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Carrier equilibration is essential for semiconductor laser operation since carriers are injected into the
active region at energies higher than the effective band edges. While the threshold current of the laser
diode can be minimized by quantum confinement in extra dimensions, the quantum effects in carrier cap-
ture and thermalization become more pronounced. In this paper, a full treatment of the carrier thermal-
ization in electronic systems of reduced dimensionality for injection conditions relevant to laser opera-
tion is given based on ensemble Monte Carlo simulations and the fundamental limits on modulation
bandwidth are discussed. Results are presented for quantum wells, quantum wires, and quantum dots.
The peculiarities of the relaxation process in each structure are elucidated. It is shown that the relaxa-
tion times increase from =1 ps in bulk, to =10 ps in quantum wells, =50 ps in quantum wires, and
~200 ps in quantum dots. Since the intraband relaxation times determine the extent of gain nonlineari-
ties in semiconductor lasers, the maximum modulation bandwidth imposed by the intrinsic process of
carrier relaxation can be calculated via the dependence of the optical gain on the photon density in the
laser structure. For a graded-index quantum-well laser structure, the calculated value of the nonlinear
gain coefficient is 1.1X 1077 cm® with the maximum —3-dB modulation bandwidth of 78 GHz for a
100-um cavity length. The nonlinear gain coefficient in quantum wires is enhanced in comparison with
quantum wells, although the differential gain may be increased by as much as an order of magnitude
with the exact value of the modulation bandwidth dependent on the details of the design of the
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quantum-wire laser.

I. INTRODUCTION

In recent years, there has been a heightened interest in
low-dimensional electronic systems owing to the exciting
physics that the structures with quantum confinement of
carriers permit us to investigate as well as to the expecta-
tion that these structures will form the foundation for
qualitatively new classes of electronic and optoelectronic
semiconductor devices.!”3 Thus the performance of
semiconductor lasers has been found to be beneficially
affected by the sharpening of the peak of the electronic
density of states near the band edge and symmetrization
in the conduction- and valence-band effective masses that
simple analysis predicts for progressive reduction in the
dimensionality of the carrier states. The anticipation of
the transition from bulk and quantum-well active regions
to those based on quantum wires and dots with drastic
suppression of the threshold currents has generated a
considerable amount of research.*® Considering the po-
tential for highly efficient optoelectronic devices that
low-dimensional structures hold, different aspects of laser
performance associated with their introduction must be
carefully examined.

It is intuitively clear that reduction in the number of
final states available for carriers detracts from the
efficiency of carrier equilibration by phonon emission. In
polar semiconductors, the dominant scattering process
responsible for carrier relaxation is polar optical-phonon
(POP) emission, the energy loss for which is almost pure-
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ly monochromatic owing to the horizontal dispersion of
the longitudinal-optical-phonon branch near the zone
center. In order to understand better the physics of car-
rier thermalization relevant to semiconductor lasers, it is
important to realize that to ensure a strong overlap be-
tween the confined optical mode and the active device re-
gion, one has to include a large band-gap cladding layer
as shown in Fig. 1(a).%” The electrons and holes are then
injected into the active region as shown. The carriers
have energies in excess of k5 T (are “hot”) and must lose
the excess energy to be available for recombination pro-
cesses. If carrier thermalization is much faster than the
electron-hole recombination rate, the carrier distribution
in the active region is given by quasi-Fermi statistics as
shown in Fig. 1(b). On the other hand, if the thermaliza-
tion time is comparable to the recombination time, the
carrier distribution remains hot, as shown by the dashed
line in Fig. 1(b). Similar considerations are valid for a
lower-dimensional active region. As the carriers descend
from a three-dimensional (3D) cladding layer into the
quantum-confined structure, bottlenecks in carrier relax-
ation may be created accompanied by a sharp increase in
the relaxation time. Furthermore, in quantum wires, the
only binary intrasubband electron-electron scattering
events allowed by the requirement of simultaneous con-
servation of energy and momentum are exchanges of the
initial and final states by the participating electrons.
Therefore, in wires with a small cross section, the cas-
cadelike POP emission structure is not randomized by
the interelectron collisions and an essentially new mecha-
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nism of attaining the equilibrium distribution function
must be formulated. In quantum dots, the usual picture
for carrier thermalization by a cascade of POP emissions
is invalid since a perfect matching of energy levels with
separations equal to the POP energy cannot normally be
achieved. Carrier equilibration on a subnanosecond scale
in quantum dots, if at all possible, must be ascribed to a
qualitatively different energy-loss channel. These con-
siderations necessitate a precise microscopic description
of scattering and relaxation processes in low-dimensional
structures.

To exemplify the importance of the time scale of car-
rier thermalization for the dynamics of semiconductor
laser operation, the following instance will suffice. The
standard derivation of fundamental limits on the modula-
tion speed of semiconductor lasers makes use of a phe-
nomenological relaxation time constant, governing the
exponential decay of perturbations in the carrier distribu-
tion function.*® The common practice in accounting for
gain compression in semiconductor lasers is to adjust this
parameter by fitting to experimental data. As a conse-
quence, for semiconductor lasers with a bulk active layer,
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a wide range of intraband relaxation times has been as-
sumed, from 0.1 ps to several picoseconds. The nonlinear
gain coefficient has also been found to determine the
maximum modulation bandwidth in semiconductor
lasers. Since the former is a sensitive function of the in-
traband relaxation time, it is particularly important to ac-
count properly for the quantum effects of carrier capture
and relaxation, which are expected to dominate diffusion
of carriers in the cladding layers.

In this work, we focus on the physical mechanisms re-
sponsible for carrier capture and relaxation in quantum
wells, wires, and dots and endeavor to present a
comprehensive numerical treatment of the problem of
carrier equilibration in laser structures with quantum
confinement based on semiclassical ensemble Monte Car-
lo simulations. These results are used to describe gain
compression in quantum well, wire, and dot lasers and to
derive the fundamental limits on the modulation band-
width. The rest of the paper is organized as follows. Sec-
tion II describes the theoretical formalism used in the cal-
culation of the electronic states in quantum structures
and of the scattering rates relevant to carrier relaxation

FIG. 1. (a) The cladding region and the ac-
tive region of a laser. (b) The Fermi distribu-
tion for quasiequilibrium and hot carriers.
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process. The structure of the Monte Carlo code is also
explained. In Sec. I1I, results obtained from Monte Carlo
simulations in quantum wells, wires, and dots are present-
ed along with a discussion of their significance. Some
conclusions based on the presented results are drawn in
Sec. IV.

II. MODEL FOR CARRIER EQUILIBRATION

The treatment of the electronic states in quantum-
confined structures is presented first, followed by a dis-
cussion of the theoretical model used to calculate the
relevant scattering rates. The structure of the Monte
Carlo code is explained next.

A. Electronic states

The quantum structures to be studied in this paper are
quantum wells, wires, and dots with one, two, and three
dimensions of the order of the de Broglie wavelength for
electrons at room temperature, bounded in the direction
of confinement by Al,Ga,;_,As cladding regions. The
electronic states are found by a numerical solution of the
effective-mass Schrodinger equation and Kohn-Luttinger
Hamiltonian'® with the appropriate confining potential.
The standard prescription for calculating quantum-
confined states (k,——id/9z, etc.) is used. The length,
area, and volume of the confining region for quantum
wells, wires, and dots, respectively, are discretized on a
uniform mesh and the electron wave function is required
to vanish at the edges of the confining region by truncat-
ing the matrix expansion. The differential equation is
subsequently converted into a finite-difference equation
which can be readily solved by the standard iterative
matrix-solving routines.

