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We study how the in8uence of structural correlations in disordered systems manifests itself in
experimentally measurable magnitudes, focusing on dc conductance of semiconductor superlattices
with general potential pro6les. We show that the existence of bands of extended states in these
structures gives rise to very noticeable peaks in the 6nite-temperature dc conductance as the chem-
ical potential is moved through the bands or as the temperature is increased from zero. On the
basis of these results we discuss how dc conductance measurements can provide information on the
location and width of the bands of extended states. Our predictions can be used to demonstrate
experimentally that structural correlations inhibit the localization eKects of disorder.

I. INTRODUCTION

A number of recent papers have proposed and provided
theoretical evidence that in disordered systems where the
disorder exhibits some kind of short-range spatial corre-
lation, wave localization may be inhibited and bands of
extended states appear. This phenomenon has been
shown to arise in a number of different contexts, like elec-
tron transport, ' phonon transport, exciton
dynamics, ' ' or magnon propagation. All of these
theoretical analyses openly contradict the belief that lo-
calization of all eigenstates is a general phenomenon in
one-dimensional disordered systems. Note, however, that
this belief has only been rigorously proven for some un-
correlated random systems, and hence the existing the-
orems do not apply to the above cases. In spite of this,
there is some controversy as to the relevance of these
results and the nature of the band or bands of extended
states, and delocalization by structural correlation is still
not generally accepted. Therefore, we undertook the task
of 6nding experimentally mecsurabEe quantities and phys-
ically realizable systems that allow for a clearcut valida-
tion of the above mentioned results. We have already
proposed experiments on mechanical models, but,
admittedly, these may be hard to construct and seem
rather arti6cial or academic systems. For this reason,
we decided to concern ourselves with a more interesting
system, namely, semiconductor superlattices.

Nonperiodic (quasiperiodic or disordered) semiconduc-
tor superlattices are being studied with increasing in-
terest in the last decade. First, Merlin and co-workers
studied Fibonacci superlattices where the unusual,
fractal-like spectral properties give rise to very charac-
teristic properties. Shortly thereafter, localization was
observed in intentionally disordered GaAs/Gaq Al As
superlattices. This was followed by a number of
studies on disordered superlattices, that showed a

much larger photolurniniscence intensity than ordered
lattices among other different features that we do not
describe here. 24 2s Other materials like Siq Ge /Si have
been shown to exhibit the same phenomenon. Thus,
this rather good knowledge already available as well as
recent advances of molecular beam expitaxy make these
systems the ideal candidates to propose experiments on
localization or delocalization electronic properties.

The paper is organized as follows. In Sec. II, we present
our model and summarize previous work by us ' which
is necessary for a better understanding of the present pa-
per. The body of the paper is Sec. III, where we present
our results on 6nite-temperature dc conductance. We
begin by discussing the motivation of the calculation.
Then, we proceed on to zero-temperature dc conductance
which is mainly determined by the transmission coeK-
cient. Most of the section is devoted to 6nite-temperature
dc conductance. We describe the dependence of this mag-
nitude on the chemical potential of the sample and on
the temperature; besides, we also study how the conduc-
tance relates to the model parameters. We show how
the bands of extended states reveal themselves through
a well-de6ned peak in the dc conductance. In addition,
we also study the high temperature limit where we 6nd
a power-law scaling of the conductance with the system
size. Finally, in Sec. IV, we discuss our results and how
they can be related to actual measurements to infer the
main characteristics of the bands of extended states kom
experiments on superlattices.

II. MODEL AND BACKGROUND

A. The Kronig-Penney model and its application to
superlat tices

The basis of our model is the Kronig-Penney one, in
which it is assumed that the electron interaction with the
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underlying one-dimensional lattice is given by a potential
of the form

