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Spectral dimension and dynamics for Harper's equation
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The spectrum of Harper's equation (a model for Bloch electrons in a magnetic field) is a fractal
Cantor set if the ratio P of the area of a unit cell to that of a fiux quantum is not a rational number.
It has been conjectured that the second moment of an initially localized wave packet has a power-
law growth of the form (z ) t ', where Dp is the box-counting dimension of the spectrum, and
that Do ——~. We present numerical results on the dimension of the spectrum and the spread of a
wave packet indicating that these relationships are at best approximate. We also present heuristic
arguments suggesting that there should be no general relationships between the dimension and the
spread of a wave packet.

I. INTRODUCTION

Harper's equation

g„+i + g„i + 2 cos(2n.Pn + 8)@„=EQ„
is a discrete Schrodinger equation, which can be thought
of as describing the dynamics of an electron hopping be-
tween sites labeled by the index n, with a periodic mod-
ulation of the site energies. The principal physical im-
portance of Harper's equation is somewhat different: it
occurs as a one-band model for an electron moving in a
plane with a spatially periodic potential and a uniform
magnetic field perpendicular to the plane. i When P is
a rational number p/q, Bloch's theorem is applicable and
there is a band spectrum with q nonoverlapping bands.
When P is irrational, the spectrum is a fractal Cantor set,
which can be characterized by a noninteger dimensional-
ity D; various possible definitions of D are discussed by
Falconer.

There is a body of literature concerning general
relationships between the dimensionality of the spectrum
and the dynamics of the corresponding Hamiltonian. Ef
the wave packet is initially localized with Q„=b„p at
time t = 0, the Nth moment of the wave packet might
be expected to grow algebraically with exponent p~

(1.2)

Guarneri has proved that if the second moment has
power-law growth, the exponent satisfies the rigorous
lower bound p2 & 217q, where 'Vq is the information di-
mension of the spectral measure of the wave packet: we
must refer the reader to the original papers for a pre-
cise and general statement of this result. It has been
proposed that the actual growth rate of the second mo-
ment (x ) is determined by the box-counting dimension
Dp of the spectrum of the Hamiltonian: i.e. , that (1.2) is
valid and that p2

——2DO. A variety of numerical results
and heuristic arguments have been published ' that

support the hypothesis that the box-counting fractal di-
mension of the spectrum is Do ——2. It is not always clear
whether this is an approximate statement, or whether it
is true for almost all P.

If they are true, the hypotheses that p2
——2DO and

Do ——
2 would indicate a surprising degree of insensitiv-

ity to the number theoretical properties of P, and deserve
careful scrutiny. In this paper, we report numerical re-
sults on both the dimension Do of the spectrum and the
spread of an initially localized wave packet. We will show
that both of these results are, at best, only approximately
correct.

We also give some heuristic arguments, which are
aimed at clarifying why these proposed relationships are
approximately but not exactly correct, and under what
circumstances they might be expected to break down en-

tirely. For this discussion it will be useful to describe the
number I9 by its continued fraction expansion

n] +
n2+

Q3 + 0 ~ ~

n1& n2& n3&"

The heirarchical structure of the Cantor set spectrum
is related to the continued &action expansion: roughly
speaking, the spectrum can be divided into nq bands,
each of which divides into n2 subbands, etc. This struc-
ture was analyzed by Azbel using a semiclassical ap-
proach, which was subsequently extended by Suslov
and Wilkinson. The precise scheme for describing the
splitting of the spectrum is somewhat more complex
and was described empirically by Hofstadter and ex-
plained by Wilkinson. %'e will pay particular attention
to the class of quadratic irrational numbers of the form

P = [n, n, n, ...], for which the subdivision of the spec-
trum is closest to exact self-similarity. When n is large,
these numbers approximate rationals very closely, and
the semiclassical arguments in Ref. 15 can be applied.

For a given irrational number P it is always possible to
find sequences of rationals pi, /qi, such that
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I&
—»/q~] «/m (1 4)

for arbitrarily large qA, , where o, and C are constants.
Quadratic irrational numbers and typical irrationals
share the property that the largest possible exponent is
o, = 2. Last has shown rigorously that, for a set of
irrationals of zero measure with o. & 4, the Hausdorf
dimension of the spectrum satisfies D~ & 2.

