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The bound-electronic optical nonlinearities in highly excited semiconductors (i.e., semiconductor

lasers) have been calculated using a two-parabolic-band model. The nonlinear absorption spectrum is

6rst obtained using a dressed-state formalism taking into account the contributions from two-photon ab-

sorption, electronic Raman, and optical Stark effects. The nonlinear refractive index (n2) is then found

by performing a Kramers-Kronig transformation on the nonlinear absorption spectrum. It is also shown

that the quadratic Stark splitting of the bands leads to a shift in the quasi-Fermi levels, which introduces
additional absorptive and refractive nonlinearities. The sign, magnitude, and the current-density depen-

dence of the calculated n2 agree well with some recently published experimental results for Al-Ga-As

and In-Ga-As-P diode lasers.

I. INTRODUCTION

Ultrafast, large nonlinear refraction in semiconductor
diode lasers at wavelengths near their transparency point
has been recently reported. ' Measurements of the dy-
namics of such nonlinearities have revealed interesting
transient effects indicative of various electronic scattering
mechanisms. ' The magnitude and ultrafast nature of
the observed nonlinear refraction at the transparency
point of diode lasers have made them viable candidates
for all-optical-switching (AOS) devices.

For bulk semiconductor devices, recent theoretical and
experimental studies of nonlinearities in the transparency
regime (A'co&Es) have indicted that at photon energies
above half the band gap (fico & E l2) parasitic losses due
to two-photon absorption (2PA) hinder the efFectiveness
of these materials for AOS applications. ' The theory
predicts that, as Aco~Eg, nz is resonantly enhanced but
2PA remains relatively constant leading to favorable con-
ditions for low-power AOS. In practice, however, the
presence of linear loss due to band-tail absorption and the
consequent band-filling effects rule out near-resonant
AOS operation in passive materials. Recent experi-
ments' suggest that a possible solution to this problem
is to suppress the linear absorption by injecting a non-
equilibrium electron-hole population and operating in the
spectral region where the net absorption is negligible, i.e.,
the transparency point. In this paper, we will examine
ultrafast bound-electronic nonlinearities in semiconduc-
tors in the presence of a nonequilibrium plasma using a
simple two-band model. The injection of a high electron-
hole density, however, is accompanied by additional dy-
namics arising from large intraband (free-carrier absorp-
tion) as well as interband transitions. The dynamics of
such real excitations have been recently studied in detail
elsewhere. With ultrashort pulses (= &100 fs), addi-
tional dynamics due to spectral hole burning have been
observed. Effects of spectral hole burning are still

present around the transparency point, even though no or
little net exchange of electron-hole population between
the conduction and valence bands occurs. In a time-
resolved experiment, one may distinguish the real excita-
tion processes from the ultrafast virtual excitations by
recognizing the much longer energy relaxation times as-
sociated with the real excitation. The characteristic ener-

gy relaxation times are =1-2 ps for intraband and = 100
ps —100 ns for interband transitions. It should be noted,
however, that spectral hole burning has a lifetime of the
order of 100 fs and may behave similarly to the bound-
electronic nonlinearity, making experimental interpreta-
tion more complicated.

The purpose of this paper is to analyze bound-
electronic contributions to the nonlinear processes while
ignoring real excitation effects. This work complements
studies of the real excitation (carrier) nonlinearities. We
study virtual processes using a simple two-parabolic-band
(TPB) model for semiconductors under nonequilibrium
population conditions while assuming a cw (adiabatic)
perturbation by the optical fields. The formalism used
here is an extension of our earlier model, which success-
fully described the dispersion and band-gap scaling of the
electronic n2 in passive semiconductors in their tran-
sparency range.

We use a nonlinear Kramers-Kronig transformation '
to obtain the nonlinear refractive index nz from the cal-
culated first-order nonlinear absorption coefFicient a2..

where az is de6ned as ha/I with b,a(co;co') representing
any change in the absorption coefticient at co' induced by
the presence of an excitation at co with irradiance I. Our
task is to calculate this change in the absorption spec-
trum caused by virtual excitation at co. In Ref. 8 we
showed that by using a Volkov-type dressed Bloch func-
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A. Passive, hm c Eg

2PA

B.Active, he & Fg

Raman QSE FIG. 1. Diagrammatical rep-
resentation of the nonlinear ab-
sorption due to two-beam in-

teraction in a two-band system
for (a) passive semiconductor
and excitation photon energy
A'co &Eg, and (b) active semicon-
ductor with fm & E~.

