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Exciton-phonon interaction in Cdse and CuC1 polar semiconductor nanospheres
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We present a theoretical study of the effect of longitudinal-optical phonons and surface-optical pho-
nons on the electronic states of conduction electrons and donorlike excitons in a spherical semiconduc-
tor quantum dot. The effect of the quantum confinement is described by an infinitely deep potential well

in the framework of the envelope-function approximation associated with two nondegenerate bands.
The charge-carrier —phonon coupling is treated within the adiabatic approximation. A variational calcu-
lation of the ground-state energy of the donorlike exciton is performed using a one-parameter trial en-

velope function, which includes electron-hole correlation effects. The results show that in the case of a
donorlike exciton located at the center of the microsphere, the effect of the lattice polarization gives rise
to a lowering of the absolute value of the energy for all values of the microsphere radius R. The Huang-

Rhys factor S, which is a measure of the charge-carrier —phonon interaction and the extent of the
charge-carrier density, has been determined as a function of R. For the donorlike exciton, S reaches a
minimum value, respectively, equal to So =0.2 for Ro = 12.7 nm and So =3. 1 for Ro =2.3 nm in the case
of CdSe and CuC1.

I. INTRODUCTION

Recent' remarkable progress in crystal growth tech-
nique has made it possible to fabricate semiconductor
structures with characteristic dimensions of the order of
the de Broglie wavelength. In these "nanostructures" the
quantum confinement efFects become predominant and
give rise to many interesting electronic and optical prop-
erties. In particular, the electron energy becomes quan-
tized and depends on the medium size, the light-matter
interaction is reinforced in comparison with what hap-
pens in bulk materials, and the exciton states remain
stable till room temperature. This explains the increasing
interest in these nanostructures in the fields of optoelect-
ronics and microelectronics. In fact, there exist different
kinds of nanostructures: the two-dimensional (2D) quan-
tum wells and superlattices, the one-dimensional (lD)
quantum wires, and the zero-dimensional (OD) quantum
dots and microcrytals, depending on whether the quan-
tum confinement concerns only one, two, or all three di-
mensions.

The present paper deals with spherical quantum dots
which are intensively studied because of their prominent
optical properties associated with the excitonic lines.
We study the efFect of the exciton-phonon interaction in
polar spherical quantum dots with special emphasis on
CdSe and CuC1 microspheres embedded in a glass matrix.

In these structures the dielectric constants of the
sphere and the glass matrix difFer from each other and
surface optical (SO) modes have to be included in order
to describe the electron optical-phonon interaction.
Recently, a great amount of theoretical and experimental
work has been devoted to the study of the coupling be-

tween exciton states and LO and SO phonons in spherical
quantum dots. However, the corresponding results
are in contradiction with each other and it has not yet
been clearly established whether this coupling depends on
the crystal size or not. In a previous preliminary study,
we showed that the exciton-phonon interaction depends
strongly on the microsphere radius.

In the present work we describe the exciton in a donor-
like model assuming the hole to be located at the center
of the sphere. A variational calculation of the exciton
ground-state energy is performed in the framework of the
envelope-function approximation associated with two
nondegenerate bands. The one-parameter trial function
used in the variational procedure takes into account
electron-hole correlation and the effect of charge-
carrier —phonon interaction is treated within the adiabat-
ic approximation.

The paper is organized as follows. In Sec. II we
present the efFective Hamiltonian of an electron in a mi-

crosphere of radius R, interacting with longitudinal opti-
cal phonons and surface optical phonons. In order to
clarify our theoretical model of a donorlike exciton we
first calculate the ground-state energy of the confined
electron within the adiabatic approximation. The results
obtained improve the work of Pan and Pan especially in
the limit of a large-size spherical medium. Section III
deals with the variational determination of the donorlike
exciton ground-state energy including electron-hole
correlation. We notice that the charge-carrier-LO-
phonon interaction is strongly afFected by the electron-
hole correlation especially for small-size microspheres.
Section IV is devoted to discussion of the numerical re-
sults and comparison with experiment in the case of
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CdSe. The numerical results obtained in Sec. III show
that the combined effect of electron- and hole-LO-
phonon interactions leads to an R-dependent lowering of
the donorlike exciton ground-state energy and a Huang-
Rhys factor in reasonable agreement with experiment.

