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Measurements are reported of the temperature dependence of the conductance through a small region
of electron gas separated from its leads by tunnel junctions. The quantization of charge and energy in

the small region gives rise to sharp, nearly periodic peaks in the conductance as a function of electron
density, one for each electron added to the isolated region. Because the charge and energy are quan-

tized, we call this an artificial atom. At low temperature, the conductance is limited by resonant tunnel-

ing through a single quantum level of the arti5cial atom, but at high temperatures several levels partici-
pate. Changes in the temperature dependence of the width and height of conductance peaks display clear
evidence for this crossover from single-level to multilevel transport.

I. INTRODUCriON

When electrons are confined to a small particle of met-
al or a small region of semiconductor, both the energy
and charge of the system are quantized. In this way such
nanometer-sized systems behave like artificial atoms. '

Structures in which electrons are confined in a semicon-
ductor are often called quantum dots. The quantization
of energy is familiar: the solutions of the Schrodinger
equation in an isolated region have discrete energies. In
some ways, however, the quantization of charge is more
mysterious. We are quite comfortable with the idea that
the charge of a collection of electrons is discrete. Howev-
er, the charge in any small volume of a larger sample of
conductor is not discrete because the electronic wave
functions are extended over the entire sample. Only
when the states are localized is the charge quantized.

There is an intimate connection between the quantiza-
tion of energy and that of charge. Consider a one-
dimensional potential consisting of two equal barriers.
This is a good model for an artificial atom because its
properties are invariably measured by studying the varia-
tions in tunneling rates of electrons onto the atom from
its leads. For large barriers the energy spectrum for the
region between the barriers is nearly discrete. In reality
the spectrum is continuous because each level has a
Lorentzian line shape resulting from the finite coupling to
the continuum outside the barriers. However, the width
of the Lorentzian I can be very narrow because it de-
creases exponentially with the height and width of the
barrier. The condition for energy quantization is that
I & hE, where hE is the typical spacing between levels.
This is the same condition that Thouless gives for locali-
zation of the electronic wave functions. It leads to the
criterion for localization that the conductance 6 &e'/h.
This is, therefore, not only the condition for energy
quantization, but also the condition for charge quantiza-
tion. For I &hE the wave functions have exponentially
small amplitudes outside the confined region, so the

charge between the barriers is discrete. Thus even at zero
temperature single-electron phenomena can be seen in
mesoscopic systems only if 6 (e /h.

The charge quantization leads to the interaction energy
U for adding or removing a single electron. For a metal
particle U=e /2C, where C is the total geometrical ca-
pacitance between the particle and all other electrodes.
This charging energy gives rise to the Coulomb blockade
of current at low temperature. For a metal particle, the
charging energy is always the same, no matter how many
electrons are added, because the excess charge resides
near the surface of the particle. On the other hand, for
electrons confined in a region of a semiconductor the
added charge is distributed in a way that depends on the
state in which the extra electron resides. Thus U varies
with the number of added particles because it depends on
the details of the electronic wave functions. This is simi-
lar to the case of natural atoms, in which the ionization
potential and electron affinity are sensitive to the state to
which the electron is added or from which it is removed.

Thus, in addition to kT, there are three energy scales
of importance: U, hE, and I . U is the typical energy for
adding an extra electron, and LE is the typical excitation
energy of the artificial atom. For structures in which
single-electron phenomena have been observed, the three
energy scales have the following order: U)EE&I.
Since kT is usually larger than I, there are two interest-
ing temperature regimes. One corresponds to
U & kT & hE & I, and we call this the multilevel regime
because there are more than one level within kT. This is
the regime in which the Coulomb blockade model works
well. It is the only regime that can be accessed for metal
artificial atoms, because for metals hE is always very
small. However, for sufficiently small semiconductor
structures one can reach the limit in which
U) hE & kT & I, so that the properties of single levels
are evident. *

This single-level regime is very interesting. Because
the confining potential is not highly symmetric, one ex-
pects the system to be an example of quantum chaos, and
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several interesting predictions have been made. For
example, random matrix models can explain why the
heights of conductance peaks resulting from resonant
tunneling through individual levels are found to be ran-
dom, and the distribution function of the peak conduc-
tance has been predicted. ' However, to test these pre-
dictions one must prove that the conductance is dominat-
ed by a single level.

In this paper we present results of a detailed study of
the temperature dependence of conductance peaks for an
artificial atom in GaAs. We show clear evidence of the
crossover from single-level to multilevel conductance.
However, even in the single-level regime, levels that have
small conductance are masked by others nearby in ener-
gy. Theoretical work' ' provides a framework for
ascertaining when the properties of a given level can be
measured.