The off-diagonal terms in the Kohn-Luttinger Hamil-
tonian describe the deviations from the parabolic
behavior of the energy bands. The breaking of the spher-
ical rotational symmetry in quantum-well structures leads
to the mixing of the states with distinct zone-center angu-
lar momentum away from the zone center and significant
nonparabolicities due to anticrossing of subband levels.
In quantum-wire structures, only one component of the
electron wave vector may be designated a good quantum
number and the resulting Hamiltonian matrix cannot be
separated into heavy-hole and light-hole submatrices
even at the zone center (k,=0).'12

B. Scattering rates

1. Polar optical-phonon scattering

POP scattering is caused by the interaction of carriers
with local polarization fields created by lattice vibrations
in polar semiconductors. The contribution of
longitudinal-optical (LO) -phonon modes need only be
considered since longitudinal vibrations alone are capable
of setting up polarization fields. In GaAs, the electron-
LO-phonon coupling via the Frohlich interaction has
been implicated as the dominant energy-loss mechanism
in hot carrier thermalization. The scattering rate be-
tween any two states can be found from the Fermi golden
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where the Dirac delta function ensures energy conserva-
tion in the transition from the initial to the final state and
the scattering is essentially instantaneous. The overlap
matrix element of the perturbative part of the Hamiltoni-
an is between the initial and final states of the electron
and the phonon system. Taking into account the fact
that crystal momentum is conserved in the directions
with no quantum confinement, the following expressions
can be written for 2D systems:
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where the vectors with the || subscript are in the x-y
plane (with no quantum confinement); 1D systems,
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where the vectors with the L subscript are in the y-z plane
(with quantum confinement); and 0D systems,

27
Sy ="3 = CalFyy(@I"8(E; —E;+Hiwog) , 6)
q
where the form factor is given by
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where all vectors are three dimensional.

The coupling coefficient C, that can be found from the
Frohlich interaction Hamiltonian for the unscreened in-
teraction is'3
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where V is the normalization volume, €, and €, are the
optical and static dielectric constants, respectively, i,
is the (constant) LO-phonon frequency near the zone
center, and n, is the occupation number given by the
Planck distribution.

In quantum wells, the expression given above must be
integrated over all the final momentum space into which
the electron can be scattered. Straightforward manipula-
tions yield the following expression, which can be easily
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evaluated numerically:!*

Hun(9)g
x [ L g2 QB Ek)Hogdky ,  (9)

where g, is the screening constant with the dimensions of
inverse length. Its introduction to account for the static
screening mechanism will be justified in Sec. IIC. The
multisubband coupling coefficients are given by

H,(q)= [ [dz,dz,0,,(z))p,(z,)

><<p,,,(z2)<p,,(z2):f""‘”2I ) (10)

Similar procedures may be followed to obtain an expres-
sion for numerical evaluation of the scattering rate in
quantum wires. 617 Alternatively, it is possible to model
the quantum wire as a quantum dot with the length in
one dimension significantly greater than the de Broglie
wavelength. Then the scattering rates for quantum wires
may be obtained using the expression for quantum dots in
which no momentum-space integrations are necessary.
The latter approach was followed in numerical calcula-
tion of the scattering rates in this paper.

The discussion above is applicable to bulk phonon
modes. In semiconductor heterostructures, phonon
modes are modified at the interfaces between dissimilar
media. In particular, confined phonon modes may be
created with the spatial structure of standing waves as
well as interface modes having their extrema at the inter-
faces and decaying into the structure as well as hybrids
between the two.!” The strength of the optical-phonon
quantization in double heterostructures depends on the
difference between the resonance vibration frequencies in
the two materials forming the interface and the width of
the heterostructure region. In separate confinement het-
erostructures that are currently widely used in semicon-
ductor lasers, the confinement of the optical wave, for
which a large difference in the refractive indices of the
two materials, and therefore a significantly different ma-
terial composition, is necessary, is realized separately
from the confinement of carriers, for which a smaller step
in the composition profile is normally required. There-
fore, for a sufficiently small difference in the resonant fre-
quencies, the effect of phonon quantization is likely to be-
come important for widths less than 50 A. However,
such small features are not useful for laser active regions
owing to the reduced electron-hole overlap. For various
laser structures considered in this paper, we discovered
that the results for the modified phonon modes do not
differ significantly from those for the bulk modes. There-
fore, in the following, in order to simplify our presenta-
tion, we ignore the modifications of phonon modes
caused by the heterostructures and quote the results for
bulk phonons alone.

In 1D and OD electronic systems, the density of states
exhibits singularities. To treat this problem, it is neces-
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sary to calculate the scattering rates in a self-consistent
fashion, i.e., including the energy-level broadening given
by the imaginary part of the electron self-energy. The
broadening linewidth may be found iteratively once the
line shape is known. In our calculations a Gaussian line
shape (a good approximation for the sum of the contribu-
tions of the variety of different mechanisms responsible
for the broadening) was used in place of the & function:

S(Ef_E‘j:ﬁ())Lo)

(E;—E;tHiw o)
exp | — A 1;421“0 , (11)
440

1
= V'1.447o

where the linewidth o is proportional to the scattering
rate. The iterative calculation proceeds until the scatter-
ing rate sufficiently consistent with the assumed linewidth
is found numerically. This procedure may be regarded as
accounting for renormalization of the electron and pho-
non spectra by mutual interaction, in which initially
sharp levels are broadened as a consequence of the poten-
tial (virtual) interaction. The energy is required to be
conserved only to the precision of the linewidth given by
the scattering rate.

2. Acoustic-phonon scattering

Acoustic-phonon scattering is physically attributed to
the strain created by the acoustic branch of quantized lat-
tice vibrations and is usually treated using the
deformation-potential theory formalism.!® The scattering
rate is easily obtained in the long-wavelength limit in
which the matrix element is directly proportional to the
phonon wave vector. In bulk material, the phonon wave
vectors involved in transitions are very close to the zone
center, and the exchange of energy in an acoustic-phonon
scattering event is sufficiently small to be neglected in
Monte Carlo simulations. The elastic approximation be-
comes progressively poorer as one proceeds to structures
with greater quantum confinement.!?® The inelasticity
is caused by the uncertainty in the momentum conserva-
tion introduced by the lack of translational symmetry in
the directions with quantum confinement. Assuming that
the electron wave function is confined while phonon
modes are not appreciably different from the bulk ones, it
is possible to recalculate the acoustic-phonon scattering
rates using the exact form of the matrix element. The ex-
pressions (1)-(7) can be used to find the scattering rate
with the following coupling coefficient:

(ng+1+1)D2% g%
c = lTaTaraad (12)
9 2Vpo,

where D, is the (constant) acoustic deformation potential
near the zone center and p is the material mass density.
The linear dispersion relation may be used to relate the
phonon wave vector and frequency

0=T.4 , (13)
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where 7, is the velocity of the acoustic-phonon mode
averaged over direction. The scattering rate may now be
evaluated numerically. If the elastic approximation is
made, the scattering rate in 2D becomes simply

m kBTDA

Spn = Fov? fqom(z)cp,,(z)dz . (14)

—glr—rle

—i(kjr+kyr) ik r+k,r)
e
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3. Electron-electron scattering

