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First-principles calculations of band-edge electronic states of silicon quantum wires
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Valence- and conduction-band-edge energies and effective masses of hydrogen-terminated silicon wires
are calculated using a first-principles pseudopotential method, and the results are compared with

effective-mass-theory (EMT) calculations.

The first-principles result for the ordering of states at the

valence-band maximum is different from the prediction of EMT. The magnitudes of the valence- and
conduction-band effective masses for motion along the wire axis increase from their bulk values as the
wire thickness decreases, but by much less than predicted by other calculations.

Recent experiments on porous Si, prepared by electro-
chemical etching of a Si wafer, have demonstrated
efficient room-temperature visible photoluminescence.'
The etching process produces material consisting mainly
of columns or wires with widths <50 A of crystalline Si
with hydride-passivated surfaces.” The nature of the
luminescence process is currently the subject of
numerous experimental and theoretical studies. A num-
ber of different explanations have been offered, but de-
tailed spectroscopy,’ has recently demonstrated that the
shorter photoluminescence (PL) wavelength of porous Si
compared with bulk Si is due to quantum confinement of
the electronic states within a crystalline Si structure.

First-principles pseudopotential calculations for
hydrogen-passivated crystalline Si wires have shown that
quantum confinement increases the minimum band-gap
energy and leads to a direct gap at the center of the wire
Brillouin zone.*”* Although even wide wires are nomi-
nally direct gap, the conduction-band-minimum wave
functions retain a large projection onto states from near
the A minimum of the bulk-Si conduction band. This is
why one can observe phonon-assisted transitions, in
which the bulk-Si crystal momentum is conserved.’ The
calculated band-gap energies are consistent with the PL
energies obtained from experiments on comparable
porous Si structures whose wire widths have been in-
ferred from transmission-electron-microscopy (TEM)
studies.? In addition, the zero-phonon radiative lifetime
for recombination of localized exc1tons in a 16-A-thick
wire was calculated to be 560 us,® which is in reasonable
agreement with the value of ~ 130 us estimated from ex-
periments on comparable wires,* and is much longer than
the radiative lifetime of 1 ns for bound excitons in the
direct-gap semiconductor GaAs.’
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Now that the quantum confined crystalline Si model is
well established, it is important to study its predictions in
more detail. In this paper, we report the results of first-
principles calculations, which are used to develop the
effective-mass theory (EMT) of Si wires, both by calculat-
ing effective masses and potential barrier heights for
transport along a wire and by testing the validity of EMT
based on bulk-Si properties alone. The technical details
of our calculations are similar to those of our earlier
work,* and the wire structures are identical to the ones
studied there. We use a first-principles pseudopotential
plane-wave technique and a supercell method in which a
rectangular array of wires is used to restore three-
dimensional periodicity. Each wire is rectangular in
cross section with the wire axis along the [001] or z direc-
tion, and wire surfaces corresponding to (110)-type sur-
faces of bulk Si with each surface dangling bond passivat-
ed by a H atom. When viewed along the wire axis, the Si
atoms form a rectangular array, and we study wires con-
taining 72, 42, and 20 Si atoms per unit cell which form,
respectively, 9X8, 7X6, and 5X4 arrays. The wires
thickness is defined as d =a((2M)'/?/4, where a,=5.429
A is the lattice constant of bulk Si and M is the number
of Si atoms per unit cell, so that the wire thicknesses are
d=16.3, 12.4, and 8.6 A (the 8.6 A or 5X4 wire is illus-
trated in Fig. 1 of Ref. 4). The shortest distance between
H atoms on adjacent wires is 5 A, so that the wires are
well separated. The calculations for the Si wires were
performed using a 6-Ry plane-wave cutoff, except for the
5X4 wire, for which the calculations were repeated with
a 12-Ry cutoff as a test of the convergence. Calculations
for bulk Si were performed with 6, 12, and 24-Ry cutoffs.

First, we study the nature of the states which form the
valence-band maximum (VBM) of the wire structures.