In Sec. II, we discuss some further facts about the spec-
trum and describe a Cantor set which is a reasonable
model for the spectrum of Harper's equation for the se-
quence of quadratic irrationals P = [n,, n, n, ...]. We find
that the box-counting dimension of this model is less than
one-half, and that it approaches zero in the limit n ~ oo.
The method can be extended to a variety of more refined
models. In Sec. III, we consider an alternative and some-
what simpler approximate method for estimating the di-
mension of these Cantor sets, which is applicable when
the dimension is close to one-half.

In Sec. IV, we discuss the spread of the wave packet,
and conjecture that for the same sequence of irrationals
the growth exponent p2 is unity in the limit n ~ oo.
The higher moments are predicted to have faster than
diffusive growth.

We discuss our numerical results in Sec. V, including
results for both the quadratic irrationals P = [n, n, n, ...]
and generic irrational numbers. Our results for the
quadratic irrationals provide strong evidence that the
spread of the wave packet satisfies (1.2) and that the box-
counting dimension. exists. The results do not support
the hypothesis that p2 ——2DO, and they are consistent
with the hypotheses that Do ~ 0 and p2 ~ 1 as n ~ oo,
although the convergence is very slow. The higher expo-
nents p~ are qualitatively consistent with the predictions
of Sec. IV. For typical irrationals we see evidence that
p2 exists and is approximately unity. The convergence of
the data on the &actal dimension for typical irrationals
is poor, but the results are not inconsistent with the exis-
tence of a dimension Do that is slightly less than one-half.

log, JV(b')
Do = —llm

a~a log, b
(2.2)

if this limit exists. In general Do & D~, but for many
examples of Cantor sets, these dimensions are equal.

Thouless's observation leads to a simple heuristic ar-
gument that suggests that the dimension of the spectrum
is equal to one-half, which Thouless pointed out to one
of us. We consider a sequence of rational approxirnants
P; = p;/q, to an irrational P. The bands of the rational
approximants are assumed to form an economical cover-
ing of the irrational spectrum. At the ith stage of this
construction, there are q; bands, and because of (2.1) the
average width of these bands is 8 1/q2. This suggests
that JV(h) = q; b ~2, implying that Do ——2.

This argument assumes that all of the bands of the
rational spectra are of the same size. The semiclassical
arguments discussed in Ref. 15 indicate that (at energies
away from the classical separatrix) the bandwidths are
of the form

b.E = hear(E) exp[ —S(E)/27rP], (2.3)

derivation of this result is restricted to P « 1, this result
appears to hold for all P: a partial explanation of this
remarkable fact is given by Last and Wilkinson. 2~

The spectrum has continuity properties with respect
to varying P, implying that the spectrum for rational P
is a good approximation to an economical covering set
for the spectrum with a nearby irrational P. Technically,
the spectrum is Holder continuous with exponent 2.

There are a variety of definitions of the generalized di-
mension D.5 The most satisfactory and fundamental one
is the Hausdorf dimension D~, but this is usually difB-
cult to calculate. It is usually easiest to calculate a box-
counting dimension Do, which requires us to calculate
the minimal number Af of intervals of length b required
to cover the spectrum. The box-counting dimension is
then

II. MODEL CANTOR SETS FOR THE HARPER
EQUATION SPECTRUM

32C
lim qS m = 9.32995... ,q-+oo 7r

(2.1)

where C is Catalan's constant. Although Thouless's

In this section, we describe how to calculate the di-
mension of a class of Cantor sets which is a reasonable
model for the spectrum of Harper's equation. Before de-
scribing the model Cantor set we survey some relevant
facts about the spectrum, and discuss the definition of
the dimension Do.

When P is the ratio of two integers, P = p/q (where
p, q are relatively prime), Bloch's theorem is applicable
and the spectrum consists of q non-overlapping bands.
Thouless ' has discovered aremarkable property of the
total bandwidth S {the union of the spectrum over all
values of 4) at the critical point

where S(E) is 0(1) at the edges of the spectrum and
approaches 0 at E = 0. In the limit P -+ 0 the smallest
bandwidths are exponentially smaller than the largest.
From the arguments in Ref. 15, it is clear that this will
be the case whenever the continued &action expansion of
P contains at least some large coefficients n, . It is, there-
fore, desirable to refine this model to take into account
the marked dispersion in the sizes of the bands.

