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Exciton-phonon interaction in CdSe and CuCl polar semiconductor nanospheres
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We present a theoretical study of the effect of longitudinal-optical phonons and surface-optical pho-
nons on the electronic states of conduction electrons and donorlike excitons in a spherical semiconduc-
tor quantum dot. The effect of the quantum confinement is described by an infinitely deep potential well
in the framework of the envelope-function approximation associated with two nondegenerate bands.
The charge-carrier-phonon coupling is treated within the adiabatic approximation. A variational calcu-
lation of the ground-state energy of the donorlike exciton is performed using a one-parameter trial en-
velope function, which includes electron-hole correlation effects. The results show that in the case of a
donorlike exciton located at the center of the microsphere, the effect of the lattice polarization gives rise
to a lowering of the absolute value of the energy for all values of the microsphere radius R. The Huang-
Rhys factor S, which is a measure of the charge-carrier—phonon interaction and the extent of the
charge-carrier density, has been determined as a function of R. For the donorlike exciton, S reaches a
minimum value, respectively, equal to S;=0.2 for R;=12.7 nm and S;,=3.1 for R;=2.3 nm in the case
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of CdSe and CuCl.

I. INTRODUCTION

Recent! remarkable progress in crystal growth tech-
nique has made it possible to fabricate semiconductor
structures with characteristic dimensions of the order of
the de Broglie wavelength. In these ‘“nanostructures” the
quantum confinement effects become predominant and
give rise to many interesting electronic and optical prop-
erties. In particular, the electron energy becomes quan-
tized and depends on the medium size, the light-matter
interaction is reinforced in comparison with what hap-
pens in bulk materials, and the exciton states remain
stable till room temperature. This explains the increasing
interest in these nanostructures in the fields of optoelect-
ronics and microelectronics. In fact, there exist different
kinds of nanostructures: the two-dimensional (2D) quan-
tum wells and superlattices, the one-dimensional (1D)
quantum wires, and the zero-dimensional (0D) quantum
dots and microcrytals, depending on whether the quan-
tum confinement concerns only one, two, or all three di-
mensions.

The present paper deals with spherical quantum dots
which are intensively studied because of their prominent
optical properties associated with the excitonic lines.? ™
We study the effect of the exciton-phonon interaction in
polar spherical quantum dots with special emphasis on
CdSe and CuCl microspheres embedded in a glass matrix.

In these structures the dielectric constants of the
sphere and the glass matrix differ from each other and
surface optical (SO) modes?® have to be included in order
to describe the electron optical-phonon interaction.?*~28
Recently, a great amount of theoretical and experimental
work has been devoted to the study of the coupling be-
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tween exciton states and LO and SO phonons in spherical
quantum dots.?’73¢ However, the corresponding results
are in contradiction with each other and it has not yet
been clearly established whether this coupling depends on
the crystal size or not. In a previous preliminary study,
we showed that the exciton-phonon interaction depends
strongly on the microsphere radius. >’

In the present work we describe the exciton in a donor-
like model assuming the hole to be located at the center
of the sphere. A variational calculation of the exciton
ground-state energy is performed in the framework of the
envelope-function approximation associated with two
nondegenerate bands. The one-parameter trial function
used in the variational procedure takes into account
electron-hole correlation and the effect of charge-
carrier—phonon interaction is treated within the adiabat-
ic approximation.

The paper is organized as follows. In Sec. II we
present the effective Hamiltonian of an electron in a mi-
crosphere of radius R, interacting with longitudinal opti-
cal phonons and surface optical phonons. In order to
clarify our theoretical model of a donorlike exciton we
first calculate the ground-state energy of the confined
electron within the adiabatic approximation. The results
obtained improve the work of Pan and Pan?® especially in
the limit of a large-size spherical medium. Section III
deals with the variational determination of the donorlike
exciton ground-state energy including electron-hole
correlation. We notice that the charge-carrier—LO-
phonon interaction is strongly affected by the electron-
hole correlation especially for small-size microspheres.
Section IV is devoted to discussion of the numerical re-
sults and comparison with experiment in the case of
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CdSe. The numerical results obtained in Sec. III show
that the combined effect of electron- and hole-LO-
phonon interactions leads to an R-dependent lowering of
the donorlike exciton ground-state energy and a Huang-
Rhys factor® in reasonable agreement with experiment.