In the Born approximation, electron-electron interac-
tion leads to an energy-conserving scattering mechanism.
The strength of electron-electron scattering is propor-
tional to the carrier density. The treatment of electron-
electron scattering in bulk regions has been discussed.?!"?
The matrix element is given by

8 ’ ’
4e? Tk tkukitk)

2
M S T T 4 ,
iom,jon (K1 K1, Ko, K3) Veq fdrfdre

(15)

lr—r'| T Ve |k —kyl?+g2

where ¢ is the static dielectric constant of the material and g, is the inverse screening length, assumed to be indepen-
dent of the wave vector. The total scattering rate out of an electronic state k, can be found from

nm*e* Ik, —k,|
477‘ﬁ3€0q52N all k’s qs2+ |k1_k212 ’

Se.e(ky)=

(16)

where N is the number of simulated electrons, n is the electron concentration, and the sum is over all electron states. A
rejection method can be used, in which the maximum value of the term dependent on the wave-vector difference is as-

sumed in order to find the maximum scattering rate

_ m*e*n
Se-e,3D,max_ 32 3
8mh eoqs

(17)

A rejection method is also used to account for the occupation of the final states available to the electron.?> The details
of the implementation of the Monte Carlo simulation are described in Sec. II D.
In 2D the matrix element involves an integration over the envelope function of the confined states*
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Evaluation of the square of the matrix element yields
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where A is the normalization area, and the multisubband
coupling coefficients

Fijmn= f_wwdz f_:dz%p,-(z)cpj(z’)%',, (z)pi(z")e —glz—z'|

(20)
are similar to those needed to evaluate the polar optical-
phonon scattering rate. The total scattering rate into all
momentum-space states can be determined by integration
of the square of the matrix element above. Using the re-
quirements of conservation of energy and momentum, the
integrations can be reduced to a single one:

|Fimjn(q)i2

47re m
S, im(ky)=——— (k,)
A 2 /i 2f (q+qs)2

ky.jsn

(21)
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where O represents the angle between the relative wave
vectors g=k,—k; and g'=k;—k}, whose magnitude is
equal in accordance with the requirement of conservation
of energy. It is clear that the electron-electron scattering
rate is dependent on the distribution function, which is
the quantity we set out to determine in the Monte Carlo
simulation. Although this does not represent a problem
per se, the evaluation of the distribution function in the
Monte Carlo simulation proceeds in very small time steps
and the simulation time may be considerably increased
owing to the necessity of recalculating the scattering
rates for each time interval. It turns out that a rejection
technique yields much more efficient results. The only
rate that needs to be evaluated is the maximum scattering
rate which remains constant during the simulation. The
result for the maximum intrasubband scattering rate is?*

4me*m*N,

S
#eiqs

e-e,max, ii = ’ (22)
where N; is the electron sheet density in the quantum
well. The maximum intersubband scattering rate must be
multiplied by the square of the maximum value of the
multisubband coupling coefficient and the total number



14 314

of subbands. A rejection method is also used to account
for the finite occupation probability of the final states.
One-dimensional systems are distinguished by the fact
that intrasubband electron-electron scattering cannot
affect the shape of the distribution function because the
only allowed scattering process merely exchanges the en-

'
J

Mg

i,m,j,n

(ki,ki,ky,k5)
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ergies and momenta of the electrons. Thus, in quantum

wires with a small cross section, in which only one or two

subbands lie below the conduction-band discontinuity,

randomization of the distribution function by electron-

electron scattering does not occur or occurs very slowly.
In 1D, the matrix element takes the form?*

iCkix +kix') itk x+kyx')
e

2 "2 1124172
_ e , , =g lx=x)+[r —rff] e
———Veofdrlfdrlfdxfdx e

The integrations over x and x’' may be carried out analyt-
ically to yield

Mifi",j,n(kl’k’l’kzyklz)
2
e , , ’
" 2me,L Jdr, [ drig,r))g;(rDer, (r)@} (x))

X8k, +ky—k! —k})
XKollgellry—ril), (24)

where K, is the zeroth-order modified Bessel function, g,
is the wave vector exchanged in the x direction, k| —k/,
and L is the length of the wire. The scattering rate may
be evaluated by a subsequent integration over the final
momentum space. By including the subband-edge ener-
gies into the energy-conservation equation and solving
the energy- and momentum-conservation equations for
the possible values of the exchanged momentum in the x
direction, a quadratic equation results with the implica-
tion that only two final scattering states are available. If
the two carriers remain in their respective subbands, such
scattering is equivalent that in a truly one-dimensional
system and the scattering process is irrelevant since the
particles are indistinguishable. However, significant en-
ergy exchanges between subbands are possible if carriers
end up in subbands different from the original ones. In
this paper, we treat electron-electron scattering in quan-
tum wires by extending the case of quantum dots treated
below to a quantum dot with the length in one dimension
greatly exceeding the de Broglie wavelength. By compar-
ing the results with the one-dimensional treatment, we
find that they converge for a sufficiently large value of the
length of the quantum wire.

Electron-electron scattering in quantum dots is
straightforward to model owing to the complete
confinement of the electronic states. The scattering rate
can be readily found from the Fermi golden rule using
the following form of the matrix element:

2
_ e , —glr—r]
Mf‘;’",j,n—zfdrfdre

@:(1)@; (), (r)py(r')
X
lr—r'|

[(x —x")?+|r,—1}]?]

77 Pi(r )@ (ren, (r )@y (r)) . (23)

The scattering rates in quantum wires and dots must be
evaluated self-consistently in the manner described above
for phonon scattering.?®

4. Electron-hole scattering

The formalism for electron-hole scattering®’ is essen-
tially identical to that for electron-electron scattering ex-
cept that a sum over all valence-band states obtained by
solving the Kohn-Luttinger Hamiltonian is necessary. In
order to simplify the problem of electron-hole scattering
in structures with quantum confinement we avoid the
necessity of dealing with mixed states of angular momen-
tum and instead make the parabolic-band approximation
in which the off-diagonal elements of the Kohn-Luttinger
Hamiltonian are set to zero. This is clearly unacceptable
in problems where the mixing is critical to the correct
description of the problem, for example, in accounting
for the polarization dependence of optical transitions in
structures with quantum confinement. However, in our
attempt to describe electron-hole scattering, this approxi-
mation is desirable to avoid tedious calculations with
long computation times. Therefore, it is made in our
treatment of electron-hole scattering.

A full Monte Carlo simulation for two types of carriers
is extraordinarily time consuming and difficult computa-
tionally. However, using the approximation that the re-
laxation processes in the valence band are considerably
faster than those in the conduction band (so that the hole
distribution is always maintained in thermal equilibrium
with the lattice), the problem is considerably simplified
since electron-hole scattering affects only carriers in the
conduction band. In fact, it is simpler than the problem
of electron-electron scattering since the hole distribution
is known a priori. The approximation made depends on
the assumptions that the phonon-hole scattering rates in
a quantum wire are much greater than phonon-electron
scattering rates and that complete thermalization of the
hole distribution takes place essentially instantaneously.
While the latter assumption is somewhat questionable
given the difficulties in thermalization experienced by the
electron gas in quantum wires and quantum dots, in our
view, it is the best way to obtain at least an approximate
quantitative idea of the magnitude of the electron-hole
scattering rates.
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C. Screening effects