The organization of this paper is as follows: In Sec. II
we review the current theoretical understanding of
artificial atoms. Section III gives a description of the de-
vice structure. In Sec. IV we present the results of our
measurements and compare them with theory. Finally,
in Sec. V we give our conclusions.

II. THEORETICAL BACKGROUND

The single-electron transistor is one fascinating type of
artificial atom. The device consists of a region in which
electrons are confined, separated from the current-
carrying leads by tunnel barriers. The chemical potential
can be changed by means of a gate electrode. The con-
ductance of the single-electron transistor as a function of
the gate voltage consists of a series of sharp peaks. If the
transistor is made of metal the peaks are equally spaced
and have equal, temperature-independent, amplitudes.
However, for the semiconductor structure of Meirav,
Kastner, and Wind, ' quantum-mechanical e8'ects cause
the positions in the gate voltage to vary a little, the am-
plitudes to vary a lot, and the temperature dependence to
be peculiar.

The simple behavior of the metal transistors is ex-
plained by the Coulomb blockade model: There is a

Coulomb blockade gap for tunneling at all values of the
gate voltage except for the special values for which the
energy of the atom for X and X+ 1 electrons is equal.

To explain the quantum-mechanical effects, Meir,
Wingreen, and Lee, Beenaker" and others developed the
constant-interaction model. This assumes that U is fixed.
as in the metal single-electron transistor, independent of
the number of electrons added to it. The Coulomb
blockade gap collapses at the charge degeneracy point as
it does for the metal transistor. However, in semiconduc-
tor structures the spacing of levels for excitation within
the artificial atom is large enough so that at low T only
one level determines the conductance. McEuen et al.
showed that the constant-interaction model is too simple
because U is not the same for every added electron.
However, they showed that for a limited number of elec-
trons added, the constant-interaction model works quite
well. In addition, for the issues explored here, variations
of U are probably unimportant. We therefore use the
constant-interaction model to analyze our results.

For the single-level limit ( U & b,E »kT) and the mul-
tilevel limit ( U & k T» b,E ), the conductance peaks are
described by simple analytic expressions. Consider first
the single-level regime: Beenaker' suggested that the
form for resonant tunneling of noninteracting particles
should describe this case even though Coulomb interac-
tions are obviously important. At zero temperature this
gives

e' ILI
G, =p

(E Eo) +I'—

with E=p the chemical potential. Here I I and I „are
the tunneling rates (multiplied by h ) through the left and
right barriers, respectively, I = (I I + I a )/2, and p is the
level degeneracy. At finite temperature the conductance
is given by the convolution of G(E) in Eq. (1) with the
negative derivative of the Fermi-Dirac distribution func-
tion, so the conductance is given by

e I L, ~z dE I z E —pG, =p sech
h I kT (E—E )+I 2kT

J

Since the Lorentzian becomes a 5 function in the limit
I ~0, G, for narrow resonances is proportional to the
derivative of the Fermi-Dirac function
(sech [(E p)/2kT]/kT). —In our experiments p is
varied by changing the voltage V on a gate electrode
near the artificial atom. In the limit I «kT, Eq. (2)
reduces to

I I ky E —aeV
h I 2 2kT

where we have used p =ae V, and a is measured as dis-gl
13cussed below. Meirav, Kastner, and Wind showed that

Eq. (2) is in excellent agreement with experimental shapes
of conductance peaks.

In the multilevel regime, the conductance is given by
Kulik and Shekhter

p, —aeV
Xcsch

where p is the density of levels (1/b, E) and p, is the
chemical potential for which there is a charge degeneracy
point for the artificial atom. That is, p, /ae is the gate
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voltage at which the states with N and N+1 electrons
have the same energy, the condition for a conductance
peak. To better than 1% Eq. (4) is equivalent to

e' ~ ~L,~g, P, —«~g
h 4 I 2 5kT
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The shapes of the resonances for the two
( U & k T & b E & I ) regimes are thus indistinguishable.
However, the temperature dependencies are different.
The peak height for the single-level conductance is pro-
portional to 1/T, whereas for the multilevel conductance
it is temperature independent. Furthermore, the full
width at half maximum of the peak is 3.5kT for the
single-level case and 4.35kT for the multilevel case. We
show below that these predictions are confirmed by our
experiments.