This model is very general, and aside from the ap-
plication to disordered semiconductor superlattices we

are going to describe, it also appears in many other
contexts like other microelectronic devices, localiza-
tion phenomena in liquids, physical properties of lay-
ered superconductors, and quark tunneling in one-
dimensional nuclear inodels to name a few. Regarding
superlattices, the choice of potential V(x) given by Eq.
(1) is very general as, in principle, the superlattice po-
tential could take many different shapes: Square barriers,
V-shaped wells, sawtooth, parabolic, etc. In fact, what
we are doing is assuming an expression for the cell poten-
tials in terms of point interaction potentials. The term
point interaction refers to any arbitrary sharply peaked
potential approaching the b function limit (zero width
and constant area). Such potentials are often used in
a variety of physical contexts in solid state physics,
since, with limitations, they are good candidates to re-
place actual, short-ranged, one-dimensional potentials.
Moreover, it has been recently demonstrated that the
discretized form of the Schrodinger equation for an arbi-
trary potential in one dimension can be mapped onto a
Kronig-Penney model. s4 Hence, the use of potential (1) is
not a serious restriction to simulate actual semiconduc-
tor superlattice potentials within the envelope-function
formalism.

, + ) A„8(x—n) q(x) = Eg(x). (2)

In Ref. 14 we developed a generalized Poincare map
formalism that allows to map general one-dimensional
Schrodinger equations onto discrete equations exactly, for
any potential allowed in quantum mechanics. In particu-
lar, its application to Eq. (2) is quite simple. For the sake
of brevity, we only quote here the final result, and refer
the reader to Sec. II of Ref. 14 for the details. Equation
(2) is exactly equivalent to

@„+i+ g„i —— 2 cos q + —"sin q
q

(3)

where we have put tP„=g(x = n) and q = ~E.
From the above equation, we can see that there are an

infinite number of resonant energies for which the reBec-
tion coeKcient of a single dimer vanishes. Indeed, taking
into account that the condition for an electron to move
in the perfect lattice [A„=A for all n in Eq. (3)I is

A
cosq+ —sinq & 1,

2q

a paired correlated disorder which implies that A takes
only on two values, A and A', with the additional con-
straint that A' appears only in pairs of neighboring sites
(dimer). The corresponding Schrodinger equation is then
(we use units such that 5 = 2m = 1 in the rest of the
paper; energy, kT and the chemical potential below will

be measured accordingly)

B. The continuous random dimer model

The version of the Kronig-Penney model we are inter-
ested in is the so-called continuous random dimer model
(CRDM), which was first introduced by us in Refs. 13
and 14 as a realistic theoretical scenario where delocal-
ization effects have dramatic consequences. We note that
the model is inspired by the tight-binding random dimer
model of Dunlap et al. , ' and that in view of their re-
sults the essential physics of our model is qualitatively
the same as regards the existence of a nonzero measure
set of extended states. There are two difI'erent features of
our model: First, as we will show below, it exhibits an in-
finite number of bands of extended states, which makes it
interesting &om the viewpoint of applications as there are
many options to match the Ferm' level; and second, the
fact that our model is continuous and includes backscat-
tering effects gives it a more realistic character and hence
it strongly supports the possibility of seeing these effects
in a variety of actual physical systems. Our model is
defined by particularizing Eq. (1) as follows: First, we

choose A & 0; the extension of the results to the A ( 0
case is straightforward, although the choice of the sign
is irrelevant for the superlattice application as A may
be always taken as positive by a suitable assignation of
the b function to superlattice blocks. Second, we take
the positions of the b potentials to be regularly spaced,
i.e., x„=n. Third and most important, we introduce

gives us the Grst restriction on the allowed values of en-

ergy. Further, introducing a single dimer occupying sites
n = 0 and 1 and eliminating ge and gi, we obtain

with ~ = 2 cos q+ (A/q) sin q and cu' the same exchanging
A by A'. It is evident from this expression that if ~' = 0,
we recover the equation for the perfect lattice with sites
n = 0 and 1 suppressed except for an irrelevant phase
factor vr. This means that at the particular values q„
such that u' = 0, the reBection coeKcient of the dimer
vanishes. Such a condition and the perfect lattice one

(4) yield the two equations determining the resonances
2E =q„,

(6a}

2 tan q~

q„
(6b)

which is our final result. Restricting ourselves to the
range A & 2A' Eq. (6a) is trivially satisfied. Then, Eq.
(6b) has an infinite number of solutions, one in every
interval [(2n —l)vr/2, (2n+ 1)n./2], n = 1, 2, . . . leading to
infinite energy values for which the reBection coeKcient
of a single dimer vanishes.
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C. Properties of the model