II. ELECTRON-PHONON STATES

In this section, we present the Frohlich continuum
model used in order to describe the electron-LO- and
SO-phonon interactions in a semiconductor nanosphere.
We discuss the canonical transformations leading to the
total wave function of the confined electron-phonon sys-
tem which takes the form of a product of an electronic
part and a phonon part. Making use of this Produktan-
satz we determine the ground-state energy of the confined
electron in the framework of Ritz’s variational method.

A. The effective electron-phonon Hamiltonian

The effective Hamiltonian of an electron with band
mass m confined in a spherical quantum dot is given by

H=H,+H,, . (1)
Here the electronic part is
2
=P
H, Y. +v, (2)

where the quantum confinement is described by an
infinitely deep potential well

0, r<R (3a)

V= w, rZR, (3b)

which is reasonably well adapted to the case of a semi-
conductor spherical quantum dot. Since the original
quantum-mechanical treatment of the electron-SO-
phonon interaction,*® a great amount of theoretical work
has been devoted to electron—-optical-phonon interaction
in confined systems and particularly in spherical micro-
crystals.?%?” We describe the electron—optical-phonon
contribution Hep in (1) by the well-known Frohlich con-
tinuum model® adapted to the physical situation of an
electron in a spherical environment embedded in a glass
matrix. Within this model, the microsphere of radius R
is specified by the static dielectric constant €, and that
measured at high frequency €., whereas the glass matrix
is characterized by a dielectric constant €.

From general considerations, the details of which may
be found in the work of Pan and Pan?® and Klein et al.,?’
the electron-phonon contribution can be written as

Hep =H,o+Hgo+H,, 4)
where
Hio= 3 #0108}, (9)a;,(q) (52)
kim
and
Hso=12ﬁw,b£nb,m (5b)
=
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are, respectively, the kinetic energy related to the LO and
SO phonons. The operators a;}, (¢)(b}, ) and a;,,(q) (by,)
are, respectively, creation and annihilation operators of a
(LO) (SO) phonon of wave number g and frequency w; o
(w;). Here we assume that the LO-phonon frequency is
independent of g and given by the well-known Lyddane-
Sachs-Teller relation as a function of the transverse opti-
cal TO phonon frequency oo whereas the eigenfrequen-

cieg3 (;f the SO modes depend on the quantum number /,
4
as “>

€t T (€, T €
2_ _out out 0 2
O et (e, te N 1O 6

In order to facilitate the discussion of the limiting case
of a large-size microsphere, i.e., the bulk situation, we
write the electron-phonon interaction Hamiltonian H; as
follows:

H;=31[V,(q)j,(qr)Y,;,(0,¢)a,;,(¢)+H.c.]
glm

+3[S,(r/R)'Y,,(6,4)b,, +H.c.], (7a)
Im

where H.c. stands for Hermitian conjugate. The first
term in expression (7a) describes the interaction between
the confined electron and the longitudinal optical vibra-
tion modes while the second term in (7a) accounts for the
electron—SO-phonon interaction.

This leads to the following electron-phonon coupling
coefficients:

e2 172 1 1 172
Vig)=— |4rhiw o———— —_———
e W GRRG | |en &
(7b)
for LO phonons, and
oo ea  famme? ]
! le,+(I+De,, *°| oR
172
X 11 (Tc)
€, €

for SO modes. The values of g are the roots of the spheri-
cal Bessel function*' j,(gR) of order I. The functions
Y},.(6,¢) correspond to the spherical harmonics. In the
case of LO volume modes, / =0,1,2, ..., although for
the SO modes, [ =1,2,.... Inallcasesm=—1,...,1

B. Adiabatic approximation

Let us now suppose that the motion of the electron is
much faster than that of the heavier ions. This arises in
the two following physical situations.