II. ELEc=iRON-PHONON STA IKS

In this section, we present the Frohlich continuum
model used in order to describe the electron-LO- and
SO-phonon interactions in a semiconductor nanosphere.
We discuss the canonical transformations leading to the
total wave function of the confined electron-phonon sys-
tem which takes the form of a product of an electronic
part and a phonon part. Making use of this Produktan-
satz we determine the ground-state energy of the confined
electron in the framework of Ritz's variational method.

Here the electronic part is

2H=~ +V
2m

(2)

where the quantum confinement is described by an
infinitely deep potential well

0, r&R
V ='

00, r R,
(3a)

(3b)

which is reasonably well adapted to the case of a semi-
conductor spherical quantum dot. Since the original
quantum-mechanical treatment of the electron-SO-
phonon interaction, a great amount of theoretical work
has been devoted to electron-optical-phonon interaction
in confined systems and particularly in spherical micro-
crystals. ' We describe the electron-optical-phonon
contribution H&p in (1) by the well-known Frohlich con-
tinuum model adapted to the physical situation of an
electron in a spherical environment embedded in a glass
matrix. Within this model, the microsphere of radius R
is specified by the static dielectric constant ep and that
measured at high frequency e„,whereas the glass matrix
is characterized by a dielectric constant e,„t.

From general considerations, the details of which may
be found in the work of Pan and Pan and Klein et al. ,
the electron-phonon contribution can be written as

K~p K~() +Kso +HI

where

(4)

and

Ht.o=X~t.oat (q)at (q)
klm

(&a)

Hso XMPlmblm
lm

(Sb)

A. The effective electron-phonon Hamiltonian

The effective Hamiltonian of an electron with band
mass m confined in a spherical quantum dot is given by

H=Hp+Hp .

Ht=X~Irt(q)jt(qr)Y, (8,$)at (q)+H. c. ]
qlm

+g[SI(rlR) Ylm (8,$)b&m+H. c.],
lm

(7a)

where H.c. stands for Hermitian conjugate. The first
term in expression (7a) describes the interaction between
the confined electron and the longitudinal optical vibra-
tion modes while the second term in (7a) accounts for the
electron-SO-phonon interaction.

This leads to the following electron-phonon coupling
coefBcients:

1/2 ' 1/2

Vt(q) = — 4mhcot o
jr+, (qR)R q & &o

(7b)

for LO phonons, and

l e„
le„+(1+1)e,„,

' 1/2

X
E'p

' 1/2
27TRe

I.O

(7c)

for SO modes. The values of q are the roots of the spheri-
cal Bessel function ' j&(qR) of order 1. The functions
Yt (8,$) correspond to the spherical harmonics. In the
case of LO volume modes, 1=0,1,2, . . . , although for
the SOmodes, l =1,2, . . .. Inallcases m = —l, . . . , l.

B. Adiabatic appro»~ation

Let us now suppose that the motion of the electron is
much faster than that of the heavier ions. This arises in
the two following physical situations.

(1) In the case of a microsphere with a small radius R,
the quantum confinement produces an orbital shrinking
which increases the electron speed.

(2) In the case of strong electron-phonon coupling,
such as for CuC1, electron self-localization occurs, i.e.,
fast electron oscillations.

This implies that, in these physical situations, the pho-

are, respectively, the kinetic energy related to the LO and
SO phonons. The operators aim(q)(btm ) and atm(q) (btm)
are, respectively, creation and annihilation operators of a
(LO) (SO) phonon of wave number q and frequency to~
(cot). Here we assume that the LO-phonon frequency is
independent of q and given by the well-known Lyddane-
Sachs-Teller relation as a function of the transverse opti-
cal TO phonon frequency ~To whereas the eigenfrequen-
cies of the SO modes depend on the quantum number l,
as 23,24