Screening in semiconductors may have a dramatic
effect on the scattering rate provided the carrier concen-
tration is sufficiently high to modify the form of the po-
tential with which carriers are interacting. The problem
of self-consistent screening in the random-phase approxi-
mation is difficult computationally, requiring an inversion
of the dielectric matrix of the multisubband system.??
This procedure is not a practical one in standard Monte
Carlo simulations. Instead the static, long wavelength
limit is taken, which yields results identical to the well-
known Thomas-Fermi approximation. The effects of
screening can be characterized by a single wave-vector-
independent quantity. The dielectric function becomes
simply

}\’2
elg)=1+—, (26)
q
where A is the inverse Debye screening length, given by
2
2= 21 27
€kg T’ @n

where n is the carrier concentration. Although this ex-
pression is valid only for nondegenerate carrier statistics,
we use it throughout our calculations in this work in or-
der to simplify our approach to the screening problem.
Since the effects of screening on the electron-phonon and
carrier-carrier interactions in multiple-subband quantum
wires are still unclear at present, it is reasonable to resort
to such an approximation. The presence of a large con-
centration of holes in the active region leads similarly to
electrostatic screening. The simplest way of accounting
for the effect of hole screening is to add the electrons and
hole concentrations and substitute the result in the ex-
pression for the screening length, Eq. (27). In this paper,
we are primarily concerned with the effect of order-of-
magnitude changes in the carrier density on electron re-
laxation. Therefore, the above-mentioned distinction is
of secondary importance.

While acoustic-phonon scattering is presumed to be
unaffected by the screening mechanisms, the polar
optical-phonon scattering rate has to be modified to ac-
count for its effects. The formulas given above incorpo-
rate the effect of screening in terms of the phenomenolog-
ical screening wave vector g, which is now identified
with A.

D. Monte Carlo simulation

In our Monte Carlo simulation, carrier transport in the
3D and lower-dimensional regions is modeled separately.
In constructing the Monte Carlo approach to carrier
equilibration in lower-dimensional regions, a small region
of the cladding region as well as the confined region are
taken into account in computing the band structure.?’ In
particular, the 3D-2D simulation is done for a graded-
index cladding structure, in which a thin layer of the
neighboring barrier may also experience rather strong
confinement effects. The transitions between the 3D and
2D regions are based on the assumption that if a 2D
Monte Carlo calculation for the graded region is carried
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out including all subbands, then in principle the same re-
sult can be obtained from the corresponding 3D Monte
Carlo calculation. In practice, it is only necessary to con-
sider up to five subbands.’*3! The 3D—2D and 2D<«3D
transitions are modeled as phonon-assisted processes. A
transition energy level E,; is introduced to facilitate the
3D-2D transition. The 3D —2D transition is carried out
if, upon the termination of a 3D free flight, the total car-
rier energy after a phonon emission scattering process is
expected to fall below E,.. A final 2D state is chosen
from the nearest subband considering energy and
momentum conservation. We perform the reverse
2D —3D transition when the total energy of a well car-
rier is expected to exceed E,, after a phonon absorption
scattering process. To conserve the in-plane energy and
momentum, the in-plane wave vector is unchanged. The
z component of the wave vector is then obtained by tak-
ing into account energy conservation; its z orientation is
randomly selected. In our study, we set E,, equal to one
kT (26 meV) above the subband minimum of the highest
(fifth) state being considered. This setting is confirmed
with a series of simulation runs. Essentially no change is
observed if E,, is increased somewhat, showing that in-
cluding five subband levels is quite adequate.

A similar procedure is followed for 3D-1D and 3D-0D
simulations. The graded-index cladding regions are not
considered, however, in order to simplify the computa-
tional procedure. Moreover, the state of the art in
defining quantum wires and quantum dots has not
reached the stage in which fabrication of practical semi-
conductor lasers is possible; therefore, the need for
greater precision in our simulations is less urgent. The
Monte Carlo code simulates the evolution of the energy
distribution of an ensemble of electrons injected in a
thermal distribution above the top of the potential barrier
created by the conduction-band discontinuity. The ener-
gy spectrum is divided into a large number of intervals of
equal and small extent. The standard Monte Carlo pro-
cedure with the introduction of self-scattering events is
followed allowing for the needed number of degrees of
freedom of the particles. The results are averaged over a
large number (5000-10000) of electrons in order to
suppress stochastic fluctuations in the results.

The time of the simulations is divided into very short
intervals of the order of 1 fs. Thus it is ensured to a high
degree of precision that no more than one scattering
event can occur in each time interval. Carrier-carrier
scattering and finite occupancy of the final states necessi-
tate the introduction of additional self-scattering mecha-
nisms. This allows computing the scattering rate only
once in the process of the simulation, which reduces the
required computing time considerably. The distributions
of carriers in time and energy are tabulated, and the re-
sults are found by averaging.

E. Linear and nonlinear gain formalism

Although the Monte Carlo approach described above
allows immediate determination of such quantities as the
average capture and thermalization times and the frac-
tion of the carriers escaping from the well region, addi-
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tional calculations are necessary to ascertain the effect of
a finite thermalization time on the characteristics of semi-
conductor lasers. Since the effect of the thermalization
time is to introduce a correction to the gain spectrum at
high photon densities present in the laser cavities (corre-
sponding to high rates of stimulated emission), it is neces-
sary first to compute the linear gain of each simulated
structure neglecting excitonic effects. The optical gain
can be calculated using the Fermi golden rule and a
knowledge of the conduction- and valence-band struc-
tures.’> The latter part of the problem has been dis-
cussed above. The expressions for the material gain are
(in Gaussian units), in 2D, 1D, and 0D, respectively,

¢ ()= 4rte’sn 1 2
n,emitio W (27)?
X [dk 3 &P, (k)|?8(Ef(k)—E (k) —fiw)
X[fUESK)—FUAEL(K))],  (28)
2,2
)= TR 1 2
ngemjfio A 2w
X [dk 3 [e-P,, (k)*(ES(k)—E}, (k) —#iw)
X[fUESK)—fUEL (KD,  (29)
g(ﬁw)zﬂizl@-ﬁ [28(ES —E}, —#iw)
ngemitio V5" o
X[fUES)—fUEL)], (30)

where W, A, and V are the width, area, and volume of
the confined region, respectively, € is the unit vector in
the direction of light polarization, P,,, is the momentum
matrix element between the conduction- and valence-
band states, /€ and f’ are the conduction and valence-
band functions assumed to be described by quasi-Fermi
statistics for the purposes of obtaining the linear gain,
and the rest of the symbols have their usual meaning.
The carrier distribution is presumed to be in thermal
equilibrium with the lattice. The actual calculation
proceeds by adjusting the quasi-Fermi levels until the
hole density is equal to the desired electron density.

In a practical semiconductor laser, the assumption of
Fermi-Dirac distributions in the conduction band breaks
down far above threshold. The distribution function
achieves a steady-state profile determined by the inter-
play of intense stimulated emission near the lasing wave-
length and carrier injection at the top of the potential
barrier.> The lasing characteristics in this case must in
principle be evaluated via a self-consistent calculation of
the intensity of the electromagnetic field in the cavity ex-
pressed in terms of the photon density, the carrier densi-
ty, and the distribution determining the pattern of in-
teraction with the electromagnetic field.>* In practice
such a calculation is extremely lengthy and tedious when

IGOR VURGAFTMAN, YEELOY LAM, AND JASPRIT SINGH 50

carried out numerically. A simpler model used in
theoretical calculations is to introduce a nonlinear gain
term into the rate equations.’>3¢ The optical gain thus
becomes a function of the photon density, and phenome-
nological self-consistency is achieved. Our objective,
therefore, is to determine the dependence of the optical
gain on carrier density by finding the exact shape of the
distribution function under intense stimulated emission.