Of course, the above result does not imply anything
about extended states in a CRDM with a finite density
of dimers, and it is necessary to study that problem sep-
arately. This we carried out in Refs. 13 and 14 by means
of numerical evaluation of exact expressions obtained via
transfer matrix techniques for the relevant quantities:
Transmission coefBcient, Landauer resistance, Lyapunov
coeKcient, and. density of states. The behavior of all
these quantities, combined with multi&actal and inverse
participation ratio analyses, allowed us to establish on
firm grounds that the single dimer resonances survive in
the CRDM and, moreover, that they give rise to bands
of finite width of truly extended states. The interested
reader may find a thorough report in Ref. 14. Here, we
will only comment on one of these magnitudes, namely,
the transmission coefBcient, which is the starting point
for our computations of finite-temperature dc conduc-
tance.

An example of the behavior of the transmission coef-
ficient around one of the resonant energies is shown in
Fig. 1 for a dimer concentration c = 0.5 (c is defined as
the ratio between the number of A' and the total num-
ber of b's in the lattice). We stress that, in spite of the
fact that the plot corresponds to an average over 100 re-
alizations of the CRDM, the transmission coefBcient for
typical realizations behaves in the same way, although
noisier. Thus, the only e8'ect of averaging is to smooth
out particular features of realizations keeping only the
main common characteristic, i.e., the wide transmission
peak. This is the property we want to highlight: Close
to single dimer resonances (in the case of Fig. 1, the first
one, which occurs at E„=3.7626. . . for the chosen pa-
rameters A = 1.0, A' = 1.5), there is an interval of ener-
gies that shows also very good transmission properties,
similar to those of the resonant energy. Most important,
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0.0
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5.0

FIG. 1. Transmission coefficient for the CRDM with a
dimer concentration c = 0.5. The b function strengths are
A = 1, A' = 1.5. Shown is an average over 100 realizations.
Every realization consists of 15 000 scatterers. The first al-
lowed band in the perfect lattice is (0.921, 9.870). The solid
line is an analytical 6t using Moyal and Gaussian functions
(see text for details).

such an interval has always had a finite width, for all
values of dimer concentration, A and A' (provided they
satisfy the above conditions), or number of sites in the
lattice. The peak width depends on the order of the
resonance (the higher the resonance the wider the band
of states with transmission coefficient close to unity) and
the concentration of dimers (the larger the concentration,
the narrower the peak, being always of finite width as al-
ready stated). Figure 1 also shows an analytical fit to the
shape of the transmission coeRcient dependence on the
energy, which will be used below. The parametrization
used in the best fit close to E„is 7 (E) = m(E) + g(E),
where

( v+e ")
m(E) = mo exp ~—

)
is the Moyals5 function with v = (E —E„)/s,and

(7)

(E —E„)')
g(E) = gp exp ~—

2o2

is the usual Gaussian function. The parameters that fit
data in Fig. 1 are mo ——0.65, s = 0.16, go ——0.70, and 0 =
0.26. As can be seen &om Fig. 1, the fitting reQects the
asymmetry of the peak and corresponds very well to the
average transmission coefBcient. Of the above constants,
the most relevant one is probably the variance of the
gaussian; we will come back to this parameter and its
relevance below.

III. FINITE- TEMPERATURE dc
CONDUCTANCE

A. Motivation: Characteristics to determine

So far, we have summarized the main properties of the
CRDM, which can be found in full detail in Ref. 14. The
crucial conclusion of those previous studies has been al-
ready mentioned: There are bands (an infinite number of
them) of truly extended states in the CRDM in spite of
the disorder. We have provided enough theoretical evi-
dence and we can be quite sure of the correctness of that
statement. The most important point, however, regards
applications of this result, and this inmediately implies
two questions: First, are these bands of extended states
experimentally measurable? Admittedly, if the extended
states we have predicted are not seen in actual physical
systems, the question as to their true extended nature be-
comes irrelevant. Second, do these extended states serve
as the basis for new applications or devices? Hopefully,
the answer to this second question would be yes pro-
vided the answer to the first question was also yes. Tbis
may be easily understood if we think that the transport
properties of such microstructures would depend strongly
on the value of the incoming energy, and therefore they
could serve as filters of unwanted energies (in fact, we
have proposed similar applications in mechanical devices
based on the same ideas; we will discuss this application
later on in the conclusion section). It is then clear than
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the crux of the problem is the first question, and that
would be the one we will try to answer in the remain-
der of the paper. Specifically, we will devote ourselves
to show how the position of the peak and its width may
be determined &om 6nite-temperature dc conductance
measurements, and how experiments relate to the dimer
concentration.