14 223 ©1994 The American Physical Society



14 224

We use EMT based on the Luttinger Hamiltonian
without spin-orbit splitting for the sixfold degenerate
(three orbitals and two spins) states of the VBM of bulk
Si. We consider a square wire of side d with an [001] axis
and (110)-type faces, using the particle-in-a-box model
that the potential is constant inside the wire and infinite
and repulsive outside. The VBM of bulk Si is formed
from p-like orbitals, and the k =0 VBM states of the per-
fect wire structures defined above are either pure p, states
(where the z direction is along the wire axis), or pure
Dx /p, states (where the x and y directions are in the plane
perpendicular to the wire axis). The effective masses as-
sociated with the confinement energy of the lowest p, and
twofold-degenerate p, /p, states are denoted by m, and
m.,,, and the EMT calculation gives, in terms of the Lut-
tinger parameters y, and ¥,:!°

m,,=(y,—2y,) '=0.277, (1a)

m,, =0.219 . (1b)

cxy

The result for m, was obtained analytically by exact
solution of the EMT equations, and was reported previ-
ously in Refs. 4 and 8, while the result for m,, was ob-
tained by numerical solution of the EMT equations,
which also predicts that a nondegenerate p, /p, state
with a confinement mass of 0.237 occurs between the
states described by Eq. (1). An approximate result for
m,, of (y,+7,) '=0.216 can be obtained in simple
EMT.!! Because m,, is larger than the confinement mass
for all the other states within EMT the state at the VBM
is of p, character. The applicability of this result can be
tested by analyzing the results of first-principles calcula-
tions. For the square N XN (N odd) wires studied by
Ohno, Shiraishi, and Ogawa® and by Hybertsen and
Needels,’ the state at the VBM is twofold degenerate, and
is of p, /p, character, in conflict with the EMT result.

We find a similar disagreement between EMT and
first-principles calculations for our N X(N —1) (N odd)
structures. The first-principles VBM state in these wires
is a p, /p, state, but for wires with N =25 the EMT VBM
is a pure p, state. The nature of the states close in energy
to the VBM of the wire structures depends significantly
on symmetry considerations.” The rectangular
N X (N —1) (N odd) structures that we have studied have
a single mirror plane parallel to the z axis of the wire and
the short side of the rectangular cross section. Structures
with different symmetries have been considered in other
first-principles studies, including N XN (N odd) struc-
tures by Ohno, Shiraishi, and Ogawa® (note that these au-
thors use a different convention for labeling their struc-
tures, so that’ their N XN structure is equivalent to
(2N—1)X(2N —1) in our notation) and by Hybertsen
and Needels and the N X(N —1) structures with N even,
also studied by Hybertsen and Needels. We have plotted
the wave functions obtained from our first-principles cal-
culations of the states close to the VBM and find that in
each case the states are well described as being composed
of p-like orbitals, with one state corresponding to the p,
state, and the other two being derived from the p orbitals
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aligned along the long and short sides of the rectangular
cross section of the wire. For each of the wires that we
have studied, the state derived from p orbitals pointing
along the longer side of the rectangular cross section is
the highest in energy, the p,-like state is slightly lower in
energy and the state derived from the p orbitals pointing
along the shorter side of the rectangular cross section is
lower again. We have also performed a limited set of cal-
culations on an 11X 10 wire structure, which also shows
the same ordering of states at the VBM.

In conclusion, all of the first-principles results so far re-
ported are mutually consistent with regard to ordering of
the levels at the VBM, and all are in disagreement with
EMT. Because the EMT overestimates the band-gap up-
shift by nearly 100% for the widest wire studied (20 A),*?
the different ordering of the states at the valence-band
maximum in EMT compared with the first-principles re-
sults is not particularly surprising. It is likely that the
first-principles and EMT band orderings will be in agree-
ment for thicker wires.

The EMT result for the conduction-band confinement
mass m,, for a square wire of side d with (110)-type faces

is*

B
mp  my

my

mc; 1:% C ’ (2)

where a numerical calculation gives C(my/m;)=0.900
for the experimental Si masses (m;=0.1905 and
m; =0.9163), and C(my/m;)=1 in simple EMT."
Equation (2) describes the conduction bands that are
lowest in energy: these bands are derived from the
+[100], and +[010] valleys in k space.!>* The total
EMT band-gap upshift, calculated from the confinement
masses of Egs. (1a) and (2), was compared with the first-
principles results in Ref. 5. From these results, we con-
cluded that the EMT gives accurate values for the band-
gap upshift for wire widths greater than about 33 A.