III. DEVICE STRUCTURE
AND EXPERIMENTAL DETAILS

The measurements reported here were made with
GaAs layers grown by molecular-beam epitaxy (MBE) on
Al„Ga& „As insulators on degenerate GaAs substrates.
These inverted heterostructures are described in detail by
Meirav, Kastner, and Wind the structure forms a
metal-insulator-semiconductor field-effect transistor.
Also described by these authors is the fabrication by
electron-beam lithography of nanometer-sized gold elec-
trodes that confine the electrons. Figure 1 is a sketch of

Sourc

rain

0.0
I 2.0

CU

o 1.Q
0.0
2.0

T=03K

T=04 K

T=0.8K

T= 0.9 K

the device giving the electrode geometry. Ohmic con-
tacts are made at each end of the narrow channel where
the electrodes terminate, leaving a two-dimensional elec-
tron gas when a positive voltage is applied to the sub-
strate. These are the source and drain for the transistor.
A negative voltage is applied to the Ti-gold electrodes to
confine the electrons to a small region between the two
constrictions in the channel. These electrodes, like the
substrate, can be used to vary the chemical potential of
the electron gas. Indeed, in the following, V is the volt-

age applied to the Ti-gold electrodes.
Samples were bonded on nonmagnetic ceramic headers

on the cold finger of a dilution refrigerator with a base
temperature of 25 mK. The gold electrical leads are used
to thermally lock the sample to wires thermally linked to
the cold finger. As discussed by Meirav, Kastner, and
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FIG. 2. Conductance as a function of voltage on the gold
electrodes V~ for various temperatures. At low T the random
variation of the peak height is evident, whereas at high T the
general increase of conductance with Vg is apparent (see Fig. 3).
The Coulomb blockade gap measured from the temperature
dependence of the peak width is 0.68 meV. The spacing be-
tween the peaks is approximately 4.5 mV.

10

Heavily Doped GaAs
Substrate

FIG. 1. Schematic diagram of the single-electron transistor
used for the experiments reported here. The substrate, a crystal
of heavily n-type GaAs, can be used as a gate. A layer of
Al„Gal „As and a layer of pure GaAs are grown on the sub-
strate, forming a metal-insulator-semiconductor field-effect
transistor. A negative bias applied to the titanium-gold elec-
trodes confines electrons in the GaAs to a narrow channel, and
the protrusions create barriers through which electrons must
tunnel. These gold electrodes were also used as a gate in the
present measurements. The device studied here has about 0.9
pm between the protrusions, and the width of the channel (ex-
cept at the protrusions) is about 0.5 pm.
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FIG. 3. The peak conductance as a function of peak position
at 1 K, from the data of Fig. 2, on a logarithmic scale showing
the exponential increase of the conductance. This is consistent
with the idea that the conductance increases with V~ because
the energy difference between the Fermi energy and the barrier
decreases.
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drain-source voltages Vd, & kT. Indeed, measurement of
the increased width of the conductance peaks by either
kT or eVd, allows us to determine a (see Ref. 5}. Because
we are concerned with the intrinsic peak shapes, all the
measurements reported here were made with Vd, =2 pV,
corresponding to T=25 mK. All results reported in this
paper are for measurements at zero magnetic field.
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FIG. 4. The inverse of the peak conductance G~
' (upper

panel) and the width of the peak (lower panel) as functions of
temperature for the peak at Vg

= —0.6455 V in Fig. 2. This is
the largest peak at 100 mK. The conductance varies as T '

up
to about 0.4 K. At the same temperature the slope of the linear
increase of width with temperature changes from 3.5kT, the
value predicted for the single-level case (lower line), to 4.35kT
predicted for the multilevel case (upper line).

Wind, ' the electron temperature as measured from the
width of the conductance peaks follows the refrigerator
temperature at high temperatures, but is warmer than the
refrigerator at the lowest temperatures. We assume that
this behavior is the result of heating of the electrons by
electrical noise. We have minimized this source of heat-
ing by eliminating all digital electronics from the
screened room surrounding the refrigerator and by sub-
stantial filtering. Nonetheless, for the present experi-
ments, the lowest electron temperature obtainable was
100 mK. The peaks are independent of T below 100 mK,
no data is shown for T & 100 mK.

We have confirmed that measurement of the intrinsic
1ine shapes of conductance peaks requires application of

IV. RESULTS

A qualitative presentation of the temperature depen-
dence of conductance peaks was given by Meirav,
Kastner, and Wind. ' Figure 2 shows the conductance as
a function of gate voltage in more detail for temperatures
between 100 mK and 1 K. Below 800 mK, where the
peaks do not overlap, their shape is accurately described
by Eqs. (3) or (5) as demonstrated by Foxman et al.