In the case of the quantum-well laser, we find it con-
venient to carry out the calculation in a nonlasing mode,
i.e., in an equivalent optical amplifier. This eliminates
the necessity of maintaining the gain of the mode at a
fixed value equal to the cavity losses, as the correct
description of the lasing mode would require. The non-
linear gain term in semiconductor lasers has been intro-
duced in several ways. For a product of the photon den-
sity and the nonlinear gain coefficient much less than uni-
ty, by using an expansion in terms of this product, all
possible expressions are adequately reproduced by
neglecting all terms higher than the first power. The op-
tical gain thus becomes g (n,S)=g (n)[1—€S]. It is plain
that the following convenient definition of the nonlinear
gain coefficient may be adopted:

= |Bg 1| 31

AS g, Js:o

where S is the photon density and g is the extrapolated
gain at S =0. Two steady-state results of the Monte Car-
lo simulation, one with S =0 (peak optical gain g;) and
the other with a finite S, (peak optical gain g,) are used.
The effect of stimulated emission is incorporated into the
Monte Carlo simulation by extracting a certain number
of carriers, consistent with the necessary rate of stimulat-
ed emission, and allowing the distribution function to
converge to a steady state. The gain compression param-
eter is then approximately

6:_,g.2___g_1__1_ . (32)

S, &

The photon density S, can be found easily from the rate
equation for the carrier density.

An alternative theoretical formalism®’ for determining
the steady-state form of the distribution function has
been also developed and applied to the quantum-wire
laser problem. It relies on a direct solution of the
Boltzmann equation for the laser problem rather than on
the full Monte Carlo simulation that may often become
excessively cumbersome. This approach is particularly
well suited to the quantum-wire problem in which polar
optical-phonon scattering represents the major scattering
mechanism by virtue of its relative strength and the rest
of the scattering mechanisms may be modeled as pertur-
bations contributing a finite lifetime of the energy levels
expressed as energy-level broadening. The evolution of
the system in time is described by the Boltzmann equa-
tion for a spatially homogeneous system with no applied
fields:
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9f (E)

o =S E +#0)[1=f (E)]W gy E +0,E)

+ f(E —#0)[1—f (E)|W 4 ,(E —#,E)
—F(E)1—f(E +#0)]W 4, (E,E +#0)
—F(E)1—f(E —#0)W o (E,E — i) , (33)

where W, and W, represent the integrated scattering
rates for emission and absorption of phonons, respective-
ly, over all k states at corresponding energies. The time
derivative must be set to zero in order to solve for the
steady-state distribution function. It is straightforward
to verify that any function satisfying the condition of de-
tailed balance

n,[1—f(E +#0)lf (E)=(n,+1)f (E +#0)[1—f(E)] ,

(34)
where n, is the phonon occupation number, is the solu-
tion of the above equation. The effects of stimulated
emission at the lasing wavelength and carrier injection at
the edge of the potential barrier are now taken into ac-
count by introducing the source and sink terms obtained
from the rate equation for the carrier density. The ener-
gy spectrum of interest is then subdivided into small in-
tervals and the Boltzmann equation is converted into a
set of coupled nonlinear equations. The equations are
greatly simplified if only POP scattering is included be-
cause only points separated by multiples of the optical-
phonon energy are coupled. The rest of the scattering
rates calculated from the formalism presented above are
then treated as contributing a lifetime broadening with
the linewidth proportional to the total scattering rate in
each interval.

A direct numerical solution of the resulting set of equa-
tion is cumbersome for a fine mesh on the energy spec-
trum. Instead the problem can be solved by an iterative
Monte Carlo approach. A Fermi-Dirac distribution
function is taken initially for electrons with the implicit
assumption that the final steady-state distribution func-
tion does not deviate strongly from the canonical form.
Next the distribution function is substituted into Eq. (33)
with the source and sink terms describing the effects of an
injection current density J into the active region and
stimulated emission at the lasing energy for a photon
density S. Random perturbations of the distribution
function with the maximum amplitude of 5% are made
by a Monte Carlo-style technique. If the time derivative
of the electron distribution function as expressed by Eq.
(33) with the source and sink terms is reduced by the per-
turbations, the randomly generated change in the distri-
bution function is accepted; otherwise, it is rejected. Pro-
vided the error in the time derivative is within the
round-off tolerance (typically =0.1% of the original er-
ror), the simulation is terminated, yielding the steady-
state distribution function in the presence of intense
stimulated emission.

III. RESULTS

In this section we will present results on carrier
thermalization in quantum-well, quantum-wire, and
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quantum-dot structures. We start with the quantum-well
structure, which is the most widely used structure for low
threshold lasers.

A. Carrier thermalization in quantum wells

In an ideal quantum-well structure, the well should be
narrow enough ( < 100 A) so that electrons are essentlally
in the ground state of the conduction band. We examine
a typical quantum well structure shown in Fig. 2, which
is a 50-A GaAs/Aly ;Ga, ,As quantum well with a linear
graded-index (L-GRIN) cladding region. The electrons
are injected at the top of the “funnel” where they have
energies of =0.3-0.4 eV above the ground-state energy
of the quantum well. In Fig. 2(a) we show the first five
envelope functions for the structure and in Fig. 2(b) we
show the corresponding energy levels.

In the quantum-well structure, the dominant scattering
mechanism is polar optical-photon emission. The calcu-
lated values of the intersubband scattering rates are
shown in Fig. 3. These rates provide insight into why the
thermalization times increase in quantum-confined struc-
tures. Notice that intrasubband rates are =103 s7!
which is similar to the bulk or 3D polar optical emission
rates. This rate would suggest that an energy loss of
~10fiw,, (=0.36 eV in GaAs) would take only =1 ps.
This is indeed the case for 3D energy loss. However, one
notices from Fig. 3 that intersubband rates are dramati-
cally suppressed. For example, the scattering of an elec-
tron in the second subband to the first subband takes
<10'? 57!, and from the third subband to the first sub-
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FIG. 2. First five eigenvalues and | envelope parts of the eigen-
functions calculated for the 50 A Al; ;Gajy ;As GRINSCH
quantum well.
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band it is <2X 10" s~!. Since electrons must go from
the higher subbands to the lower subbands during
thermalization, a bottleneck is created.

In Fig. 4, we show the path a typical electron takes as
it loses its excess energy in the laser structure. The paths
in the energy domain and in the spatial domain are

shown. It is obvious that the carrier does not simply take
the most direct path to the well, but instead spends a sub-
stantial amount of time “bouncing” around before its
eventual capture by the quantum well occurs. It is also
clear that the bulk of the time in the thermalization pro-
cess is spent in the 2D region primarily due to suppres-

FIG. 4. Flight dynamics of an arbitrary car-
rier in the ensemble for the 50-A Al ;Gag 5As
GRINSCH quantum well with E;=15 meV
and an applied electric field of 2 kV/cm.
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sion of intersubband scattering rates. To obtain a reason- 1.0 L e B A
ably correct picture of the relaxation process, a statistical 09 E 3
average over a large number of carriers (=~ 10000) must 0.8 3D-GRIN 3
be performed. The result for the time development of the 07 3
ensemble energy distribution under the low injection con- 06E Subband 1 3
dition (10'® cm™3) for the 50-A well linearly graded- 05E 4 \ . d

index separate confinement heterostructure (L-
GRINSCH) is shown in Fig. 5. The distribution of car-
riers in the structure for the same simulation is shown in
Fig. 6. The fraction of carriers in the ‘“3D-GRIN” re-
gion decreases from a maximum of 100% upon injection
to a low of 3% after about 15 ps, while the well-state (first
subband) occupancy increases from zero to its maximum
in the same period. We further note that the occupancies
of the various subbands do indeed correctly portray the
transport of the carriers through the subbands.