30—

B. Zero-temperature dc conductance

In this subsection, we discuss electron propagation at
very low temperatures through a disordered superlattice
with one of the two alternating types of constituents sub-
ject to the constraint of the CRDM. We note at this point
that the b function may represent the joint potential of
several layers, e.g. , a block GaAs-Gaq Al As-GaAs giv-
ing rise to a square potential barrier. DifFerent choices of
the blocks are then associated to the two diH'erent values
of A and A'. We will term these superlattices correlated
disordered superlattices (CDSI ). In general, two main
factors must be taken into account when dealing with
vertical transport through a CDSL. On the one hand,
since this is essentially a quantum phenomenon, we must
consider systems with strong coupling between adjacent
blocks, but in our model this is not a problem since the
distance between b functions does not play any role aside
from fixing the resonant energies. On the other hand, we
are neglecting electron-phonon scattering effects which
tend to disrupt coherent quantum transport. These ef-
fects crucially depend on the sample temperature, so it
may be confidently expected that their inHuence can be
neglected at very low temperatures. Besides, superlat-
tices used for experiments have periods in the range from
one monolayer to several nanometers. A short spac-
ing between layers also contributes to reduce the scatter-
ing by phonons, and therefore, short-period superlattices
could be useful for the work we propose up to higher
temperatures, because as we have seen the period length
is not very relevant. Hence, a physical realization of our
model is possible and the measurements should be com-
parable to our predictions in a wide range of tempera-
tures.

The electrical conductance at zero temperature can be
obtained straightforwardly &om the well-known dimen-
sionless single-channel Landauer formula

&(E)
rp(E) =

We have already shown the behavior of the transmis-
sion coeKcient as a function of the energy in the pre-
vious section, as obtained by means of the transfer ma-
trix formalism. The calculation of the Landauer con-
ductance is then straightforward for any value of the pa-
rameters using the same approach. A typical example of
the results is shown in Fig. 2 for the same values of the
parameters as in Fig. 1. For a single realization, Fig. 2(a)
shows that the detailed structure of the energy spectrum
naturally determines the finer details of the conductance
pattern at zero temperature. Thus, the noisy aspect of
the curve. However, by comparing it to the average plot-

3.3
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15.0

0.0
3.3

FIG. 2. Landauer conductance at zero temperature for a
CDSL with the same parameters as in Fig. 1. (a) A single
realization and (b) an average over 100 realizations.

C. Pinite-temperature dc conductance

We now proceed to compute the electrical conductance
at any temperature. We have already computed this

ted in Fig. 2(b), we realize that the result is the very
close to the single realization one (as we mentioned when
discussing the transmission coefficient), except for the
fact that some particular, realization-dependent conduc-
tance spikes are suppressed. Note that the computation
involves the ratio of the reHection to the transmission
coefBcient and this quotient enlarges Huctuations consid-
erably, thus the noisy aspect of Fig. 2(b). Obtaining
an smoothing as in Fig. 1 would involve averaging over
many more realizations. This is very important and we

will take advantage of this fact when we discuss how to
measure the width of the extended states band, but we

can already assume that this magnitude is of order of the
width of the peak of xo and that it can be determined
from a single realization, i.e., a single superlattice. Fi-
nally, we note that the behavior reported here for the first
resonance is equally verified for the subsequent ones, so
the discussion is not restricted to this first band which
should be merely taken as an example.
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magnitude and its relation to the energy spectrum for Fi-
bonacci superlattices in previous works. Those works
gave results in agreement with known facts about this
kind of superlattices (see discussions in Ref. 37). We can
then be confident that our calculation will also be rel-
evant in the physical context we are dealing with. The
idea in including temperature efFects is twofold. First, we
then have a control parameter that can be varied at will
and correspondingly, we can have a whole set of measure-
ments. Second, the previous results on very low temper-
ature conductance have a limited range of validity and in
order to compare with experiments temperature should
be included in our results.