e,„,+(e,„,+eo)1

e,„,+(e,+e„)1
In order to facilitate the discussion of the limiting case

of a large-size microsphere, i.e., the bulk situation, we
write the electron-phonon interaction Hamiltonian HI as
follows:
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non field experiences a static distribution of electronic
charge and there is no correlation between the instan-
taneous position of the electron and the induced polariza-
tion field, which is usually called the adiabatic approxi-
mation. As a consequence, in the framework of the adia-
batic approximation we can write the total wave function
of the electron-phonon system as a product of an elec-
tronic wave function g(r) and a phonon part Ig). Notice
that when the sphere radius is large, the adiabatic ap-
proximation is only valid for strong electron-phonon cou-
pling. Here we shall restrict ourselves to the study of the
ground-state energy of the confined electron. As a result,
the well-known electronic ground-state wave function is
given by the product of a spherical harmonic with
l =O, m =0 and the zeroth-order spherical Bessel func-
tion, i.e, a radial function. Therefore the SO-phonon
field does not interact with the electron in its ground
state and this contribution can be disregarded in the
present work. Within the adiabatic approximation, the
only effect of the electron-LO-phonon coupling is to dis-
place the equilibrium positions of the ions. This displace-
ment is performed by means of the canonica1 transforma-
tion

C. Determination of the electron ground-state energy

which satisfies the boundary conditions of the confined
electron and leads to the Gaussian-type behavior pro-
posed by Pekar in the asymptotic limit (R ~ oo ). We
obtain for the Fourier transform

p (q, l, m) =5, elN (4n )'

X I dr sin (mr/R)
sin(qr)

0 qr

Xexp( —2a r ) . (12a)

In the asymptotic limit we recover the result

p'(q, l, m)=5&oleI(4n)' q exp[ —
q /(8a)] (12b)

Following the variational method we use for the elec-
tronic wave function tfo(r) the one-parameter trial func-
tion given by

g (r)=N sin~r /R
exp( a—r ),

H' =So HSo

with

po(q, l, m)
So=exp QV&(q)

~ ~
ai (q)

qlm l el LQ

(8a) of previous theoretical work and for a =0 we get

po(q, l, m) =5& olel(4m )
qR

X [Si(qR) —
—,
' [Si(qR +2m )+Si(qR —2m )]]

po(q, l, m)—VI'(q)
I

~ ~I (q)
LO

(8b)

which is a generalization of the well-known Landau-
Pekar adiabatic approach adapted to the motion of an
electron in a sphere. The unitary operator So in (8b) is
expressed in terms of the Fourier transform

po(q l m)=lel f «jI(qr)~i~(e 4)lfo(r)l'
sphere

of the ground-state electronic charge distribution.
The adiabatic transformation being carried out, the to-

tal wave function of the electron —LO-phonon system is

given by the Produktansatz

(8c)

Co=go(r)So ' IO),

where IO) is the vacuum state. This leads to the total en-

ergy

lpo(q, l, m)l
Eo = (go(r) IH, I go(r) ) +g I VI(q)I', . (10a)

qlm

Here the first contribution is the expectation value of the
effective Hamiltonian

p~ I v((q) I'
H g [ ~ [po (q l m )Ji(qr)Y'I (e,4) +H c. ]

q$m I ~ LO

Eo(a,R)=T(a,R)+ V&(a,R)

with respect to the variational parameter a. Here

7p F/2](a, R)
T(a,R)= — +a 1+

m 2 R Fo)qaR

zR& Fz&2(a, R)
2cK

Fo&2 (a~R )

(13a)

(13b)

is the contribution corresponding to the kinetic energy of
the confined electron, where

Fs;.(a,R)= J dx x "[sin(ix)]J exp( —2[aRx/n. ] ) .

(13c)

The second term in (13a) represents the electron —LO-
phonon interaction energy given by

V,p(a, R ) = — ——[Fo)q(a, R ) ]
&0

(12c)

where Si represent the sine integral function. '

The variational determination of the ground-state ener-

gy requires the minimization of the total energy

(10b)

and the second contribution on the right-hand side of
(10a) describes the lattice distortion energy. with

Qo

X g J„(a,R)
n=t &

(13d)
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J„(a,R}=f sin (x) exp[ —2(aRx/qr) ] .
p X

(13e)

Notice that for a=O we recover the result for Eo(O,R)
obtained by Pan and Pan. Figure 1 shows the varia-
tions of the electron —LO-phonon interaction energy V,
as a function of the microsphere radius R. The results
are given for CdSe using the material parameters
@0=9.56, e„=6.23, AcoLo=26. 46 meV, rn/m 0=0. 13,
and e,„,=1, and for CuC1 with material data ep=7. 9,
E =3.61, %co„o=25.64 meV, m/m0=0. 5, and e,„,= l.
The results are displayed in atomic units (a.u. ) of length
e„R /(me ) and energy me /(e„A ), i.e., respectively
2.53 nm, 0.09 eV for CdSe and 0.38 nm, 1.05 eV for
CuC1. %e clearly see that the present variational calcula-
tions converge to the results of Pan and Pan for very
small values of R for which the electron quantum
confinement predominates. Indeed, Pan and Pan have es-
timated the electron ground-state energy in the adiabatic
limit using the charge distribution po(q, l, m) given by
(12c). For increasing R, the present results reach an ex-
tremum, respectively, for Rp =76 nm and Rp=7. 3 nm in
the case of CdSe and CuC1. This behavior is due to the
combined action of the R-dependent quantum
confinement and the electron-LO-phonon interaction.