We therefore consider the following more refined model
for the spectrum of Harper's equation. It is a Cantor
set, constructed using a generating set G consisting of n
nonoverlapping intervals with lower limits (i —I)/n, i =
1, ..., n and widths g,. = e', where ~ is a constant. The
Cantor set is constructed iteratively, by replacing each
interval with a linearly scaled and shifted version of the
set G, i.e., the interval I = [xq, x2] is replaced by the
set of n intervals which are images of the intervals of G
under the transformation x ~ x' = (x2 —xq)x+ xq. The
construction of this Cantor set is illustrated in Fig. 1.

After k iterations, there are n intervals, and the total
measure of the set is
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length c" required to cover the set at the kth stage of its
construction is, therefore,

(2.7)

and this number cannot decrease as the set is further sub-
divided. The number of intervals of size ~"+' satisfies
the recursion relations

(2.8)

FIG. 1. Illustrating four stages of the construction of the
model Cantor set for n = 3.

This is a linear mapping, of the form v~"+ ~ = Mv~ ~,

where v~ ~ is an n dimensional vector formed from the
N, , and M is a square matrix. The general solution is
of the form

w= ) e'I (2.4) (2 9)

This set is intended to model the spectrum of Harper' s
equation when

P = [n, n, ..., n, n],
A: coefFicients

(2 5)

which is a rational number Pi, = pl, /q~ with denominator
qI, n" for large n. We choose the value of e such that
R'n = 1, which is analogous to the Thouless property
(2.1): this requires that e should satisfy the equation

Dp ——lim
k-m oo

log, A'g

loge etc

log, A„
loge E

(2.1O)

where the A~ are the eigenvalues of M in ascending order
of magnitude, and the o.~ are determined by the initial

condition N, = 1, i = 1, ..., n. We assume that the co-(1)

eKcient a„corresponding to the largest eigenvalue A„is
nonzero. For large k the solution (2.9) is then dominated
by the largest eigenvalue, so that

e(1 —e") 1

1 —6 n
(2.6)

The limiting Cantor set generated by this construction
is a reasonable model for the spectrum of Harper's equa-
tion when P is a quadratic irrational number with con-
tinued fraction coefficients P = [n, n, n, ...]: there are n
"bands, " each of which divides into n subbands, etc. In
accordance with the semiclassical description, the bands
have a broad range of sizes, with the smallest band of
size e" exponentially small in n 1/P, in accordance
with (2.3).

We now calculate the box-counting dimension of this
set. To facilitate this, we construct the set in a slightly
diferent way. Instead of subdividing each interval, so
that at the kth stage there are n" intervals, we only sub-
divide intervals which are of size e . I et us introduce an
inductive hypothesis, that at the kth stage of the con-
struction no pair of intervals can be covered by an in-
terval of length e: this is clearly true for k = 1. At
the kth stage of the construction we subdivide the N1
intervals of size e, and leave the rest of the set, consist-

ing of¹ intervals of size e +', i = 2, ..., n, unaltered.
Clearly the subintervals resulting &om the division of the
intervals of length e" have separation e"+, and no pair
of subintervals resulting kom this process can be cov-
ered by a single interval of length e"+ . The inductive
hypothesis is therefore true. The number of intervals of

Because the number of covers Af(h) of size b is a mono-
tonic function, we see that the box-counting dimension
exists and is equal to

log, A„
loge 6

(2.11)

By inspection of (2.8), the eigenvalues A satisfy the equa-
tion

A" —A"-' — "—A' —A —1 = 0. (2.12)

The largest real eigenvalue approaches two from below in
the limit n ~ oo. The value of e approaches 1/(n+ 1)
in the limit n ~ oo. The dimension of this set is less
than 2 for all n, and approaches log, 2/log, n in the limit
n + oo. This argument, therefore, suggests that the
dimension of the spectrum should be less than one half
for numbers of the class P = [n, n, n, ...], and that Do m 0
in the limit n m oo.

%e end this section by discussing two generalizations
that could be applied to more refined models for the
Harper equation spectrum.

