-
tem is in equilibrium, we find that at low temperatures

Uz;(t) —Uz; (t) = Nk~(T& —T2), where Uz (t) is the con-
figurational energy at temperature T at time t and the
overbars represent time averages. Thus classical equipar-
tition of the energy is satisfied when our simulations are
in thermal equilibrium.

A second method for simulating the system at finite
temperatures is to use the Langevin equation. ' In this
method, each electron i is subjected to a white noise
random force (,(t) and a viscous force F" = —rjv, . The
random force is connected to the temperature via the

correlation function (; (t)(. (t') = 2@k~—T8(t t')b, ~—8 p,
where o, P = z, y. We have found that this method gives
results similar to those obtained by the microcanonical
ensemble. We will report in detail below our results as
obtained in the latter method.

To obtain typical low energy configurations, we em-

ploy a simulated annealing method. Our procedure be-
gins by assigning to the electrons random positions in
the plane, and velocities according to a Gaussian dis-
tribution centered around our chosen temperature. The
initial temperature is taken to be large enough that the
electronic state is a liquid. The positions and velocities
of the electrons are updated for several thousand time
steps, in order to assure that the system is in thermal
equilibrium. Once thermal equilibrium appears to have
set in, the temperature is lowered by a small amount AT,
by rescaling all the velocities. This temporarily puts the
system out of equilibrium, and it is necessary to update
the system for several thousand time steps to equilibrate
it. This process is repeated until the system approaches
the melting temperature.

The melting transition in the absence of quenched dis-
order for two-dimensional classical electron systems has
been studied via numerical methods by many authors.
The temperature of this system may be expressed in
terms of the single unitless parameter I' = ~vrpe2/rkBT,
which is the ratio of the average potential energy to the
average kinetic energy of the system. In this expression,

p is the two-dimensional electron density. It is generally
believed, based on Monte Carlo simulations, that the
electron crystal melts in the vicinity of I' =- 130. Thus
the freezing temperature for our system should occur in
the vicinity of 418 mK.

It is extremely important that in the annealing pro-
cess the system spends a large number of time steps
near and below this temperature in order to have a well-

equilibrated system. The reason is that, once the system
begins to freeze, defects will migrate very slowly. The
energy barriers required to create or eliminate defects
become quite high well below the &eezing temperature,
so that long annealing times are necessary to eliminate
defects that should only be present at higher tempera-
ture. Thus it is necessary to equilibrate the system with
a suKcient number of steps when temperature is below
the melting point. We have checked this by slowing our
annealing process (i.e. , decreasing AT and increasing the
number of time steps at each temperature) until the num-
ber of defects in the frozen state for a given impurity con-
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figuration is essentially unchanged. Another nontrivial
check that our annealing process equilibrates the system
is to run it in the absence of any impurities (i.e., with
a nruform neutralizing background), in which case the
ground state should be defect-&ee. We have found that
this is the case in most situations.

The type of defects that are tracked in our simulations
are the number of disclinations —i.e., the number of elec-
trons with the incorrect number of nearest neighbors. As
discussed in Sec. II, a dislocation is equivalent to a bound
pair of disclinations, so implicitly this keeps track of the
dislocations as well. The defects are located using the
Voronoi polygon method, 3 which is a numerical method
by which the Wigner-Seitz cell around each electron may
be constructed; the number of nearest neighbors is then
equal to the number of sides of the cell.

The results presented here are for very low tempera-
tures compared to the melting temperature, typically of
the order 20 mK. Finally, it should be noted that because
of the finite annealing time, one cannot expect, if the
temperature were lowered precisely to zero, that the re-
sulting state found in our simulation would be the global
ground state of the system. It clearly will be a low energy
metastable state, and there is no reason to believe that
it will be qualitatively different than the ground state.
Thus for the properties we are interested in —correla-
tion functions, number of defects, depinning fields —the
annealed state should give qualitatively the same results
as the true ground state of the system.