The overall increase in conductance with increasing V
results from the increased transmission of the barriers as
Vg is increased; that is r I and I „ increase exponentially
with Vg. This is demonstrated in Fig. 3, where we plot
the peak conductance as a function of V at the highest
temperature on a logarithmic plot. The approximately
exponential increase is consistent with lowering of the
tunnel barrier. Foxman et al. showed that the peak
width (the larger of I L and I tt ) also increases exponen-
tially with Vg, as expected.

Next we examine the temperature dependence of indi-
vidual conductance peaks. First consider the peak at
—0.6455 V, the largest peak in Fig. 2 at 100 mK. The
upper panel of Fig. 4 shows the inverse of its amplitude
as a function of T. The inverse amplitude is proportional
to T at low T as predicted by the single-level form [Eq.
(3)]. Above about 0.5 K the peak conductance becomes
independent of temperature, as predicted by the multilev-
el form [Eqs. (4) or (5)].

The width of the peak also shows this crossover. The
full width at half maximum is plotted as a function of T
in the lower panel of Fig. 4. The shallower line in the
lo~er panel is the single-level prediction, 3.5kT, and the
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FIG. S. Inverse of peak conductance for
four other conductance peaks in Fig. 2. The
gate voltage of the peaks is (a) —0.6593 V, (b)
—0.6548 V, (c) —0.6503 V, and (d) —0.6367
V. The behavior in (b) is similar to that in Fig.
4, and is expected when a single level dom-
inates the conductance at low T. The behavior
in (c) and (d) results from the participation of
two levels. However, the temperature depen-
dence in (a) for the lowest gate-voltage peak in
Fig. 2 is too strong to be compatible with
current theoretical ideas.
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steeper line is the multilevel prediction, 4.35kT. This is
dramatic evidence for the crossover from single-level to
multilevel behavior, and shows that the crossover occurs
in a narrow range of T. The crossover temperature is ex-
pected to be -hE, which gives hE-40 peV. This is
consistent with level spacings measured by Foxman
et al. using source-drain tunneling spectroscopy.

Most of the peaks do not display this simple behavior,
however. Figure 5 shows the inverse amplitude of all the
other peaks in Fig. 2. All are temperature independent
above -0.5 K, as expected for the multilevel regime.
One other peak, that at Vg

= —0.6548 V [Fig. 5(b)], has
the expected T ' dependence, but the others do not.

Meir, Wingreen, and Lee' explained that peculiar tem-
perature dependence of the peak heights is to be expected
when there is a large variation of coupling strength,
I L I z /I', from one peak to the next. Behavior like that
for the peak at —0.6503 V [Fig. 5(c)] is expected for a
weakly coupled level adjacent to a strongly coupled one.
When kT(EE the conductance is dominated by the
weakly coupled level, and its height, though small, is pro-
portional to l/T. However, when kT approaches b,E,
thermal excitation to the strongly coupled level causes
the amplitude to increase with T until the multilevel re-
gime is obtained. Less dramatic behavior of this kind can
be seen as well for the peak at —0.6367 V mV [Fig. 5(d)].

The lowest gate voltage conductance peak in Fig. 2
[Fig. 5(a)] cannot be described by the model presented
here. Its height decreases with T much more rapidly
than T '. We have no explanation for this behavior.

V. DISCUSSION

The asymptotic behavior predicted by the single-level
and multilevel expressions [Eqs. (3) and (4)] are seen in
Figs. 4, 5(b), and 5(c). The amplitudes of the three peaks
all decrease as T ' at low T, and become independent of
T at high T. However, the temperature dependence in
the crossover regime depends on the coupling of indivi-
dual levels to the leads. Consider a weakly coupled level.

At T=O the conductance is small and it decreases fur-
ther as T is increased. However, if there is a strongly
coupled level nearby in energy, it makes an additional
contribution to the conductance that increases with T.
Once kT is larger than the level spacing, however, the
conductance becomes constant. Meir, Wingreen, and
Lee' used the constant-interaction model successfully to
describe the temperature dependencies of conductance
peaks like those of Fig. 5. They assumed a 5-function
zero-temperature resonance line shape which gives a sa-
tisfactory approximation to the Lorentzian of Eq. (2) in
the limit kT » I . To develop a little more intuition into
how the peculiar temperature dependencies arise, we
have evaluated the integral of Eq. (2) as a function of p, .
This gives the contribution to the conductance of a
second level an energy p away from the resonant level. It
may be helpful to think of this as the conductance one
would measure if the resonant level had zero coupling
and there was only one level nearby with finite coupling.
The results are shown in Fig. 6,where log&DG, is plotted
as a function of 2p/I' and log, o(I'/2kT). At T low

enough that I » kT the conductance follows the
Lorentzian, as expected from Eq. (2). For high T, 6, is
independent of p because the width of the peak is 3.5kT
and for the range of p plotted, p &(kT. In this high-T re-
gime, the conductance varies as T ' because the deriva-
tive of the Fermi function has this dependence. On reso-
nance, p=0, this T behavior continues as T is de-
creased until kT-I . However, for nonzero p there is a
maximum in G, as a function of T.