One limitation of the model considered above is that
the sizes of the bands of the generating set G are in a
geometric progression. To give a more realistic model,
it would be desirable to use the bands of the Harper
spectrum for P = 1/n as the bands of the generating set
G, and there is no reason to expect that the sizes of these
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bands form an exact geometric series. We can, however,
consider a construction similar to that of Sec. II in which
not every power of e is represented in the set of n bands;
this still gives a recursion relation analogous to (2.8) for
the n»mbers of covering intervals. By taking the lixnit

e -+ 1, we can approximate the desired set of lengths g;
to arbitrary precision by writing g; e"', where v; are
suitably chosen (large) integers.

This method for calculating the dimension can also
be extended to a Cantor set in which the number n of
intervals at each stage of subdivision is a random num-

ber with a probability distribution P(n). The continued
fraction coefficients of a typical irrational number form a
quasirandom sequence with probability distributionms

The mean and variance of the "probability" distribution
P(k) are clearly proportional to m: we will write

k=~+p, ,m, o =o, +o,m.2 2 2 (3.2)

JV c) N(k, m) cf gm N(k, m), (3.3)

where c is a constant. This assumption is correct for the
type of model considered in Sec II. The integrand in (3.3)
falls away very steeply from the maximum value of the
function, and we have

We will assume that the n1gggkber of intervals of length
b = exp( —k) required to cover the set is

1 (n+ 1)2

log, 2 ' n(n+ 2)
' (2.13) log, JV log, N(k, m'), (3.4)

and such a Cantor set would be a reasonable model for
the spectrum of Harper's equation for typical irrational
P. In this case, (2.9) would contain the product of a se-
quence of k random matrices, and the largest eigenvalue
A„would be replaced by the largest Lyapunov exponent.
This suggests. that a universal box-counting dimension
should exist for almost all irrational values of P. One of
us~ previously argued incorrectly that the box-counting
dimension should be zero for typical irrationals. This
semiclassical argument was based upon an estimate for
the bandwidths of the form (2.3), and it is incorrect be-
cause it ignores the fact that the action S(E) vanishes
at one energy, leading to the existence of bands that are
not exponentially narrow.

where m' is the value of m for which N(k, m) is a max-
imum. In the limit k ~ oo the dependence of the pre
exponential factor of P(k) on m can be neglected, and
the equation for the maximum of N(k, m) can be approx-
imated as follows:

m
Qpg —2o'g logg rk

(3.8)

and the maximkgggk value of log, N is, therefore,

19log N pg(k —pgm) (k —pram)=O~log~A+ ' +=0 1 g,
cTg m 20 m

(3.5)
Solving (3.5) for m', we find

III. ALTERNATIVE METHOD
FOR ESTIMATING THE DIMENSION

When we examine the numerical results on the spec-
tr1gm in Sec. V it will become apparent that the dimen-
sion of the spectrum is very close to z for P = [n, n, n, ...]
with small values of n. For this reason we will consider in
detail a model in which the sizes of the bands are similar
to each other, leading to a dimension that is very nearly
one half. We will show that, in this case, the dimension
can be estimated from a single statistic characterizing the
set of lengths g; of the intervals of the generating set.

Consider the direct method of construction of the Can-
tor set, in which all intervals are subdivided regardless of
their length. After m )) 1 stages of this construction,
it is clear that the n intervals will have a distribution
of lengths that is approximately log-normal, because the
length of a given interval is the product of a large num-
ber of g;, and these can be combined without restriction.
We will, therefore, assume that the number of intervals
after m stages of the construction is n (where n need
not necessarily be an integer), and that the number of
intervals of size between exp( —k) and exp( —k+ dk) is

N(k, m)dk n P(k)dk,

= —loge JV ~ —
& [py —

p&
—2o'& log~ TL].

2 2

1
(3.8)

If we require that the sum of the widths of the intervals is
8 = I/n, to simulate the Thouless property (2.1), the
coefficients aq and Pq will not be independent. The total
width of the intervals at the mth stage of construction is

8= = dbbN, m = dke N km1

dk exp[ —k —(k —k) /2o ]V'2z o'

(3.9)

From (3.9) and (3.2), we find the following relationship
between the coefficients pq and o&2.

lcg N 10g N(k, m ) —
e pe —/pe —g l gcgcc

(3.7)
The box-counting dimension is, therefore,

—log, JV

log, 8

P(k)1 = /, expj —(k —k)*/gx*j.
py = 2 log~ n +

(3 1)
Substituting this into (3.8), we find

(3.10)
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i+N
gj E'

y
x l.