Some typical configurations are illustrated in Fig. 2, for
various setback distances. As was mentioned in Sec. II,
we have found that the system is always unstable against
the formation of dislocations for any level of disorder (i.e.,
any value of d/ao), and that isolated disclination starts
to appear in the vicinity of d/ap & 1.15. The dislocations
may be seen to appear in regions where there is a gradi-
ent in the electron density —i.e., there is a local change
in the lattice constant of the WC. Physically, this may be
understood in terms of the long-wavelength Buctuations
in the positively charged ionic background. It is conve-
nient to reexpress the ionic charge as a positively charged,
nonuniform neutralizing background that is in the same
plane as the electrons. 3 The long-wavelength behavior of
WC will be essentially determined by charge neutrality:
since maintaining charge imbalances over long distances
is prohibitively expensive energetically, the WC will ar-
range itself in such a way as to neutralize this effective,
spatially Buctuating positive charge.

This is essentially the driving force for the creation of
dislocations. To see this, consider a region 0 of size scale
( with a slightly larger neutralizing background density
than the average, po + bp. The WC must raise its local
density to neutralize this Buctuation. If this is done by
smooth displacements from a perfect crystal, the result-
ing configuration will be strained in the vicinity of the
region 0, with an energy cost scaling as g . The WC
can lower its energy by iatroducing dislocations near the
boundary of O. These will allow lines of charge to be
added or removed &om 0, so that the crystal is essen-
tially unstrained both inside and outside O. The energy
cost to introduce these dislocationsis is scales as fin(;

thus for large enough ( —i.e., for long-wavelength fluc-
tuations —it is energetically favorable to create highly
separated dislocations. This is illustrated explicitly in
Fig. 6. We have taken a small-sized system —480 parti-
cles —and introduced a circular region 0 at the center of
our unit cell with density po+bp, h p = 2s po. In Fig. 6(a),
we obtain a low-temperature configuration by a direct
relaxation method, which does not allow defects to be
introduced in the final configuration. The strain in the
lattice outside 0 is quite apparent. In Fig. 6(b), we have
used our simulated-annealing method to find a low en-
ergy configuration. As may be seen, the strain has been
relieved, at the expense of introducing several disloca-
tions near the boundary. The configuration in Fig. 6(b)
is lower in energy than that of 6(a), by approximately 90
mK.

In our model, the correlation function for such Buctu-
ations in the effective in-plane neutralizing background
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FIG. 6. At long wavelengths, the electron crystal density
must track the disordered neutralizing background charge
density. (a) Changing density with smooth displacements of
an undefective WC produces a strained crystal in the region
0 circled by dotted lines. (b) Introducing dislocations in the
region where the background density changes by bp allows
the electron density to match the background density with-
out large regions of strain.
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may be shown to be (p„(qQp„(—qg) = Apse s, where ()
represents a disorder average, p„(q) is the Fourier trans-
form of the efFective in-plane neutralizing background
charge density, po ——N/A is the average density of ions,
and A is the system area. Note that as d is increased, it
is the short wavelength fluctuations that are suppressed.
However, since dislocations arise due to long-wavelength
Huctuations in the disorder, we do not expect that large
values of d will suppress them. We have observed this
behavior in our simulations.

As discussed in Sec. II, we have calculated both posi-
tional and orientational correlation functions for our low-
temperature states. We conclude this section by giving
precise definitions of these correlation functions. The
positional correlation function is given by

) b(. —I.-, —.;I)-,') .'I"'-" I G

~(r) = ) .~( —
I * — I)

where 0 is a reciprocal lattice vector with the orientation
which gives a peak of the structure factor. In practice,
the 8 function must be broadened so that it may be han-
dled numerically. An example of the positional correla-
tion function is illustrated in Fig. 7. The long distance
tail of g(r) falls off exponentially, indicating that there
is only short-range positional order in the system. As
stated in Sec. II, g(r) has this behavior independent of
whether it is in the hexatic or isotropic phase, i.e., for all
values of d.

More interesting behavior is apparent in the orienta-
tional correlation function. In analogy with Ref. 25, this
is defined as
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where Q(r) = (1/n, ) g && „l e ' I"& for an electron
located at r" with the bond angle 0 (r) with respect to
the x axis to the ath nearest neighbor, summed over
n nearest neighbors determined by the Voronoi polygon
method.