An interesting difference between the L- and P- (para-
bolically) GRINSCH structures lies in the carrier capture
time. As shown in Fig. 7 (curves 5 and 6), the relaxation
process in the L-GRINSCH structures is significantly fas-
ter than in the P-GRINSCH structures. We have also
obtained good agreement between our simulation and
published experiments,®® by comparing the calculated
carrier capture time constants of 6.7 and 8.8 ps (obtained
from exponential curve fitting) and the experimental time
constants of 8.2 and 10 ps, for L-GRINSCH and P-
GRINSCH structures, respectively, with a well width of
50 A.

An understanding of how the capture time changes (if
at all) with the well width and the carrier injection densi-
ty is crucial for optimization of the laser structure for
high-speed operation. While some experiments report no

Distribution (arb. units)
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FIG. 5. Time evolution of the energy distribution for an en-
semble of 10000 relaxing carriers, injected from the edge of the
confinement layer with a kinetic energy of 15 meV at time O ps.
The simulation is performed for the structure of Fig. 3 with an
applied electric field of 2 kV/cm.
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FIG. 6. The distribution of carriers in the structure of Fig. 3
as a function of time.

well-width dependence, others observe either an increas-
ing or a decreasing trend. From Fig. 7 (curves 3-5), we
see that the carrier capture time increases with the densi-
ty of carrier injection. Also the capture time exhibits a
nonmonotonical trend with the well width at low injec-
tions. Oscillatory behavior has been predicted by Brum

et al.* At higher injections, monotonical trends appear.
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FIG. 7. Calculated carrier capture time as a function of well
width and injection density. The capture time is defined as the
time needed for the well-state occupancy to reach 95% of the
equilibrium value.
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We can observe from Fig. 7 decreasing, flat, or increasing
variation of capture times with the well width, depending
on the injection conditions. Longer capture times in wid-
er well structures under high injection and no significant
capture time dependence on the well width under
moderate carrier injections have also been reported ex-
perimentally by Weiss et al.*° On the other hand, the ex-
periments with photoluminescence and photoexcitation
measurements reported no dependences of the carrier
capture time on the well width.*! Since moderate carrier
injections are to be expected in these experiments, they
also appear to agree with our simulation results.

We shall now examine the well-width dependence un-
der lasing conditions, where the threshold carrier density
ny, varies with the well size. Table I enumerates the cal-
culated n,, for the L-GRINSCH lasers having typical
laser parameters.’> Curve 1 in Fig. 7 shows the calculat-
ed capture times at threshold densities. We observe that
the carrier capture times under lasing conditions are
more or less independent of the well width. This
behavior may be attributed to two opposing factors—
changes in the 2D and 3D carrier densities.

For a particular 3D injection density, the 2D carrier
density in the quantum well increases with the well
width. Since carrier screening in the well varies with the
2D carrier density, an increase in the carrier capture time
with the increasing well width may be expected. This
behavior is confirmed by comparing curve 2 (constant 2D
density) and curve 3 (constant 3D density) in Fig. 7. Un-
der lasing conditions, the 2D ny, increases with the well
size (by 20% from the 40- to the 100-A well). Hence the
capture time should be proportionally longer in the wider
well lasers. On the other hand, from Table I, we note
that the increases in the 2D n,, are accompanied by de-
creases in the 3D ny, (to 50% of its value when the well
width is increased from 40 to 100 A). Faster capture
times are expected from a lower 3D carrier density. If we
were to consider only the effects of 3D carrier screening
and assume a square-root relationship, a 30% reduction
in the capture time may be expected. However, the actu-
al effect is much smaller since the average carrier dwell
time in the 3D graded-index region is a minor portion of
the overall capture time. The trend in curve 1 indicates
that this effect is less than 10%.

The effect of a finite carrier capture time on the optical
gain spectra of a quantum-well material can be evaluated
by a combination of a macroscopic calculation of the gain
spectra and the electron-photon rate equations and a mi-
croscopic simulation of a carrier dynamics as described
above. The results for initial and final optical spectra
when a finite photon density is introduced into the cavity
are shown in Fig. 8. The gain compression coefficient

TABLE 1. The 2D and the 3D threshold carrier density n,
of the L-GRINSCH quantum-well lasers.

Well width A 40 50 70 100
2D ny (10'2 cm™2) 1.09 1.10 1.16 1.30
3D ny (10" cm™3) 2.74 2.20 1.65 1.30
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FIG. 8. The optical gain spectra for the two steady-state
solutions in the gain saturation simulation. Also shown are the
optical gain spectra for (two) steady-state solutions calculated
using the quasi-Fermi function. Curves A4 and B are for the
Fermi-based initial and final steady states, respectively. Curve
C, based on the quasi-Fermi distribution, has the same peak
gain as the dashed curve.

may then be easily calculated from Eq. (32). The numeri-
cal value is found to be e=1.1X107!7 c¢m? for the 50-A
L-GRINSCH laser structure. This result is comparable
with the conclusions of recent experimental studies of
subpicosecond gain dynamics in Al ,Ga,_,As laser
diodes*? and measurements of the intensity modulation
spectra of current-modulated Fabry-Pérot lasers.*’
Knowing the value of the nonlinear gain coefficient in
quantum wells, we can in principle evaluate the max-
imum modulation bandwidth for the particular design of
the quantum-well laser. However, while such a calcula-
tion is of considerable importance for quantum-well laser
engineering, the final value of the modulation bandwidth
does not represent a fundamental quantity directly
reflecting the dynamics of carrier thermalization in laser
structures. This is largely due to the dependence of the
modulation bandwidth on a wide range of system param-
eters both intrinsic, such as the detailed band structure of
the active medium material reflecting in the differential
gain, and extrinsic, such as the design of the laser cavity,
in particular, the cavity length. Nevertheless, we per-
form a calculation of the modulation bandwidth for a
particular quantum-well laser in order to provide an esti-
mate of small-signal modulation frequencies which are
theoretically capable of being achieved (in practical
diodes, extrinsic limitations may prevent their achieve-
ment). The maximum intrinsic direct-modulation —3-dB
bandwidth may be calculated using the small-signal
analysis of the semiconductor laser rate equations includ-
ing the nonlinear gain term.** The resulting value of
Froax=2"?m/K, where K =4n*[1,+€/(v,dg/dn)], can
be found numerically once the photon lifetime is deter-
mined. In a laser with a cavity length of 100 um having a
photon lifetime of 7,=1.0 ps, 2 maximum bandwidth of
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78 GHz has been calculated. To achieve the predicted
bandwidth, however, the laser has to be biased at a very
high optical power (=100 mW) causing detrimental
effects of device heating and facet degradation. It is
necessary, therefore, to explore injection schemes which
will eliminate or reduce gain compression and lower the
optical power.