2PA Raman QSE

tion we can account for all the possible mechanisms (in a
TPB model) that lead to a change of absorption that
varies linearly with the excitation irradiance. These
mechanisms include 2PA (when A'co' & E —%co), electron-
ic Raman (when fico') Es+fico), and optical Stark effect
(for fico'&Ez). A diagrammatic representation of these
processes is depicted in Fig. 1(a) for a passive material
with excitation in the transparency region (A'co(E ). A
similar physical description can be given for a system
having a quasiequilibrium electron-hole population (i.e.,
with gain), and above-resonance excitation (A'co&Eg).
This is illustrated in Fig. 1(b) for a simple two-band sys-
tem. In this case there are spectral regions where the
probe will experience a two-photon and/or Raman gain
rather than absorption. The quadratic optical Stark
effect (QSE) as qualitatively depicted in Fig. 1(b) exhibits
a particularly interesting behavior. The existence of
above-band-gap excitation results in the formation of ad-
ditional energy gaps (light-induced gaps") in both the
valence and conduction bands. We will show later that
this effect may redshift the transparency point once the
quasiequilibrium is reestablished. A dynamic shift of the
transparency point, and, in general, any above-band-gap
excitation, can lead to additional real excitation processes
that, as discussed earlier, are distinguished from ultrafast
virtual processes by their longer recovery times. ' In
modeling described in the following section, we separate

the virtual processes by considering only coupling be-
tween those states whose virtual carrier lifetime (inverse
detuning) is shorter than the phenomenological dephas-
ing time (T2). It must be einphasized that this simple
model aims at explaining the observed bound-electronic
nonlinearities at or near transparency where the effects of
real excitation (or deexcitation) are negligible. A detailed
understanding of the dynamics of the optical nonlineari-
ties, particularly at spectral regions where the optical
field experiences strong absorption or gain, requires more
rigorous time-evolution analysis containing Bloch equa-
tions.

II. NONLINEAR ABSORPTION SPECTRUM

A detailed description of the TPB theory of nonlinear
absorption and nz in the transparency region has been
given in Refs. 8 and 12. A succinct rev'iew of this theory
follows. The optical interaction is via the (e/c)A p
Hamiltonian where a= Aocos(co'r)+ Aocos(cow)
represents the total vector potential and p=ifiV denotes
the momentum operator. The nonlinear interaction is
formulated in two steps. In the first step the optical fields
alter the energy of the electrons in both initial and final
states by virtue of the linear and quadratic Stark effects.
In the second step, the transition rate between these
"dressed" states (bands) is calculated using first-order
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perturbation theory. The linear and quadratic Stark
effects are incorporated into the band states via their en-
ergies given by

0
C, V C, V

C, V

k- A(r)+EEo (2)

1

E,„+fico+i 2%I
(3)

where E,„(k) is the valence- to conduction-band energy
difference with parabolic dispersion and p,v is the inter-
band momentum matrix element. Because of on-
resonance excitation imposed by the condition Am& Eg,

where k is the electronic wave vector, E, , is the unper-
turbed energy of the valence (U) or conduction (c) band,
and mc „denotes the effective mass of the corresponding
band. The first correction term in energy is time depen-
dent and corresponds to the linear optical Stark effect
(LSE). This is a time-varying (oscillating) energy term
and leads to absorptive changes that involve the loss or
emission of the excitation photons, i.e., 2PA and Raman
effects. ' The second term is the QSE energy shift that
is positive for the conduction band and negative for the
valence band. We assume, for simplicity, two parabolic
bands with equal curvature; thus rn, =iri„=moEs/E~,
where mo is the free-electron mass and E is the Kane
energy which is nearly constant (=20 eV) for most semi-
conductors.

It is important to keep in mind that the field at co is as-
sumed to be the strong excitation field while the probe at
m' is regarded as weak. Hence we consider hE, „due to
excitation by the field Ao only:s

e Ao-p
EEP (k) = Re

2m Oc E,„—%co+i 2fiI QE
az(c0', co) =K

3
Fz(fico'/Eg; %co/Eg ),

noln02Eg
(4)

where K=2 m.e /Sc Qmc and no (j=.1,2) are the
linear refractive indices at the probe and excitation wave-
lengths, respectively. The function Fz contains informa-
tion about the optically coupled states as well as the
gain/loss characteristic of the system and is given by

we have included a broadening term associated with
scattering frequency I =1/Ti, where Ti is the phenome-
nological dephasing time of the electrons (or holes). By
this definition, the combined electron-hole scattering
rate, associated with the interband transition, is 2I . The
inclusion of Tz implies that only excitations into k states
with an inverse detuning ( ~co E„—/A~ ') shorter than Ti
are accounted for, and real excitations that lead to long-
lived carrier effects are excluded. We assume a constant-
Tz approximation and ignore the energy or detuning
dependence of this quantity. ' The in6uence of broaden-
ing on the first-order energy shift in Eq. (2) can be ap-
proximated using the classical transformation of the vec-
tor potential from A(t) into A(t) —I' f c" A(t
+r)e 'dr under a momentum relaxation rate of I'.
Strictly speaking, formulating the scattering effects in the
above manner implies a steady-state situation. Thus we
cannot accurately analyze but only speculate about the
transient effects occurring within the time Tz.