The dimensionless 6nite temperature conductance can
be obtained through the following expression, earlier dis-
cussed in detail by Engquist and Anderson:39

(10)

potential. Therefore, only when the chemical potential is
close to the band of extended states, that is to say, close
to the resonance, will there be positive contributions to
the conductance, and chemical potentials far from the
resonance will show zero conductance. As temperature
is increased, the derivative of the Fermi-Dirac function
becomes wider, and consequently, it is not necessary to
choose a chemical potential close to the resonance; even if
it is placed far from it the integrals will include the con-
tribution of the extended states. On the contrary, the
peak height decreases because previously, for chemical
potentials in the band, the localized states outside were
not present in the integration, whereas for larger tem-
peratures they contribute in a negative fashion to the

conductance
I

(a)

where integrations are extended over the allowed bands,
r(E) is the transmission coefficient, n is the Fermi-Dirac
distribution, and p denotes the chemical potential of the
sample. We have calculated expression (10) numerically
using the transmission coeKcient as input. We discuss
separately the cases of low temperatures and the high
temperature limit in the following.

f. Low temperetume

12-

conductance

0.5

1 pot.

A global view of the results is presented in Fig. 3.
Again, averages smooth out the realization dependent
features and preserve the common structure, namely, the
clear peak in the conductance around the resonant en-
ergy. We also show for comparison what is obtained
in the case when we remove the dimer constraint, i.e.,
for a purely random superlattice. Taking into account
the largely difFerent scales between Figs. 3(a) and 3(c),
the uncorrelated random superlattice conductivity is very
low for all energies. The small features appearing in the
plot are speci6c of the chosen realization and when one
takes averages the Gnal result is a Hat, zero plot. We
then prove that there should be an enormous increase
in conductivity, clearly noticeable through experiments
when the dimer constraint is satis6ed. We note in pass-
ing that the result for the pure random system con6rms
the validity of our procedure.

In those plots, the results discussed for zero tempera-
ture are also included, and it is clear that for not so large
temperatures the system exhibit a conductance behavior
that reproduces the transmission coeKcient of the first
band, around which the figure is centered. As we start
increasing temperature, the peak lowers and widens, and
it is already diKcult to appreciate for values of kT around
0.5 (around a 5%%uo of the perfect lattice bandwidth). It is
remarkable that in this high temperature region the con-
ductance is clearly nonzero, to be compared to that of
the pure random system. It is not difBcult to understand
why this is so. For low temperatures, the derivative of the
Fermi-Dirac function is very peaked around the chemicaL

12-

pot.

0.5

conductance

0.0002—
(c)

0.0001-

1 pot.

0.5

FIG. 3. Finite-temperature conductance as a function of
temperature and chemical potential for a CDSL with the same
parameters as in Fig. 1. (a) A single realization, (b) an aver-
age over 100 realizations, and (c) a single realization without
the dimer constraint, i.e., pure randomly disordered lattice.
Note the very di8'erent vertical scales.
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conductance properties, and they are weighted more in
the integration. The behavior we show in Fig. 3 coincides
then with the intuitive expectations.

At this point, we recall the analytical approximation
we presented in Fig. 1 for the transmission coefficient.
An evident way to check whether this magnitude actu-
ally behaves in average in such a smooth manner is to use
the fitted expression in Eq. (10) and compute again the
conductance. As is depicted in Fig. 4, the agreement is
very good between both procedures. We can then assume
that our fitting is a correct description of the transmis-
sion coeflicient dependence on the temperature even for
each realization, provided that we are not interested in
the particular, noisy characteristics of them. This is so
because Fig. 3(b) has been computed by generating re-
alizations of the model, computing the transmission co-
eKcient and the conductance, and after that averaging
this last quantity, whereas the theoretical calculation in
Fig. 4 uses the analytic expression for the transmission
coefficient only one, and no averages are involved. That
is why we may conclude that the analytic expression can
be used for a typical realization. Comparison with trans-
mission coefficients plots for a single realization is also
satisfactory. Finally, we point out that the main con-
tribution to the conductance comes from the extended
states close to the resonance. This we checked by using
a simple parabolic fit to the transmission coefficient, ne-

glecting the tails. The result is again very similar to Fig.
3, reinforcing our previous conclusion.