(1) In the case of a microsphere with a small radius R,
the quantum confinement produces an orbital shrinking
which increases the electron speed.

(2) In the case of strong electron-plionon coupling,
such as for CuCl, electron self-localization occurs, i.e.,
fast electron oscillations.

This implies that, in these physical situations, the pho-
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non field experiences a static distribution of electronic
charge and there is no correlation between the instan-
taneous position of the electron and the induced polariza-
tion field, which is usually called the adiabatic approxi-
mation. As a consequence, in the framework of the adia-
batic approximation we can write the total wave function
of the electron-phonon system as a product of an elec-
tronic wave function ¥(r) and a phonon part |y ). Notice
that when the sphere radius is large, the adiabatic ap-
proximation is only valid for strong electron-phonon cou-
pling. Here we shall restrict ourselves to the study of the
ground-state energy of the confined electron. As a result,
the well-known*? electronic ground-state wave function is
given by the product of a spherical harmonic with
I =0,m =0 and the zeroth-order spherical Bessel func-
tion, i.e, a radial function. Therefore the SO-phonon
field does not interact with the electron in its ground
state and this contribution can be disregarded in the
present work. Within the adiabatic approximation, the
only effect of the electron—LO-phonon coupling is to dis-
place the equilibrium positions of the ions. This displace-
ment is performed by means of the canonical transforma-
tion

H'=S;'HS, (8a)
with
Polg,l,m)
Sp=ex Vi(Q)——5—a;,(q)
0 P q%" 1\q Ie|ﬁwLO im\q
e po(g,l,m) 1
I(q) |e|ﬁwLO a;,,,(q) , (8b)

which is a generalization of the well-known Landau-
Pekar adiabatic approach® adapted to the motion of an
electron in a sphere. The unitary operator S, in (8b) is
expressed in terms of the Fourier transform

pogm=lel [ drjan¥, 0,84l 6o

of the ground-state electronic charge distribution.

The adiabatic transformation being carried out, the to-
tal wave function of the electron—LO-phonon system is
given by the Produktansatz

Wo=1,(r)S; '0) , 9)

where |0) is the vacuum state. This leads to the total en-

ergy
lpo(g,,m)|?
Eo={$o(D|H.I9o(r)) + 3 V(@) 2222 (10a)

2
gqim € nwy o

Here the first contribution is the expectation value of the
effective Hamiltonian

|V1(q)|2

—_— * .
q%, lel oy o (po(g,4,m)j)(qr)Y), (6,¢)+H.c.]

P?
=5
(10b)

and the second contribution on the right-hand side of
(10a) describes the lattice distortion energy.
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C. Determination of the electron ground-state energy

Following the variational method we use for the elec-
tronic wave function 1,(r) the one-parameter trial func-
tion given by

—sy—llr/—Rexp(—azrz) , (1

Yo(r)=N
which satisfies the boundary conditions of the confined
electron and leads to the Gaussian-type behavior pro-
posed by Pekar® in the asymptotic limit (R — ). We
obtain for the Fourier transform

Palgl,m)=8; el N2(4m)!/?
X fORdr sin’(7r /R )M)-

qr

Xexp(—2a’r?) . (12a)
In the asymptotic limit we recover the result
pq,1,m)=8lel(4m)' g exp[ —q*/(8a)] (12b)
of previous theoretical work** and for =0 we get
- 1
po(q,l,m)=81,0|e|(4ﬂ') l/zq—R
X {Si(gR)—L[Si(gR +27)+Si(gR —2m)]}
(12¢)

where Si represent the sine integral function. *!