y
~ ~ ~

y
ns (3.12)

This reduces to the previous model when N = 0. Our in-
terest will bein the dimension of this model when N » n,
in which case the dispersion in the lengths of the intervals
is very small. By a simple adaptation of the argument
leading to (2.12), we find that the exponent A charac-
terizing the growth of the number of covering intervals
satisfies the equation

PN+A PTL —1 PfL —2 P 1 0 (3.13)

and e satisfies

N+1 + N+2 + N+n 1

n
(3.14)

in order that the sum of the bandwidths is 1/n to mimic
the Thouless property. Summing the geometric series in
(3.13) and (3.14), making the substitutions

n(~+41)/(N+~) n-(2+4. )/(N+~) (3.15)

and expanding the small parameters (i and $2 in powers
of y = (K + n), we find, after some algebra

log, A = y log, n(1 + 2 (n —1)y + 24 [(n —1) log, n

+6(n —1)']y') + 0(y'),

log, e = —y log, n(2 + (n —1)y + s [(n —1) log, n

+3(n —1) ]y )+ 0(y ). (3.i6)

Prom these results we deduce that the box-counting di-
mension Do is

1 (n2 —1) log, n
2 48(N+ n)2

(3.17)

O.i2Do- ——
2 16 log, n

It is difBcult to extend this heuristic calculation to give an
estimate for the errors of the approximations used. The
most important source of error in this result is related to
the assumption that the bandwidths are log-normal dis-
tributed. The log-normal approximation is valid close to
the maximum of the distribution, but breaks down in the
tails. This implies that the position of the maximum of
the product n P(k), determined in (3.5), will be accu-
rately determined only if the position of the maximum m'
is close to the maximum of the distribution P(k). This
condition will be satisfied if the dispersion coefficient Oi2

of the bandwidths is small. These considerations suggest
that the error of (3.11) is probably 0(o i).

We illustrate the applicability of (3.11) by showing that
it gives the correct result for a specific model in the limit
0

y w 0. We consider a model of the type considered in
Sec. II, in which the lengths g; are given by

For the specific model we considered above, we have

pi ——[N + 2 (n + 1)]log, e, o i = —,'2 (n —1) log, e.

(3.is)

Substituting the value of o& for our specific model, given
in (3.18), we find that (3.11) gives a result that is in
agreement with the more rigorous result (3.17).

IV. A MODEL FOR THE SPREAD OF A WAVE
PACKET

In this section, we describe a simplified model for the
spread of a wave packet, based on the semiclassical anal-
ysis given in Refs. 14 and 15. This semiclassical analysis
assumes that all of the continued fraction coeKcients are
large, and to avoid. irrelevant complications we consider
only the case where P is a quadratic irrational with con-
tinued fraction expansion P = [n, n, n, ...], with n » l.

According to the simplest semiclassical picture, the
spectrum and dynamics are determined by the contours
of a classical Hamiltonian function H(z, p) = 2(cosz +
cos p). Because the contours of the classical Hamiltonian
function are closed curves, the spectrum is predicted to
be discrete, and the energy levels can be obtained from
Bohr-Sommerfeld quantization. The spread of the wave
packet is determined by classical motion along contours
of this Hamiltonian: it spreads ballistically (z t) until
the spatial extent of the wave packet is b,z = 0(l), and
it then stops spreading.

The more refined semiclassical analysis discussed in
Ref. 15 considers the effect of tunneling between con-
tours of the classical Hamiltonian. The tunneling effect
broadens each of the n discrete levels predicted by Bohr-
Sommerfeld quantization into a narrow band of width
8AE~ , where AE~ . is a matrix element determined by
the semiclassical approximation (2.3). The structure of
each band is described by a renormalized Hamiltonian of
the approximate form II(z', p') 2b, E~(cosz'+ cosp')
similar to the original one. The length scale is expanded
by a factor of 1/P, i.e., z' = Pz, and the time scale of the
dynamics is expanded by a factor of 1/AE~. That com-
ponent of the original wave packet which excites the jth
level therefore subsequently spreads ballistically, with ve-

locity v b, E~//3, until its extent is 6z = O(1/P). Be-
cause the renormalized Hamiltonian is similar in form
to the original one, this line of argument can be re-
peated indefinitely, provided that the semiclassical con-
dition P (( 1 is also satisfied for the renormalized Hamil-
tonian.