1.0

C=0. 1

V
O
C
cd

O

0
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0.1

C=0.3

u
C=0.5

C=0.7

3000
N

I

10000

which inserted into the general formula (10) yields

FIG. 5. Dependence of the high temperature conductance
on the sample length for several values of the concentration
showing their power-law behavior. Solid lines are least squares
6ts with slopes of order of —0.85.

2. High tempevatum limit

Figure 3 indicates that the conductance curve rapidly
saturate towards a value x, independent of the chem-
ical potential, when the temperature reaches a value of
the order of 0.5 kT. The reason why the asymptotic de-
pendence on the temperature is independent of p is easy
to understand, and we have already discussed it in Ref.
37. The idea goes as follows: Assume we are in the high
temperature regime. In this regime, all electrons con-
tribute to vertical transport. Now, define e = E —p;
for high temperatures Pe « 1 and we can expand the
Fermi-Dirac derivative as

an expression where the chemical potential has disap-
peared, and the only dependeace is on the number of b

functions, their strengths, and their concentrations, all
these quantities entering through the transmission coef-
ficient. In fact, we have checked that ~ scales with the
number of scatterers as a power law, with exponent de-
pending on the dimer concentration as we show in Fig.
5. Similar results are obtaiaed by changing the strengths
of the b functions. On the other hand, from these same
reasonings it can be induced that the vanishing of the
high temperature conductance of the pure raadom sys-
tem is due to the fact that the transmission coefficient
is always close to zero, and there are no extended states.
Once again we see that the dimer structure gives rise to
largely different features as compared to the random one.

conductance

12-

{)

0

FIG. 4. Finite-temperature conductance obtained using
the Stting with Moyal and Gaussian functions in Fig. 1 in
Eq. (10).

IV. DISCUSSION AND CONCLUSIONS

After reporting all our study of the finite-temperature
dc conductance of CDSL's, we are now in the best posi-
tioa to discuss what are the means to obtain the charac-
teristics of the band of extended states from experimental
measurements. We mentioned in the motivation that we
intended to find the position of the bands, for instance,
the first one and their width. We begin with the sys-
tem that should be used: We believe that any of the
experimental setups used in previous works, short period
GaAs/Gai Al As (Refs. 21—25) or SiGe/Si (Ref. 26) are
suitable devices for the kind of measurementes we pro-
posed, provided that they are built with the dimer con-
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straint. Electronic transport through the so built CDSL
can be measured either by techniques that employ mag-
netic or electric fields, or by all-optical procedures, or
by a combination of both that helps avoid the intrinsic
experimental problems of each of them.

Let us now turn to the measurements themselves. The
first quantity we have to determine is the position of the
extended band of states. The way to do that is to pre-
pare several superlattices with different chemical poten-
tials. This could be achieved by varying doping concen-
tration or pressure. These samples would have different
chemical potential, but as far as the nature of the lay-
ers forming the dimer is not changed, the position of
the bands must be the same. Therefore, the particular
sample for which a maximum of the conductivity were
reached would be that with the chemical potential closer
to the required band. Even if the first band is well below
the Fermi level, as there are infinite other bands, some of
them would be reached and a rapid increase in conduc-
tivity should be noticeable. Further, higher order bands
are wider, so they should be even easier to detect. The
question remains as to what is the appropriate range of
temperatures to look at, because if temperature is too
high no maximum should be detected. As we have al-
ready mentioned, this limit is reached at about kT of or-
der the of 5% of the perfect lattice bandwidth. In typical
superlattices this width is close to 100 meV (say). Thus
high temperature limit means that kT 5meV, that is,
T around liquid nitrogen temperature. Therefore, the
marked peak in the dc conductance should be clearly
observable at temperatures close to 5—10K in most su-
perlattices with different values of the chemical potential.
The practical implications of this result is twofold. First,
the range of temperature is physically realizable and sec-
ond, electron-phonon interaction can be neglected, as we
have assumed. On the other hand, these comments are
also related to the filter application we mentioned in Sec.
III A, as it is evident that high temperatures will ob-
scure this behavior. In this respect, we can estimate the
temperatures at which the loss of selectivity makes the
device useless using the above ideas; as we have said, the
peak is clearly observable below kT 0.5. This can also
be seen from the fact that for such low temperatures the
derivative of the Fermi distribution has a width of the
order of kT, which roughly coincides with the width of
r(E) and e(E). Therefore, dimer-based filters will be
efficient in the range of liquid nitrogen temperature and
below. Of course, this applies only to the set of param-
eters we are dealing with, and changing the strength of
the dimers A' as well as that of the host lattice A may
allow us to improve this quite conservative bound.