Examples of g6 are presented in Fig. 3, where the
change in behavior in going from the isotropic to the
hexatic phase is apparent. In particular, in the former
case g6 is short ranged, while in the latter we expect
a power-law behavior at long distances. Our simula-
tions are consistent with this, although because of the
finite size of our simulations it is di{Bcult to distinguish
between short-range order with a very long correlation
length, and power-law behavior. However, direct esti-
mates of the correlation length &om g6 in the interval
1.1 & d/ao ( 1.2 show that it increases very rapidly
in the range, as would be expected for a critical phe-
nomenon. We note that statistics for both g and g6 can
in principle be improved by averaging over impurity con-
figurations. Unfortunately, this is not practical, as the
large size systems required ( 3200 particles) to reliably
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FIG. 7. Positional correlation functions for three diferent
setbacks.

FIG. 8. Structure factor S(q) in the reciprocal lattice vec-
tor space for samples with d/ao ——(a) 0.8, (h) 1.0, (c) 1.1,
(d) 1.2, (e) 1.4, (f) 1.7. Only points with IS(q)I & s IS(q)I~»»
are plotted. For large setback distances, a sixfold symmetry
appears, indicating the presence of quasi-long-range orienta-
tional order.
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measure the correlation functions in a single sample pro-
hibit a large number of repetitions.

Another way of displaying the onset of hexatic order
is to measure the structure factor. This is defined in the
usual way as )+(qQ~ =

~ P,. e'v"'(, and is illustrated in
Fig. 8 for several setback distances. For small setback
distances ~S(qg~ is essentially circularly symmetric; but
as d is increased, one can see six well-defined peaks de-
veloping for d/ao & 1.2. It should be noted that these
are not Bragg peaks, in the sense that they do not be-
come sharp in the large size limit; they instead remain as
a modulation in an increasingly strong background.
Nevertheless, the presence of this modulation indicates
the existence of some orientational order in the hexatic
glass phase.

I I I I I I I I

IV. DEPINNING THRESHOLDS AND
CURRENTS

In this section, we discuss the numerical method used
to compute the threshold electric field above which the
WC depins and the path the current follows above this
threshold. Conceptually, the simplest way to do this is
to begin with an annealed system, prepared as described
in Sec. III, and then simulate a uniform electric field by
subjecting all the particles to a constant force. In prac-
tice, however, this turns out to be computationally quite
inefBcient. The reason is that when the electric 6eld is
stepped up by an amount AE, this represents a large,
nonrandom "kick," after which the system must reequi-
librate. These equilibration times turn out to be quite
long, typically on the order of 5000 time steps for 3200
particles. If the electric 6eld step AE is taken to be too
large, or if the equilibration time is too short, one can
reach a metastable state in which current Bows for several
thousand time steps, but then may abruptly stop when
the random motion of the electrons around the moving
center of mass equilibrates.

Figure 9 illustrates the current for such a sequence of
electric field increments, in which the net electric 6eld
remains below the threshold. Occasionally, after a par-
ticular increment, one can see very large amplitude os-
cillations, far above that expected from simple random
motion (e.g. , first 2000 time steps in Fig. 9). Such large
oscillations occur if the Buctuating center of mass hap-
pens to be moving in the same direction as the uniform
force applied to the electrons at the moment it is incre-
mented. Apparently this can set into motion very long-
lived phonon modes, and one must wait long times for
the energy in this mode to redistribute itself among the
other phonon modes —i.e., for the phonon to decay. Such
a process occurred at the moment the electric field was
turned on in Fig. 9 (27000th time step), and one can
see that the resulting nonequlibrium oscillations did not
settle down even after 4000 time steps.