The variational determination of the ground-state ener-
gy requires the minimization of the total energy

Ey(a,R)=T(a,R)+V,(a,R) (13a)

with respect to the variational parameter a. Here

Fy;(a,R)

# 1,
== 1T 4?1+
T(a,R) m 12 R a1 Fop(@,R)

2R_2 FZIZ(a’R)
m* Fop(a,R)

(13b)

is the contribution corresponding to the kinetic energy of
the confined electron, where

Fpi(a,R)= foidx x"[sin(ix)} exp(—2[aRx /7]?) .
(13¢)

The second term in (13a) represents the electron—-LO-
phonon interaction energy given by

e | 1 1 _
Vep(ayR):—_E . e [Fop(a,R)] 2
X 3 L J2a,R) (13d)
n:ln
with
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Tnla,R)= [ sin’(x) 80X

exp[ —2(aRx /m)*] .

(13e)

Notice that for a=0 we recover the result for E;(0,R)
obtained by Pan and Pan.?® Figure 1 shows the varia-
tions of the electron—LO-phonon interaction energy V,,
as a function of the microsphere radius R. The results
are given for CdSe using the material parameters®
€=9.56, €,=6.23, fiv;5=26.46 meV, m/m,=0.13,
and €., =1, and for CuCl with material data®’ ¢,=7.9,
€,=3.61, iy ,=25.64 meV, m/my=0.5, and €., =1.
The results are displayed in atomic units (a.u.) of length
€.7*/(me?) and energy me*/(e2#*), i.e., respectively
2.53 nm, 0.09 eV for CdSe and 0.38 nm, 1.05 eV for
CuCl. We clearly see that the present variational calcula-
tions converge to the results of Pan and Pan?® for very
small values of R for which the electron quantum
confinement predominates. Indeed, Pan and Pan have es-
timated the electron ground-state energy in the adiabatic
limit using the charge distribution py(g,l,m) given by
(12c). For increasing R, the present results reach an ex-
tremum, respectively, for R,=76 nm and R;=7.3 nm in
the case of CdSe and CuCl. This behavior is due to the
combined action of the R-dependent quantum
confinement and the electron—-LO-phonon interaction.

In the limit R — o the saturation value of Vep(a,R) is
given by the corresponding value in the bulk material.
Since the charge distribution py(g,/,m) used by Pan and
Pan?® does not properly account for the electron—LO-
phonon interaction in the asymptotic limit, their satura-
tion value is given by ¥,, =0 for R — .

0.00

-0.014

(ATOMIC UNTS)

ENERGES
i
8
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0 10 20 30 40 50
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FIG. 1. Size dependence of the electron—LO-phonon interac-
tion energies V,, in the case of a CuCl microsphere (curves a
and b) and a CdSe microsphere (curves ¢ and d): curves a and c,
present results; curves b and d, results of Pan and Pan (Ref. 21).
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III. EXCITON-LO-PHONON COUPLING

In polar semiconductors the hole masses are usually
much larger than the electron mass. Moreover, it has
been shown!! that an exciton modeled by a hole localized
at the center of the sphere interacting with an electron at
a distance r leads to the most stable situation. This sim-
ple model is called the donorlike exciton.

In this section we study the effect of the electron—-LO-
phonon interaction on the ground-state energy of the
donorlike exciton. Using the notations introduced in Sec.
11, the effective Hamiltonian of a donorlike exciton in in-
teraction with LO phonons is given by

2
H,=H——=——3[¥/(9)j)(0)¥Yqa;,(¢)+H.c.], (14)

© gqlm

where the effective Hamiltonian H corresponds to the
motion of a confined electron as defined in (1). The
second term in the right-hand side of (14) represents the
Coulomb interaction between the hole localized at r =0
and the electron at a distance r from the center of the
sphere. Clearly, since the electron-hole Coulomb interac-
tion enhances the localization of the electron around the
hole, in addition to the electron quantum confinement,
the validity of the adiabatic approximation is even
strengthened. The last term in expression (14) describes
the interaction between the localized hole and the LO
phonons. This contribution can be eliminated by means
of a first canonical transformation*® whose effect is to dis-
place the equilibrium position of the ions. Apart from a
nonphysical divergent term,*’ the effect of this displace-
ment on the lattice polarization leads to the following
electron-hole exchange interaction:

[V,(q)|? . .
Ve = 35— Ji(O) Yool s (gr) ¥ (6,4)+H.c.] .
glm Lo
(15a)
After straightforward summation we obtain
—|L_1|e|_r
chch - €. € r R ’ (15b)

which cancels for » =R and partially compensates the
electron-hole Coulomb energy. Proceeding in the same
manner as in Sec. II, we finally operate a second canoni-
cal transformation related to the adiabatic approxima-
tion.

In order to describe the ground state of the donorlike
exciton by means of the variational teclhinique, we now
use for the electronic part of the Produktansatz the fol-
lowing trial wave function:

¢a(r)=N(a)Mexp(—ar) (16a)
with
172
| a R?a*+ 72
Nla)= m 1—exp(—2aR) (16b)

The variational parameter a is a measure of the electron-
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hole correlation. We obtain for the expectation value of
the total energy

# | 7
Ex=2—rn— F-&—a +Vc(a,R)
F+Vexen(a,R)+ (a R), (17a)

where the first term specifies the kinetic energy and the
last three contributions are respectively the Coulomb en-
ergy, the electron-hole exchange energy, and the
electron—-LO-phonon interaction energy given by

e2
———4xN*a)I{a,R) ,

V.(a,R)= (17b)
a2l 1 1 2 1
Vexcn(a, R )=e — 4aN“(a)(a,R)—— | ,
) e‘0 R
(17¢)
with
I(a,R)= [ "dx S“‘x"‘) xp(—2aRx/7),  (17d)
and
V,,(a,R)=—S(a,R Hiorg , (17¢)
with
e 4RN2(a)]2
S(a,R)=— |— a,R),
@ R Eoo 60 ﬁwLO gln
(179
. 2
Jo(a,R)= [ "dx sin(nx) ) exp( —2aRx /) .
0 x
(17g)

The quantity S(a,R) is the Huang-Rhys factor®® asso-
ciated with the donorlike exciton. It is a measure of the
electron—LO-phonon coupling strength and the extent of
the exciton charge distribution. This physical parameter
can be directly obtained from experiments involving opti-
cal transitions. The expectation value is now minimized
with respect to the variational parameter a.

IV. RESULTS AND DISCUSSION

The present section is devoted to a discussion of the
numerical results obtained in the case of CdSe and CuCl
microspheres using the materials parameters given in Sec.
I1. Figure 2 shows the variation of the exciton energy in-
cluding electron—LO-phonon interaction, E,, and
without electron—LO-phonon interaction, Ef, as a func-
tion of the microsphere radius. We recall that the results
are displayed in atomic units (a.u.) of length € #*/(me?)
and energy me*/(e% #?), i.e., respectively, 2.53 nm, 0.09
eV for CdSe and 0.38 nm, 1.05 eV for CuCl. For very
small values of R, the kinetic energy predominates due to
the quantum confinement, whereas for intermediate
values of R, both the Coulomb energy and the
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FIG. 2. Exciton energy with electron—LO-phonon coupling,
E, (curve a, CuCl, curve b, CdSe), and without electron-LO-
phonon coupling, E? (curve c), as functions of the sphere radius;
correlation energy with, W (curve d , CuCl, curve e, CdSe), and
without electron—LO-phonon coupling, W, (curve f).

electron—LO-phonon interaction contribute to the bind-
ing energy of the exciton. In the limit R — oo, the nu-
merical  results converge to the ©bulk values
—1[11€,/(16€y)+ = ]* and — L. In order to analyze the
effect of electron- hole correlation on the donorlike exci-
ton we have also plotted the quantity

W=E —E, (18a)

including electron-phonon coupling and without
electron-phonon coupling, denoted W,. Here E, is the
energy corresponding to the free-electron case described
in Sec. II but calculated with the trial function given by
expression (16). Figure 2 clearly shows that, for small ra-
dii of the microspheres, the quantum confinement strong-
ly affects the correlation energy and lowers the influence
of the lattice polarization on the electron-hole correla-
tion.