Figure 7 displays these results in a difFerent way.
There log, oG, is plotted as a function of 2p, /I' for
different values of 2kT/I . At T=O the conductance fol-
lows the Lorentzian form for all p. Increasing T from
T=O at any fixed @%0, the conductance will first in-
crease with T for kT &p because of the thermally activat-
ed contribution of the coupled level. The roughly linear
dependence of log&DG, on p for T=1.2I demonstrates
this activated behavior clearly. However when kT-p the

C7

O

O

0
I

FIG. 6. Dependence of single-level conduc-
tance 6, on p and T from Eq. (2}. log&06, is
plotted as a function of the dimensionless
quantities 2p/I and lag&0(I /kT). Nate the
peak in the Tdependence for all pAO.
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FIG. 9. Width as a function of temperature predicted by Eq.
(2) compared with the result for I'=0.
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FIG. 8. Fit to the data for the peak at —0.6503 V [Fig. 5(c)].
It is assumed that the conductance arises from a weakly coupled
level with a more strongly coupled one nearby in energy. The
only parameters are the energy separation and the relative cou-
pling strengths of the two levels. The best fit gives an energy
separation hE =45 p eV, and a coupling strength of the weakly
coupled level 0.08 times that of the strongly coupled one. In
particular, the fit is to the function 6 = 3 [Sf'(0)+f'(b,E)],
where f'=(4kT) ' sech[EE/2kT], and the best fit gives
3 = 1Q 'e'/h, B=7.9 X 1Q, and AE =45 meV.

width of the Fermi-Dirac peak becomes comparable to p
and the dependence changes to the resonant one. On res-
onance the width increases linearly with T and the peak
height decreases as T '. Thus at p, &0 the peak height
first increases with T, reaches a maximum, and then de-
creases again.

The qualitative behavior of peaks like those in Fig. 5 is

thus easily understood. By adding a weakly coupled reso-
nant level to a strongly coupled nonresonant one, the de-
tailed T dependence can be fit quite well, as shown in Fig.
8 for the peak at V = —0.6503 V in Fig. 2. The resonant
level in this case has a couphng strength

&p
that of its

stronger neighbor. The maximum in the inverse ampli-
tude occurs at the energy difference of the two levels, giv-
ing hE-40 pe V as before.

It is interesting to note, as shown in Fig. 9, that the un-
derlying Lorentzian reveals itself at T» I as an excess
width. The absence of such an offset in the data of Fig. 4
indicates that I « 10 p eV for the peak studied.

It is interesting to note that adjacent peaks in Fig. 2
have very difFerent conductances and temperature depen-
dences. One might have expected that the peaks would
occur in pairs because of the spin degeneracy. That this
does not happen shows that the state of the many-
electron system changes completely every time an elec-
tron is added. This may be related to the low symmetry
of the potential, which puts this system in the regime of
quantum chaos.

Jalabert, Stone, and Alhssid and Prigodin, Efetov, and
Iida have predicted the distribution function for the
peak amplitudes at zero temperature. To test these pre-
dictions one must measure a large number of peaks
whose amplitudes vary as T '. Those whose amplitudes
increase with T are associated with resonances so weakly
coupled that their amplitude is dominated by a well-
coupled neighboring level. Since the theories predict that
the distribution function is maximum near zero coupling,
only the high-coupling tail of the distribution can be mea-
sured. Measurements of this kind are now in progress.
Of course, a theory which predicted the measured distri-
bution function including the T dependence could readily
be tested. Furthermore, other features predicted by the
theories of quantum chaos are not so sensitive to weakly
coupled levels and can be tested with artificial atoms.

The measurements reported here show clearly the
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crossover from single-level to multilevel conductance in
an artificial atom. It is clear that one can reach the
single-level regime for large conductance resonances.
However, one must ascertain that the conductance varies
as T ' in order to be sure that the conductance of a
weakly coupled level is not overestimated because of an
adjacent strongly coupled one.
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