A much more numerically eKcient method for deter-
mining the depinning threshold using MD was developed
by Brass and co-workers. In this technique, one begins
with an annealed low-temperature state, and then shifts
aH the particles by a small amount (0.01ao in our simula-

I I I I

25000 30000 35000

MD time
40000

FIG. 9. Simulation of electric current for 3200 particles
with electric Beld stepped up every 4000 time steps. The
magnitude of Quctuations is clearly much greater than before
the electric field is turned on, indicating the need for very
long equilibration times between electric Beld steps.

tions). The MD method is then used to reequilibrate the
system, keeping the center of mass of the electmns fixe
in position. This last requirement is enforced by adding
a small correction to the velocities of all the electrons at
each update, b,v(t), so that the center of mass velocity
remains precisely zero at every time step. The pinning
force, defined as the average force acting on an electron
due only to the impurities, is then measured. The se-
quence is then repeated, until the total shift in position
is of the order lao —3ao.

The great numerical savings in this scheme is that the
number of time steps required to equilibrate after a cen-
ter of mass shift is quite small, only around 200 for 3200
particles. Thus the time required to 6nd the threshold
6eld in this manner is approximately an order of magni-
tude smaller than finding it by direct simulation of the
electric field. Figure 10 illustrates the pinning force (rep-
resented as an electric field, by dividing out the electric
charge) in a sequence of center of mass shifts. As can
be seen, the pinning force rises inonotonically (except for
small fluctuations) to some maximum, and then abruptly
drops. We associate this maximum with the depinning
electric 6eld. The trajectories of the particles for more
disordered samples support this interpretation: one can
see large rearrangements of the electrons ("channel-like
fiow") as the pinning force is decreasing. The sequence
of steps gives several peaks of roughly the same order
of magnitude, and the largest of these is chosen as the
threshold electric field Egg. The variance among the peak
heights gives a measure of the uncertainty in this quan-
tity.

We note that we have compared Eqg for several sam-
ples, using both direct simulation of an electric field and
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FIG. 10. Example of the pinning force vs center of mass
shift AX. Sharp peaks measure the depinning electric 6eld,
and give good agreeement with direct simulations of electric
6eld depinning.

the shift method. The agreement between the thresholds
found by these two methods is quite good. The qualita-
tive behavior of the electronic motion for various levels
of disorder found via the two methods —i.e., elastic Bow
vs plastic Bow or channel-like Bow —is also very similar.

Another detail that requires attention for the highly
disordered samples is the fact that the disorder poten-
tial in general will favor certain regions for the channels
through which the current may Bow. Periodic boundary
conditions can actually mask this effect, particularly if
the channels are narrow, because in general a channel
enters and exits at different points along the boundaries.
This can lead to an overestimate of the pinning potential,
since the final current channel may have to run through
the sample many times before closing in on itself. Such
narrow channel flow ("stringlike motion") has been ob-
served in MD simulations of vortices in thin supercon-
ducting films, subject to a high degree of disorder.
To overcome this potential diKculty, we have used sam-
ples which have ion distributions that are mirror imaged
across the y axis through the center of the sample. Thus
if the disorder potential favors relatively narrow chan-
nels, the crystal will not be pinned simply because the
current has nowhere to go.

In practice, we have found that this consideration only
affects our results for the most extremely disordered sam-
ples. Most of the electrons do eventually participate in
the current, although they do not in general move at the
same time. Even in the more disordered samples, where
the Bow is channel-like, the current channels are actually
quite broad compared to what has been found in vortex
systems. ' Furthermore, different channels open and
close with time, so that over the simulation time, cur-
rent fiows through most parts of the sample (although
some patches do remain pinned throughout the simula-
tion). Thus the disorder does not pick out a small region

over which most of the current Bows for the %'C, except
possibly at exceptionally small values of d/ao.