In the asymptotic limit (R — « ), W, reaches the value
El= —1 because the free-electron energy cancels, while
in the presence of electron—LO-phonon coupling we ob-
tain the saturation value
2
eoo

1____
€

’ 1
+ =
2

11 € 5

16 ¢, 16

! 5

3ID—_
W 16

(18b)

In Fig. 3 the charge-carrier—lattice polarization energy
defined as

V) (R)=V e (R)+ Vo, (R) (19)
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FIG. 3. Lattice polarization energy ¥, and electron phonon
energy V,, as functions of the microsphere radius R and for
CuCl (curves a and b) and CdSe (curves c and d).

and the electron—-LO-phonon interaction energy are plot-
ted as functions of the sphere radius. We notice that
both quantities ¥V, and V,, are strongly size dependent
and exhibit an extremum, respectively, for R;=~13 nm
and Ry=2 nm in the case of CdSe and CuCl. This ex-
tremum is due to the combined action of the quantum

12

091 R = 2 atomic units
Z 084
)
% R =5 atomic units
=
()

0.3

R = 12 ctomic units
0 2 4 6

r (ATOMIC UNTS)

FIG. 4. Radial distribution function G of the donorlike exci-
ton in the case of a CuCl microsphere with three different radii
as a function of the electron position. The vertical lines specify
the average electron-hole distance.
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TABLE 1. Electron-hole correlation parameter a and
Huang-Rhys factor S of a donorlike exciton.

Material CuCl CdSe

R (nm) 1 23 35 45 16 23 45 12.7
amm™) 09 12 14 15 014 014 015 022

S? 43 31 33 35 038 0.6 0.3 0.2
Sexp’ 1.4 05
#Reference 49.
YReferences 29 and 30.

confinement and the Coulomb interaction on the exciton
charge distribution: for small radii R <R, the quantum
confinement effect prevails and drastically enhances the
absolute values of V, and ¥V, whole for R >R, the
electron-hole Coulomb interaction predominates and
leads to the corresponding bulk values®® ¥,;P and V2P in
the limit R — . For the weak polar material CdSe
V2P=16.5 meV and V3P=—7.5 meV whereas for the
ionic material CuCl ¥,°=246 meV and VP=-111
meV. Figure 4 shows the radial distribution function of
the donorlike exciton given by

2

G (r)=47|N(a)|*? exp(—2ar) . (20)

sin(7r /R)
r

The results are plotted as a function of r for R =0.8, 1.9,
and 45 nm, which correspond to typical size values ob-
tained in the case of CuCl microspheres. We also show
the average electron-hole distance r) for the different
values of the microsphere radius. Finally, the values of
the electron-hole correlation parameter a and the
Huang-Rhys factor S are given in Table I for typical radii
in the cases of CdSe and CuCl. The available experimen-
tal values S.,, are those for CdSe, CdS, and CdS,_,Se,
obtained from absorption, luminescence, hole burning,
and resonant Raman scattering.?~33 The increase of S
with decreasing sphere radius R obtained in the present
work has been observed by Uhrig et al.3? in CdS,__Se,
quantum dots.

In conclusion, we have shown that the exciton binding
energy and its microsphere size dependence are strongly
affected by the lattice polarization. The simple theoreti-
cal model of a donorlike exciton developed in the frame-
work of the adiabatic approximation including electron-
hole correlation is in reasonable agreement with experi-
ment.
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