Now consider the implications of this picture for the
spread of a wave packet under the false assumption that
a11 of the bandwidths AE~ are equal. Thouless's scaling
law (2.1) would imply that the width of each of the n
bands is C/n . According to the discussion above, the
wave packet would, therefore, undergo periods of ballis-
tic growth, the first with velocity v 1 until Ax 1,
then with velocity v nb, E 1/n, until Az n, etc.
In general there would be periods during which the wave
packet spreads with velocity v 1/n", until the extent
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of the wave packet is be n" .Figure 2(a) illustrates
schematically the growth of the second moment implied

by this picture, with periods of ballistic spreading punc-
tuated by intervals of slower growth. The average rate of
spreading implied by this picture is clearly diffusive, in
the sense that

log. (x2)
llm = 1)

taboo log
(4.1)

but there are large auctuations that are more marked in
the limit n + oo. According to this model, the growth
of the Nth moment is (zN) tN~2.

It is necessary to consider how this picture will change
when we take into account the fact that not all of the
bands have the same width. Components of the wave

packet associated with different bands will spread with
difFerent velocities, and the episodic spread indicated in
Fig. 2(a) would be expected to be replaced by a smoother
growth for sufficiently large times, as illustrated in Fig.
2(b). Semiclassical argumentsz indicate that most of the
n bands are exponentially small, and that most of the
total bandwidth 1/n is shared between a set of log, n
bands of typical width 1/n log, n. We assume that the
probability p for the electron to be in a given band is the
same for the large bands as for the exponentially small
ones: p 1/n.

The model of the spread of the wave packet must now
be modified as follows. The wave packet initially spreads
ballistically with velocity v 1 until hx l. A fraction
P log, n/n of the wave packet subsequently undergoes
ballistic spread with velocity v nb, E 1/log, n,
(where b,Em is the width of the widest band) until
Az n. The remainder, associated with the very narrow
bands, spreads much more slowly. In general, the fastest
spreading component of the wave packet reaches Az n"
with velocity v (log, n)~ at time t (nlog n)". The
proportion of wide bands, of width b,E „(nlog, n)
is P (log, n/n)". These bands dominate the Nth mo-
ment of the wave packet, which therefore has value

t I/b. E (n log, n)" (4 3)

The predictions of this heuristic analysis can be sum-
marized as follows. Comparing (4.2) and (4.3), we see
that the second moment is still predicted to grow diffu-
sively (i.e., 72 ——1) in the limit n ~ oo. The dynamics is,
however, very different &om a true diffusive process, in
that components of the wave packet associated with the
widest bands are spreading ballistically, whereas those
associated with the exponentially narrow bands spread
extremely slowly.

The difFerence between this behavior and standard dif-
fusion is revealed by considering the higher moments. In
a random diffusive process, the growth of the higher mo-
ments is pN = N/2. From (4.2) and (4.3), we see that
the model implies a different prediction for the exponents
PN.

0.08 ~

0.00

-0.03
-15.00 -1.00

log, (~z ~) (N —2) log, (log, n)
llm N —1

log, t log, n + log, (log, n)

(4.4)

Thus, in the limit n + oo, this model predicts that the
exponents pN approach (N —1) very slowly, with correc-
tions which are logarithmic in log, n. We emphasize that
this is just a heuristic model, and not (for example) the
leading order asymptotic behavior in the limit n + oo.

N) P N (l )k (N-l)lc (4 2)
1.00 ~

when

log p.(5)

log(r') log@')

-5 00

log t log t
-15.00 -1.00

FIG. 2. Schematic illustration of growth of second moment
of wave packet. (a) Episodic growth predicted if spectrum is
exactly self-similar. (b) If there is dispersion in the widths of
the bands, the steps are smoothed out.

FIG. 3. Logarithmic plots of the measure p(h) of the delta
parallel body versus b, for four rational approximants to
P = [1,1, 1, ...], together with a least squares 6t. The up-
per plot is the error of the least squares fit, for the largest
denominator. Logarithms are in base e here and throughout
the figures.
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0.05 0.2 ~

E.
0.00

-0.02 ~

-13.00

wij

2.00 ~

log p.(5)

0.0
-25.0 -14.0

-4.00

FIG. 5. Histogram of the distribution of logarithms k of
the bandwidths, for P = 5473/23184, an approximant of
[4, 4, 4, ...], showing that these are approximately log-normal
distributed.