In the limit R~~ the saturation value of V,z(a, R) is
given by the corresponding value in the bulk material.
Since the charge distribution po(q, l, m) used by Pan and
Pan does not properly account for the electron-LO-
phonon interaction in the asymptotic limit, their satura-
tion value is given by V,~ =0 for R ~~.

III. Ex(:ITON-LO-PHONON COUPLING

In polar semiconductors the hole masses are usually
much larger than the electron mass. Moreover, it has
been shown" that an exciton modeled by a hole localized
at the center of the sphere interacting with an electron at
a distance r leads to the most stable situation. This sim-
ple model is called the donorlike exciton.

In this section we study the effect of the electron-LO-
phonon interaction on the ground-state energy of the
donorlike exciton. Using the notations introduced in Sec.
II, the effective Hamiltonian of a donorlike exciton in in-
teraction with LO phonons is given by

2

H, =H ——g [ V(q)j, (0)lou~(q)+H. c.], (14)
EM r

qlm

where the effective Hamiltonian H corresponds to the
motion of a con6ned electron as deSned in (1}. The
second term in the right-hand side of (14) represents the
Coulomb interaction between the hole localized at r =0
and the electron at a distance r from the center of the
sphere. Clearly, since the electron-hole Coulomb interac-
tion enhances the localization of the electron around the
hole, in addition to the electron quantum confinement,
the validity of the adiabatic approximation is even
strengthened. The last term in expression (14) describes
the interaction between the localized hole and the LO
phonons. This contribution can be eliminated by means
of a first canonical transformation~ whose effect is to dis-
place the equilibrium position of the ions. Apart from a
nonphysical divergent term, the effect of this displace-
ment on the lattice polarization leads to the following
electron-hole exchange interaction:

[V,(q)l'
V,„,h=g j,(0)YOO[j,(qr)Y, (8,$)+H c. ] . .

qlm Lo

(15a)

After straightforward summation we obtain

-0.01- 1
Vexch

E'p r
r

1——
R

(15b)

CO

Cl)

which cancels for r =R and partially compensates the
electron-hole Coulomb energy. Proceeding in the same
manner as in Sec. II, we finally operate a second canoni-
cal transformation related to the adiabatic approxima-
tion.

In order to describe the ground state of the donorlike
exciton by means of the variational technique, we now
use for the electronic part of the Produktansatz the fol-
lowing trial wave function:

-0.03 [

20

I

30

I

40 50

g (r)=N(a) exp( ar)—sinqrr /R
r

(16a)

R (ATOMIC UITS)

FICx. 1. Size dependence of the electron-LO-phonon interac-
tion energies V,~ in the case of a CuCl microsphere (curves a
and b) and a CdSe microsphere (curves c and d): curves a and c,
present results; curves b and d, results of Pan and Pan (Ref. 21).

with

N(a)=
1j2

a R a+qr
qr3 1 —exp( —2aR)

(16b)

The variational parameter a is a measure of the electron-
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(17c)

with

I(a,R)= f dx exx exp —2aRx /m ),
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LO ~

(171)
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0.4 andTABLE I. Electron-hole corr prrelation parameter a an
Huang-Rhys factor Sof a donorlike exciton.

02-

Material

R (nrn)

a (nm ')
Sa

b
Sexp

CuC1

1 2.3 3.5
0.9 1.2 1.4
4.3 3.1 3.3

CdSe

4.5 1.6 2.3 4.5
1.5 0.14 0.14 0.15
3.5 0.8 0.6 0.3

1.4 0.5

12.7
0.22
0.2

'Reference 49.
References 29 and 30.

-03

R (ATOMIC UNITS}

er V and electron phononFIG. 3. Lattice polarization energy
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