B. Carrier thermalization in quantum wires

The polar optical-phonon scattering rate is shown in
Fig. 9 as a function of the initial energy for the case of
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FIG. 9. The polar optical-phonon emission and absorption
rates in the 200X200 A" quantum wire as a function of the ini-
tial electron energy for a carrier density of (a) 10'® cm ™ and (b)
10' cm™? in the wire region.
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negligible screening (low injection, n =10'¢ cm~*) [Fig.
9(a)] and strong screening (high injection, n = 10%¥ cm™?)
[Fig. 9(b)] in the 200X200 A GaAs/Alj;Ga,;As quan-
tum wire. The energy dependence of the scattering rate
may be attributed to its dependence on the density of
states function and on the matrix overlap element. When
the interaction between electrons and polar optical pho-
nons is screened by a high density of intervening charge,
necessary to achieve and sustain population inversion in a
semiconductor laser, the scattering rate is noticeably re-
duced in comparison with that in the case of negligible
screening. The polar optical emission rate exceeds polar
optical absorption rate, ensuring eventual carrier
thermalization. @~ At lower temperatures, phonon
freezeout makes carrier thermalization considerably more
efficient since less phonon absorption occurs.

Our Monte Carlo simulation shows that intersubband
electron-electron scattering in the 100X 100 A?, in which
only two subband energies are below the conduction-
band discontinuity is much less efficient than polar
optical-phonon scattering and may be neglected with lit-
tle loss of precision. Instead, relative prominence is
gained by inelastic acoustic-phonon and electron-hole
scattering processes. The electron-hole scattering rate in
quantum wires may be estimated by making the parabolic
band approximation in the valence band (neglecting cou-
pling between the states of distinct angular momentum)
and assuming that the hole-phonon coupling is strong
enough to ensure that the holg distribution is in thermal
equilibrium with the lattice at all times. The resulting
scattering rate is shown as a function of initial electron
energy (summed over all final electron, initial and final
hole states) in Fig. 10. The effect of screening on the
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. FIG. 10. The electron-hole scattering rate for the 100X 100
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FIG. 11. The time evolution of the mean en-
ergy of the electron distribution for (a)
100X 100 A% and (b) 200X200 A’ quantum
wires neglecting the effects of electron-hole
coupling.
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electron-hole scattering rate may be estimated in the
Thomas-Fermi approximation. Since the hole distribu-
tion is assumed to be in static equilibrium, electron-hole
scattering actually leads to energy loss for the electron
distribution. This energy loss represents the effect of in-
direct coupling of the electrons to the thermal bath of the
lattice mediated by the holes. In view of the simple as-
sumptions adopted above, this energy loss is necessarily
overestimated in our simulation apart from the assump-
tion of the static nature of screening, which may cause
the strength of the electron-hole interaction to be some-
what underestimated. In this paper, however, we do not
aim to obtain a complete description of electron-hole
scattering in quantum wires, but rather to provide an es-
timate of its importance in the relaxation phenomena.

Now we consider the time evolution of the electron dis-
tribution as derived from the Monte Carlo simulation.
The mean energy of an ensemble of 5000 electrons is
shown in Fig. 11 neglecting electron-hole scattering pro-
cesses. The time evolution of the average electron energy
can be divided into two periods: (i) fast relaxation pri-
marily by emission of polar optical phonons with a
density-dependent characteristic time of a few pi-
coseconds and (ii) slower relaxation primarily by emission
of inelastic acoustic phonons for those carriers whose ini-
tial energy does not match the average thermal energy
plus an integral number of optical-phonon energies. The
effect of screening is to slow down relaxation by phonon
emission, but if the carrier-carrier scattering rates are
properly included, the division between relaxation by
emission of optical and acoustic phonons is blurred and
carrier thermalization times are closer to those at low
carrier densities. .

For the 100X 100 A wire, in the presence of strong
screening, the electron relaxation time exceeds 100 ps,
while for the case of negligible screening it is estimated to
be =20 ps. In the 200X200 A wire, the relaxation times
are, respectively, 30 and 5 ps. The magnitude of the fluc-
tuations observable in the plots of the mean energy as a
function of time after injection can be reduced by increas-
ing the number of simulated electrons. The time evolu-
tion of the mean energy of the electron distribution is

Time (ps)

given in Fig. 12 including electron-hole coupling. The re-
laxation time is reduced to =50 ps. Although the loss of
energy to the hole distribution by electrons is calculated
to be quite high in our model, we would like to point out
that this relaxation time is still significantly greater than
those calculated for quantum-well structures.

The evolution of the electron distribution as a function
of time is presented in Fig. 13. The shape of the distribu-
tion function is qualitatively similar in situations with
strong and weak screening. The difference is rather in
the time scale for electron relaxation as reflected in the
time evolution of the mean energy of the electron distri-
bution. The injected distribution is shown as a plot of the
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FIG. 12. The time evolution of tlge mean energy of the elec-
tron distribution for the 100X 100 A? quantum wire including
the effects of electron-hole coupling.
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occupation probability summed over an energy interval
of 5 meV. The distribution function is shown at the time
of injection and for a number of relevant times after in-
jection. It is found slowly to approach the Boltzmann
distribution function with the passage of time. The peaks
in the distribution function formed at the subband-edge
energies reflect the bottlenecks in carrier relaxation en-
countered in intersubband transitions. The results for a
range of quantum-wire cross sections are summarized in
Fig. 14 for quantum wires of square cross sections (an as-
sumption made to simplify the calculations). Since the
equilibration process is closely related to the resolution of
the bottleneck in phase space occupation, the relaxation
time shows a clear dependence on the wire cross section:
for larger areas, a greater number of subbands allows
more efficient randomization of the electron distribution.
In order to evaluate the effect of a finite intraband re-
laxation time on the spectral hole burning in quantum
wires, we solved the Boltzmann equation by the Monte
Carlo technique discussed previously. The steady-state
distribution function for a characteristic time of 10 ps is
shown in Fig. 15. The effect of injection and extraction
terms on the distribution function is seen to be twofold:
(i) a spectral hole is burned around the lasing wavelength
and (ii) the effective temperature of the electron gas is
slightly raised. The reduction in the occupation probabil-
ity at the lasing wavelength corresponds to the reduction
of the optical gain of the lasing mode. The dependence of
the reduction in occupation probability on the charac-
teristic injection time is shown in Fig. 16. On the basis of
the results presented here, it is clear that the nonlinear

gain coefficient in quantum wires may be increased by a
few times in comparison with the coefficient calculated
for quantum wells. However, it is difficult to translate
the enhancement in the gain compression parameter
directly into the reduction in modulation bandwidth. It
has been shown that the differential gain in quantum-wire
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FIG. 14. The electron relaxation time as a function of the
wire cross-sectional area. A square cross section is assumed and
the length of the side of the square is given as the parameter for
carrier concentrations of 10'® and 10'® cm 3.



14 324

Correct DF Fermi-Dirac DF

0.8

>

L

hal

3

ha

Q

3 0.6 F

Q

N

Ay

=

o

o oo.4 F

o]

Q

=3

[¢)

Q

S
0.2
0.0 s | L L n 1 L 1 "
0.00 0.05 0.10 0.15 0.20 0.25

E-E. (eV)
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laser structures may be as much as an order of magnitude
greater than in quantum wells. Nevertheless, it is too
simplistic to assume that the differential gain remains
unaffected by gain compression, specifically, because the
carrier density necessary to overcome the cavity losses
changes considerably with the output power for a
sufficiently large nonlinear gain coefficient. The most
straightforward application of the single-mode equation
formalism becomes progressively worse as gain compres-
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FIG. 16. Peak reduction in the occupation probability at the
lasing wavelength as a function of the characteristic extraction
time.
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sion is more palpable. The approximation of single-mode
constant-wavelength operation and the characterization
of the complicated dynamics of carrier relaxation in the
presence of very intense stimulated emission in terms of a
single constant (nonlinear gain coefficient) begin to break
down. The situation is complicated by the fact the prac-
tical designs of quantum wire lasers, in glaring contrast
with quantum-well lasers, have not been realized. This
makes the determination of a parameter such as the
modulation bandwidth, dependent on the wide variety of
quantities unrelated to the carrier thermalization prob-
lem, in our view, premature.