-13.00 -1.00

lo 5

FIG. 4. Same as Fig. 3, for a single rational approximant
to p= [4, 4, 4, ...].

V. NUMEMCAL RESULTS

A. Dimension of the spectrum

We estimated the box-counting dimension numerically
using a sequence of rational approximants p;/q; to the de-
sired irrational P. Rather than using the direct technique
of counting the minimal number of intervals required to
cover the set, we used a slightly different approach that
is easier to program. We computed the measure y, (b)
of the b parallel body of the spectrum: this is the set
of points within a distance b of at least one point in the
spectrum. The box-counting dimension is related to p, (b)
as follows:s

In Fig. 3(a), we plot log, p, (h) against log, h for a se-
quence of principal approximants to various irrational
values of P = [1,1, 1, ...], the largest denominator being
17711. The curves follow the same straight line until h

becomes smaller than the largest band; this is strong evi-
dence that the box-counting dimension exists and that it
can be approximated using these data. A least squares fit
to this line gives a box-counting dimension of Do —0.498.
It is not meaningful to give an error estimate, because the
deviations from the straight line are not random. The
deviation is plotted in Fig. 3(b), showing decreasing os-
cillations, which would be predicted from the arguments
above In Fig.. 4, we plot data for P = [4, 4, 4, ...], for a
single approximant p/q = 5473/23 184. Here we see that
the deviations from a straight line are more pronounced.
Values of Do are listed in Table I for various n; they are
all less than one half, and decrease slowly as n increases.

0.8

log. [ (b)]
b~o log, b

(5.1)

TABLE I. Box-counting dimensions Do, bandwidth distri-
bution parameters pq and nz, and growth exponents p~ for
quadratic irrationals of the form P = [n, n, n, ...], together
with an estimate Ds" of Ds obtained f'rom (3.11).

D„(5)

1
2
3
4
5
10
15

Do
0.498
0.493
0.486
0.476
0.468

px
—0.97
—1.81
—2.52

3A 17
—3.78

0-2

0.0184
0.0774
0.257
0.623
1.201

Y& Y4 3'6 Do
th

0.95 1.93 2.95 0.498
0.92 1.88 2.96 0.495
0.84 1.84 2.96 0.487
0.87 2.06 3.34 0.473
0.91 2.21 3.52 0.454
0.94 2.29 3.67
0.99 2.35 3.73

0..3
1.0

-log 5
14.0

FIG. 6. Plot of approximate dimension Do versus b for ten
approximants to random irrationals.



50 SPECTRAL DIMENSION AND DYNAMICS FOR HARPER'S EQUATION 1427

1 1.0 ~ 10.0 ~

log(x') log(x')

0.0-
0.0

log t
12.0

1.0 ~

0.0

lo t
12.0

9.0 10.0

g&x') log(x')

0.0

log t
12.0

1.0 ~

0.0
lo t

90

35.0 ~

log(x')

5.0 ~

0.0

log t
12.0

FIG. 7. Logarithmic plot of the moments of an initially localized wave packet versus time, for P = [n, n, n, ...]. (a)—(d) are
plots of (z ), with n = 1, 3, 10, 50; (e) is (x ), for n = 10.
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The model described in Secs. II and III suggests that
the bandwidths of a rational approximant should be log-
normal distributed. Figure 5 is a histogram of the log-
arithms of the bandwidths for the same data as used in
Fig. 4. The graph shows a normal distribution for com-
parison, with the same mean and variance as the loga-
rithms of the bandwidths. The model of Sec. III also
predicts that the mean and variance of the distribution
should be linearly dependent on the order k of the ratio-
nal approximant:

9.0 ~

log(x')

Po+ kgb& ~ = Oo+ k2 2 2 (5.2)

This expectation is confirmed with high accuracy, and in
Table I we also list the coeKcients p, q and cr&. note that
0~ increases with n, in agreement with the prediction
that the dispersion in the sizes of the bands should be
larger in the semiclassical limit.

In Table I we also list "theoretical" values of the box-
counting dimension obtained from (3.11), using the em-
pirical values for the constant o z given in this table, and
substituting 1/P for the constant n The v. alues are in
quite close agreement with the numerically computed di-
mension for smaller values of n.