In order to compare the results of our first-principles
calculations with the separate predictions for the valence
and conduction bands of Egs. (1) and (2), we must locate
a suitable reference energy level to measure the band en-
ergies with respect to. We have calculated the total elec-
tronic potential on the planes in the vacuum region pre-
cisely halfway between the wires, and averaged it over the
planes to smooth out the small fluctuations and give the
vacuum zero energy. The values of the band-edge ener-
gies measured with respect to this reference energy de-
pend on the state of the surfaces of the wires which are
hydrogen passivated. However, because the potential at
the surfaces of the wires is essentially the same for all of
our wires the changes in the band energies with wire
thickness, measured with respect to the vacuum zero,
derive from the quantum confinement and do not have a
significant contribution from surface effects. The results
for the valence- and conduction-band edges of the 9X38,
7X 6, and 5X4 wires are plotted in Fig. 1. The EMT re-
sults of Egs. (1a) and (2) are also plotted, which requires
the location on the vertical axis of Fig. 1 of the position
at which the band shifts go to zero. This was located by
fitting two smooth curves to the first-principles results for
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FIG. 1: The valence- (filled circles) and
] conduction-band-edge (open circles) shifts of
the wire structures plotted against the inverse

Band Edge Shift (eV)

of the wire thickness. The effective-mass-
theory shifts calculated from the masses of
Egs. (la) and (2) are plotted as continuous
curves. The dashed curves are interpolations
passing through the first-principles results.
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the valence and conduction bands, respectively, and ex-
trapolating these curves to infinite wire thickness with
the constraint that in this limit the curves must meet (i.e.,
the valence- and conduction-band shifts must both go to
zero). The error in this extrapolation procedure is es-
timated to be less than 0.1 eV. Figure 1 shows that both
the first-principles and EMT results predict that the
band-gap upshift is divided roughly equally between the
valence and conduction edges, in qualitative agreement
with the photoemission and x-ray absorption measure-
ments of Ref. 12, although the EMT overestimates the
shifts for narrow wires.

We now turn our attention to the valence- and
conduction-band effective masses for motion along the
wire axis, which are not the same as the confinement
masses of Egs. (1) and (2). We denote the motional
masses by m,,, and m,,,,, respectively, for the VBM p,
and p, /p, states of a square wire. In simple EMT'' one
finds

m,, =(y,+4y,)"1=0.177, (3a)

My = (¥ —27,)71=0.277 . (3b)

The lowest conduction bands arise from =*[100] and
1[010] valleys and so have mass m for motion along
the wire axis. These values apply in the limit of very
wide wires, however, for wires of finite thickness these
masses are altered by the folding over of the three-
dimensional bulk band structure onto the axis along the
wire direction. We have calculated the motional masses
of bulk Si and of the wire structures using our first-
principles technique. We calculated the band structure at
a series of closely spaced points in k space along a line
starting at the zone center and directed along the wire
axis, and fitted the resulting energies to quadratic curves.
Such calculations must be performed with care in order
to avoid problems associated with the basis set changing
from one k point to the next, which results in small
jumps in the calculated band energies. To avoid this
problem, we calculated the band energies of each wire
structure at a number of points in reciprocal space within
0.005 27 /a, of the zone center, but in fitting to the quad-

ratic form we only took points that were calculated using
exactly the same basis set. We also studied the effect on
the masses of the anomalous band dispersion in the plane
perpendicular to the wire axis, which is due to the small
interactions between wires, by calculating the masses
along the wire axis for various wave vectors within the
plane perpendicular to the wire axis, however, the depen-
dence was negligible. The anomalous dispersion of the
states near the VBM is less than 10 meV in each case,
which is much smaller than the energy splitting of the
VBM states, which is greater than 61 meV in each case.
The ordering of states at the VBM is, therefore, indepen-
dent of the wave vector in the plane perpendicular to the
wire axis. In Fig. 2, we plot the valence- and
conduction-band motional effective masses of the wire
structures and of bulk Si calculated along the wire axis
[001] direction. The agreement between the calculated
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FIG. 2: Valence- (open circles) and conduction-band (open
squares) effective masses of the wire structures and of bulk Si
plotted against the inverse of the wire thickness. Experimental
values for bulk Si (crosses) are also given; for the valence band
the heavy-hole effective mass along the [001] direction [m,,,, of
Eqg. (3b)] is plotted, while for the conduction band, the trans-
verse effective mass my is plotted.
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and experimental values for bulk Si is good. The calculat-
ed conduction-band transverse effective mass for bulk Si
of 0.199 is to be compared with the experimental value of
mp=0.1905, while the conduction-band Ilongitudinal
mass was calculated to be 1.01, in good agreement with
the experimental value of m;=0.9163. The p,/p,
valence band is uppermost in the first-principles calcula-
tions, and so Eq. (3b) gives the appropriate mass in the
(approximate) simple EMT model for comparison with
the first-principles results. The mass given in Eq. (3b) is
equal to the bulk-Si heavy-hole mass along [001], which
we have calculated as 0.261, and which has an experi-
mental value of 0.277. (Note that because the band struc-
ture of Si near the valence-band maximum is highly
warped this is not equal to the density-of-states heavy-
hole effective mass, which is my=0.523). From Fig. 2,
we see that as the wires become thinner the magnitude of
the valence- and conduction-band motional effective
masses increase. The values obtained are, however, very
different from the tight-binding results of Sanders and
Chang,” who predicted that the magnitude of the
valence-band effective mass for a wire width 23 A (which
is somewhat wider than our 16-A-wide 9 X 8 wire) would
be considerably greater than unity. Our -calculated
masses for the valence band are also significantly smaller
than the first-principles results of Ohno, Shiraishi, and
Ogawa.®