Our results for the depinning field at various setback
distances for a system of 3200 particles are shown in
Fig. 5, and were discussed in Sec. II. As was noted,
there is a noticeable break in Eqg vs d in the range
d/ao ——l.l —1.2, precisely where we see the transition
between the hexatic and the isotropic glass phases. This
may be understood in terms of the qualitative behavior
of the electron motion as the disorder is turned up (d
decreased), changing the motion Rom elastic to plastic,
channel-like Bow. In the latter regime, especially near
the hexatic-isotropic transition, there is a tendency for
the Bow to follow the local orientational axes of the crys-
ta1. Since the orientational correlation function changes
from quasi long range to short range as d is tuned through
the transition, the number of changes in direction that a
group of electrons will have to undergo in order to How

through the crystal increases rapidly once we enter the
isotropic phase. The changes in direction represent bot-
tlenecks in the motion, and cause the depinning field to
increase rapidly as d decreases. An experimental obser-
vation of this change of behavior in E~g vs d would rep-
resent a direct and unique way of probing the transition
from the hexatic to the isotropic glasses. One might also
note that the uncertainty in our results increases signif-
icantly with increasing d. This is because the number
of defects in the system drops quickly in this limit, so
that our results become more sensitive to finite size ef-

fects and Buctuations &om one impurity realization to
another. These uncertainties would certainly be reduced
with studies of significantly larger systems, although this
seems impractical at present &om a numerical point of
view.

Finally, we compare our results with recent calcula-
tions by Ruzin et aL on pinning due to stray charged
impurity ions that may lie relatively close to (i.e. , a dis-
tance on the order of ao away from) the electron plane.
This is relevant to modulation-doped semiconductor sys-
terns, in which a perfectly pure setback layer is in practice
not possible to fabricate; small densities of donors and
acceptors inevitably become incorporated in this layer.
While detailed comparisons are difBcult because little is
known about the density and distribution of these unin-
tentional dopants, we can speculate as to how they affect
our results.

We note first that the state (i.e. , hexatic or isotropic) of
the system is unlikely to be affected by these impurities,
since at such sparse densities they induce point defects
(i.e., interstitials and vacancies) rather than extended de-
fects, such as dislocations and disclinations. However, it
is clear that for large enough setback distances d, the
impurities in the volume of the setback layer will dorn-
inate the pinning properties. Using a density of 10
cm positively charged donors, and assuming that al1.

these impurities lie at a distance from the electron plane
that maximizes the pinning, we obtain an upper bound
of 10 e/Kao for the pinning threshold due to these stray
impurities. This is a very conservative estimate, and it
should be noted that the true pinning threshold due to
such impurities will likely be significantly lower than this.
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[Indeed, in experimental systems with the largest setback
ratios reported thus far ' (d/ao = 6), the pinning thresh-
old electric field is significantly smaller than this. ] This
estimate is near the bottom of our Fig. 5, so we do not
expect it to acct our results for the hexatic-isotropic
transition. Furthermore, an extrapolation of our results
(Fig. 5) to large d can give rough agreement with exper-
imental samples. Future samples with very large val-
ues of d may well be dominated by stray impurities in
their pinning properties. It is difficult to ascertain at
this point —both because of the uncertainty in the den-
sity of these impurities, and the error bars in our cal-
culations for large values of d due to the finite size of
our system —their relative importance in currently avail-
able semiconductor systems. Clearly, more work (both
experimental and theoretical) is required to sort out this
issue.

fields. We have found evidence for a transition Erom a
hexatic glass state to an isotropic glass state as a func-
tion of the disorder strength, which is characterized by
the appearance of isolated disclinations, and the simulta-
neous loss of quasi-long-range orientational order as one
passes from the former to the latter. This result indicates
that the ground states of 2DEG's in modulation-doped
semiconductors in the WC regime are qualitatively dif-

ferent in the weak and strong disorder regimes. We have
found that the depinning threshold electric for the system
increases rapidly (exponentially) with decreasing d, and
that there is a break in Eqh vs d in the vicinity of the tran-
sition between the states. An observation of the latter
behavior in experiment would represent a direct probe of
the transition. Finally, we observed a qualitative change
in the motion of the electrons when they were depinned,
from elastic How in the very weakly pinned regime, to
plastic, channel-like Bow in the strongly pinned regime.

V. SUMMARY

In this article, we have studied using molecular-
dynamics techniques the low-temperature configurations
and the depinning properties of the classical electron solid
in the presence of disorder. Our calculations are appli-
cable both to electrons on the surface of helium and to
the two-dimensional electron gas in very strong magnetic
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