C. Carrier thermalization in quantum dots

Carrier thermalization in quantum dots is conceptually
different from carrier thermalization in other low-
dimensional electronic systems because a continuum of
energies is no longer available to electrons.** Thus at-
tempts to estimate the scattering rates in the same
fashion as in other structures are bound to be inaccurate
unless the broadening of the energy levels is taken into
account. This broadening may arise from a variety of
sources such as interface imperfections etc. Here we con-
sider electron thermalization in perfect dots with 3D
confinement. Therefore, the broadening of the energy
levels can be determined by finding the level lifetime
given by the imaginary part of the electron self-energy.
The latter is proportional to the scattering rate. There-
fore, in order to determine the carrier scattering rates in
quantum dots, it is necessary to achieve mutually con-
sistent values of the scattering rates and the broadening
of the energy levels induced by scattering. This type of
calculation must be performed numerically by iteration
on the broadening linewidth.

Even with the inclusion of the broadening levels, it
may be conjectured that polar optical-phonon scattering
is not very efficient since large deviations from the
optical-phonon energy are still unlikely. By performing a
Monte Carlo simulation of the relaxation process with
self-consistently calculated scattering rates, we find that
inclusion of electron-hole scattering can decrease the
thermalization time by as much as an order of magni-
tude. In Fig. 17 the evolution of the mean energy
of the electron distribution in the 50X250X250 A’
GaAs/Alj ;Ga, ;As quantum dot at 300 K is shown with
and without electron-hole scattering. In the absence of
electron-hole scattering, the relaxation time of several
nanoseconds can potentially exceed the nonradiative
recombination time. This has been thought to reduce the
likelihood of observing photoluminescence from
quantum-dot structures.*® Several scattering mechanisms
have subsequently been examined in order to clarify the
relaxation process in quantum dots. While Auger in-
teractions with a dense electron-hole plasma outside of
the confined region*’ require very high concentrations in
order to give reasonable relaxation rates, and multipho-
non scattering®® is a second-order process whose proba-
bility is significantly less than that of a first-order process,
the mechanism of carrier thermalization in quantum dots
suggested here is a first-order process involving carriers
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FIG. 17. The mean electron energy as a function of time
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quantum dot at 300 K. The horizontal line represents the equi-
librium mean energy.

confined in the same (small) volume. On the basis of our
results, carrier relaxation is less likely to be the cause of
poor luminescence, although the results for very small
dots may be affected by the simple assumptions on the
hole distribution made in order to evaluate the electron-
hole scattering rate.

The carrier thermalization time in quantum dots can
thus be estimated to be of the order of several hundred
picoseconds depending on the dot size. These times are
considerably in excess of the times found for quantum-
well and -wire structures. Thus the modulation band-
width of quantum-dot lasers can be expected not to
exceed several gigahertz. The probability of realization
of quantum-dot lasers depends critically, however, on the
ability to grow 3D arrays of dots with good interface
quality. Even if this objective can be achieved, the modu-
lation bandwidth will be intrinsically limited to a value
substantially lower than those currently achieved in semi-
conductor lasers.

IV. CONCLUSIONS

A comprehensive treatment of carrier thermalization
in conditions relevant to semiconductor laser operation in
structures with quantum confinement of carriers has been
presented. We have illustrated the dependence of the
thermalization process on the degrees of freedom in
quantum wells, wires, and dots, attempting to elucidate
the physical peculiarities of the relaxation process. In
particular, the reduction in the available final momentum
space causes bottlenecks in carrier thermalization which
increase the effective time in which thermal equilibrium
with the lattice is achieved. When quantum confinement
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is realized in all three spatial dimensions, the physics of
the relaxation process acquires qualitatively new features.
It becomes important to account correctly for the renor-
malization of the electronic states in the quantum dot
occurring as a result of coupling to the phonon bath.
Since recently the primary application of quantum struc-
tures with confinement in multiple dimensions has been
in semiconductor lasers, it is also imperative to include
the interactions of the electrons and holes injected into
the active region. It has been shown that the relaxation
of the carrier type with a time constant much greater
than that of the other type (in the absence of the intra-
band intercarrier interaction) may be significantly speed-
ed up. Because the electron density of states is normally
much smaller than the hole density of states, the rate of
energy loss to the lattice for holes tends to be much
greater than that for electrons. If the electron-hole ener-
gy exchange is sufficiently large, however, the electrons
are able to couple to the phonon bath indirectly. This
type of interaction has been shown to be critical in
quantum-dots structures, in which other types of interac-
tions result in a very low energy loss rate.

The electron relaxation time has been found to increase
with confinement in further directions. This corresponds
to the intuitive expectation based on the reduction in the
degrees of freedom associated with the final momentum
space. While the thermalization times in bulk materials
have been estimated not to exceed 1 ps (in the situation of
injection from the cladding layer, spatial diffusion dom-
inates intraband relaxation), we find that the correspond-
ing value in quantum-well systems is of the order of 10
ps. Performing a Monte Carlo simulation, we have estab-
lished that the major portion of the so-called capture
time from the 3D region into the quantum well is spent in
transitions between the subbands owing to suppression of
intersubband scattering rates. The situation in quantum
wires is analogous. We found that in order to obtain a
faithful picture of electron relaxation in quantum wires, it
is necessary to include the effect of electron-hole scatter-
ing since electron-electron scattering in small-area quan-
tum wires is negligible. The calculated relaxation times
range from 50 to 100 ps. The relaxation times are in-
creased to several hundred picoseconds in quantum dots.

The intraband relaxation time affects one parameter
that is of great interest for semiconductor laser
operation—the nonlinear gain coefficient. While, in the
steady state, the effect of nonlinear gain is to introduce a
small correction to the light-current characteristic at
high injected currents, the consequences of gain compres-
sion on the dynamics of laser diodes can be quite dramat-
ic. Along with the details of the band structure as ex-
pressed in terms of the differential gain, the gain
compression coefficient sets the intrinsic upper limit on
the modulation bandwidth of the semiconductor laser.
We have obtained an estimate of the bandwidth for wide-
ly used quantum well lasers of =80 GHz for a cavity
length of 100 pum, which means that fairly high speeds
can be achieved in appropriately designed quantum-well
lasers in spite of the increased thermalization time.
Moreover, the modulation bandwidth has not been found
to scale exactly with the thermalization time, primarily
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owing to the variety of parameters on which the former
depends. Qualitative estimates of the modulation band-
width for quantum wires and dots are difficult also be-
cause practical laser structures using these structures as
active regions have not yet been demonstrated. In gen-
eral, the evaluation of the modulation bandwidth for
significant gain compression may involve reconsidering
the single-mode approximation as well as the approxima-
tion of dealing with the entire gain compression problem
in semiconductor lasers in terms of a single constant non-

IGOR VURGAFTMAN, YEELOY LAM, AND JASPRIT SINGH 50

linear gain coefficient. Methods of addressing this prob-
lem are currently being explored.
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