So, we may suppose that we have hit a band of ex-
tended states, and that we know approximately the loca-
tion of the center. The next step is to perform a number
of measurements, for some values of the chemical po-
tential at different temperatures. If the chemical poten-
tial does not need to be varied much the use of CDSL's
with different dimer concentrations could be considered
as well. If we were able to measure the conductance at
zero temperature, we would have a portrait of the trans-
mission coefficient itself. However, this is not possible,
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FIG. 6. Dependence of the width of the conductance peak
on the temperature as given by Gaussian Sts. System param-
eters are as in Fig. 1.
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FIG. 7. Dependence of the width of the conductance peak
at IcT = 0.02 on the dimer concentration as given by Gaussian
Sts. System parameters are as in Fig. 1.

but what we can always do is measure as close to zero as
to have an idea of what the shape of the transmission co-
efficient is. A more quantitative way to do this is the fol-
lowing: Take a series of measurements of the conductance
for difFerent values of temperature. For each of the so ob-
tained profiles (actually sections of Fig. 3) one can com-
pute its width by a number of means (and also depending
on the definition of width itself). For instance, what one
can do is to fit Gaussians to the experimental profiles, if
it is not desired to use the more sophisticated function
mentioned in Sec. II. That would provide the width 6 as
a function of T. We carried out this in our model and
the result is shown in Fig. 6. In this plot we may note
that the width behaves as A(T) = ao+ aiT+ aqTs, with
ao 0.05, aq 1 and a2 1. The value of the width of
the band of extended states is then simply ao (i.e., the
fitting evaluated at T = 0). We have thus provided a
means to estimate the width of this band for CDSL's.

Finally, to ensure consistency of all the procedure, and
also to help choose the better regime to work on, we
can also examine how the peak width depends on the
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FIG. 8. Conductance as a function of temperature for dif-
ferent concentrations. Chemical potential is always placed at
the middle of the band of extended states.

leads to specific predictions that may be measured on ac-
tual superlattices. If performed, those experiments would
validate (or discard) all the recent claims that correla-
tion induces the appearance of bands of extended states
in spite of the localization efI'ects of disorder. Aside from
our suggestions above, of already studied quantum well
superlattices, it is most interesting to note that recent
results on a single Si cell with double b doping have
been reported, and they exhibit a large increase of elec-
tron mobility in this kind of structure as compared to
single or homogeneously doped structures. Although our
analysis may not apply straightforwardly to this mea-
surement, it is tempting to suggest that at the roots of
the behavior may be the dimer resonance efI'ect, at least
partially. On the other hand, b doped structures might
be even more suitable to this kind of experiments and
fit better the theoretical model we have been discussing.
We hope that this work stimulates experimental efforts
in this direction.

concentration of dimers and also how it behaves with
temperature for a given concentration. The results are
shown in Figs. 7 and 8. Figure 7 exhibits a dependence
of the width 6 on the dimer concentration basically as

. This makes sense, because for concentration almost
zero the superlattice would be practically perfect, and
the good properties of the dimers would leave most states
unscattered. If we now look at the temperature where the
maximum of the conductance is achieved, we see that it
moves towards higher temperatures (see Fig. 8), with a
functional form which is again roughly c . This may
facilitate working on higher temperatures if needed.

In conclusion, we have studied finite-temperature con-
ductance of the CRDM and have shown how this study
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