Our calculated effective masses and potential barrier
heights for transport along the wire can be used in ap-
proximate EMT calculations. For example, the weak
spin-orbit interaction can be treated in this way. For the
highest VB state of the uniform 9 X8 wire, this leads to a
4-meV energy shift, a 5% admixture of other zero-spin-
orbit wave functions, and a correspondingly small correc-
tion to the effective mass. We discuss in more detail a
more important application of EMT to the properties of
Si wires, the description of the effects of fluctuations in
the wire thickness along its length. TEM studies indicate
that the wires undulate in thickness from 20 to 40 A over
a length scale of about 40 A% These fluctuations play an
important role by enhancing the efficiency of the PL be-
cause they suppress nonradiative recombination of exci-
tons by localizing the excitons, which might otherwise
migrate to nonradiative centers.* If the motion along the
wire is approximated by restricting it to the lowest sub-
band, then the EMT equation separates into x, y, and z
equations, and the z dependence (along the wire axis) of
the conduction-band-minimum state is determined by

E(d)—E |V .(2)=0, @&

where E is the energy measured with respect to the bulk
conduction-band energy, E.(d) is the upshift of the con-
duction band due to the confinement within a wire of
width d, which is itself a function of the position along
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the wire z, and m,,  is the conduction-band mass for
motion along the z axis. (An analogous equation holds
for the VBM with an appropriate change of mass and
band energy). We model the shape of the undulating wire
as a_periodic array of overlapping spheres with diameter
40 A and spacing ZOV 3 A, so that the wire thlckness

varies from 20 to 40 A. For 1/d=0.025 A~ ' Figs. 1

and 2 give E,=0.12 eV, E,= —0.14 eV, m —0.25 and
m,,, = —0. 36 while for 1/d=0.06 A~ ', we obtain
E, —O 41 eV, E,=-—0.51 eV, m, =0.31, and

m,,, = —0.49. These values, which correspond to room-
temperature band-gap energies of 1.36 and 2.02 eV, re-

spectively, allow values of the parameters at intermediate
wire thicknesses to be obtained by interpolation. Follow-
ing Ref. 4 we apply our rectangular-wire values of E_(d)
and m,, (d) by choosing d so that the cross-sectional are
is the same as for the modeled wire, which has circular
cross section. We find that the conduction-band max-
imum (VBM) state is 0.190 eV above (0.225 eV below) the
bulk band edge. The lowest conduction band (highest
valence band) has width 0.086 eV (0.044 eV) due to
dispersion along the wire axis. Although these figures
imply good conduction of electrons or holes along the
wires, in practice transport will be impeded by strong lo-
calization effects, both in these bands and in the edges of
the next conduction and valence bands, because the un-
dulating wires have substantial irregularities, rather than
the periodic structure assumed in our simple calculation.

In an undulating wire of arbitrary shape, hole mobili-
ties will be lower than electron mobilities for two reasons.
First, the hole mass is larger than the electron mass (Fig.
2). Second, the effective potential due to fluctuations in
wire width is larger for holes than for electrons [Fig. 1
and Eq. (4)]. These factors explain, for example, why the
bandwidth calculated for the periodic undulating wire is
smaller for holes than for electrons.

In conclusion, we have calculated the valence- and
conduction-band-edge energies and effective masses of
three hydrogen-terminated silicon wires using a first-
principles pseudopotential method, and compared with
the results of effective-mass theory based on bulk-silicon
parameters. The magnitudes of the valence- and
conduction-band effective masses for motion along the
wire axis increase from their bulk values as the wire
thickness decreases, but by much less than predicted by
other calculations. Our results provide essential informa-
tion for a range of simple envelope-function calculations
for Si wires, in particular for properties such as donor,
acceptor, and exciton binding energies, electronic trans-
port and localization.
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