In Fig. 6 we show data on the &actal dimension for ten
randomly chosen numbers. We chose large-order rational
approximants, and plotted the approximate dimension

log, [Ap(b)]
log, b

(5.3)

(where A is a constant) as a function of log, h, for values of
b down to the size of the largest band. The value of A was
chosen to give the best approximation to a straight line.
The results are far from conclusive, but these data are not
inconsistent with the hypothesis that the box-counting
dimension exists and converges to the same value for al-
most all P, and that its value is slightly less than one-
half. It is difFicult to extend these calculations to higher
rational approximants because of numerical diKculties in
identifying the band edges accurately for denominators q
greater than 3 x 104.

B. Spread of an initially localized wave packet

We performed some numerical experiments on the
spread of a state that was initially localized at the n = 0
site, i.e. , g„(0)= h„o. The solution of the time de-
pendent Schrodinger equation was computed numerically
for a 6nite-sized lattice, 6rst by computing the eigen-
functions by matrix diagonalization, and secondly (as a
check) by integration using fourth-order Runge-Kutta.
The parameter 8 in (1.1) was set to zero in all of our nu-
merical calculations. We characterized the spread of the
wave packet by calculating moments defined by (1.2).

We show some results for the second moment in Figs.
7(a)—(d) for four different P = [n, n, n, ...]. The graphs
for n = 1, 3, 10 show least squares 6ts of a linear function
for comparison, and the slopes p2 are listed in Table I.
Figure 6(a) shows the saturation occuring at different
times due to three different finite basis sizes (the largest

0.0 ~

0.0

log t
10.0

FIG. 8. Plot of (z ) for ten random irrational values of P.
An averaged curve is also plotted, shifted vertically from the
others, with a line of unit slope for comparison.

being 2000). The graph for n = 50 shows the intervals of
ballistic growth predicted in Sec. IV; the straight lines
have a slope of 2, corresponding to ballistic motion, and
their vertical onset is 5.01, which is close to the value

log, (n log, n) = 5.28 predicted by the heuristic model.
Figure 7(e) shows the growth of the sixth inoment for

n = 10, together with a straight line 6t. The data for
the higher moments showed smaller fiuctuations than the
lower moments. The exponents for the higher moments
are listed in Table I. In the limit n ~ oo they are higher
than those predicted by the oversimplified model which
ignores the dispersion of the band sizes, and as n m
oo they appear to approach the limiting values N —1
predicted in Sec. IV. The predictions of (4.4) for n = 15
are p2 ——1, p4 ——2.47, and p6 ——3.96, which are in
reasonable agreement with the data in Table I.

In Fig. 8, we have plotted the second moment for
ten randomly chosen irrationals. The mean of the ten
values of log, (z ) is also plotted; this curve was shifted
vertically for clarity, and a straight line of slope unity has
been superposed for comparison. The data suggest that
the growth may be asymptotically a power law with an
exponent close to unity.

VI. CONCLUDING REMARKS

Our numerical results and heuristic arguments indi-
cate that neither of the proposed relationships Do ——

2
or p2

——2Do are exactly correct. We have argued, using
a combination of Thouless's result on the bandwidth of
rational approximants and a renormalization group ap-
proach, that both of these relationships would be valid
if all of the subbands of the hierarchical division of the
spectrum were identical. In practice, this assumption is
not valid, primarily because the bandwidths can be very
diferent.

We have presented heuristic arguments for the class of
quadratic irrationals of the form P = [n, n, n, ...], which
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indicate that the dispersion of the bandwidths increases
as n -+ oo, and that Do ~ 0 in this limit, whereas

p2 ~ 1. These arguments would indicate that there are
not any generally applicable equalities relating any of the
generalized dimensions to the dynamics.

Our numerical results con6rm the predictions that the
dispersion of the bandwidths increases as n ~ oo. Our
heuristic model for the dimension of the spectrum is in
quite good agreement with the numerical values for small
n, which show that Dp & 2 and that it decreases as
n -+ oo. Our results for the growth exponents are in
qualitative agreement with a model that indicates that

N/2 when the dispersion coefBcient of the band-

widths o~~ is small at n = I, crossing over to p~ N —I
in the limit n m oo.
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