The second step in the interaction is to calculate the
transition rate between the two dressed states using first-
order perturbation theory. Separating out the com-
ponents that vary linearly with the excitation irradiance
and involve the absorption or emission of a single photon
of the probe (fur'), we obtain the nondegenerate absorp-
tion coeScient

TABLE I. The nonlinear absorption spectrum function F2. The terms ( )' and ( )
+ ' are

zero when their argument is negative. The sign of the Raman term is determined by the sign of
(x& —x2). Here y=h/E T2.

Contribution

2PA

Ff(xi', xi)
(x&+X2 —1) (x&+x2)

for x&+x2) 1
2 x]x2 (x ] +y /4)(x2+y /4)

Raman
( ~x, —xz ~

—1)'~' (x, —x, )~

27x)x22 (X2& +y2/4)(x22+y2/4)

Linear Stark
(x) —1) xi

(x]+y /4)(x2+y /4)
for x& &1

Quadratic Stark
X) X2 X) +X2

210x x2(x 1 )1/2 (x x ) +y (x +x )

2(x& —1)[(x&—xz) —y ]

[(x& —xi) +y ]
2(x, —1)[(x&+xi) —y ]

[(x,+xi) +y ]
for x&)1



14 174 M. SHEIK-BAHAE AND E. W. VAN STRYLAND

F2=F)(x„x2)[f, f—, I, (5)

where

1m x~+ irm'I —2EoF
2k~ T

with m = 1, —1,0 corresponding to 2PA, Raman, and op-
tical Stark effects, respectively. T is the carrier tempera-
ture and kz is the Boltzman constant. The quasi-Fermi
level E&F is referenced to the midgap (E /2) energy, i.e.,
E =0 for an intrinsic passive material. %e deGne theQF
transparency point to occur at Ace„=2E&F for a system
with gain (E&„)0.5Eg ). After normalizing all the ener-

gy parameters with respect to E, we can rewrite v as

v ——(Ix, +mx, I

—x„)/2g,
where f1=k&T/E and x„=%co„/E Figure . 2(a) (solid

where [f, f—, ] is the occupancy factor with f, , denot-
ing the quasiequilbrium Fermi-Dirac distribution func-
tions for conduction and valence bands, respectively. The
spectral function F$ contains the contributions from
2PA, electronic Raman, and optical Stark effects. This
function, which is essentially an energy-broadened ver-
sion of the function I'2 derived in Ref. 12, is given in
Table I. Assuming equal quasi-Fermi levels for the elec-
trons and holes, we write the occupancy factor as

sinh(v )

1+cosh(v )

lines) shows the absorption a2(co', co} calculated separate-
ly for each mechanism assuming ELF=0.515Eg (i.e.,
x„=1.03). Figure 2(b) (solid line) depicts the total
change of absorption in the vicinity of the transparency
point. The effects of Raman and 2PA are manifested as a
net increase in the absorption. This absorption increases
as the probe frequency is reduced [Fig. 2(a)]. On the oth-
er hand, the QSE contribution is more localized in energy
since the optical Geld induces a gap that alters the density
of states only in the vicinity of the excitation photon en-
ergy Ace. An important consequence of this induced
change in the density of states is the self-adjustment of
the quasi-Fermi levels (on a time scale of carrier-carrier
scattering times) in order to conserve the total carrier
density. This leads to an additional contribution to a2
and hence alters the total absorption spectrum as shown
by the dashed lines in Figs. 2(a} and 2(b). In the following
section we give a simple derivation of this quasi-Fermi
energy shift and the resultant change of absorption.

III. STARK SHIFT OF THE QUASI-FERMI LEVELS

A consequence of the modulation of the band curva-
ture due to the QSE, as given by Eq. (2), is the change of
the local density of states. For example, as was shown di-
agrammatically in Fig. 1, this effect reduces the density of
states in the center of the induced gap but increases it
above and below center. To illustrate this effect, we calcu-
late the density of states

N, „(E)=1/4n' Jdk5[E E,„]—
0.10

0.10:

0.2$ 2' I I I I I I I I I I I I I I I

0.6
I I I I I I I I I I I I I

(b)—

I I I I I I I I I I I I I I I I I I I I I I I I I I I I

(a)

for each band using the band energy dispersions given by
Eqs. (2) and (3). Figure 3 shows the calculated N, (E) in
the presence of the QSE as compared to the well-known
square-root dependence (QE Eg) of a n—onperturbed
band. The perturbing field used to calculate N, (E) in Fig.
3 was chosen to be large enough to overemphasize the in-
duced change. As we shall see, this modulation in the

I I I I I I I I I I I I I I I I I I0, .

'%.90 0.95 1.00 1.05
I I I I I I

'I. IQ

FIG. 2. (a) The calculated change in absorption due to virtu-
al excitation at the transparency wavelength (Am/Eg =1.03)
due to various mechanisms. (b) The total absorption as the sum
of these contributions plotted in the vicinity of the transparency

oint (vertical dashed line). The solid and dashed lines corre-
l ~ ~ ~

spond to unshifted and shifted quasi-Fermi levels, respective y.

0 0 I I I I I

0.95

I

I I I I I I I I I I I I I I I I I I I I I I I

1 .00 1.05 I. i 0
E/E,

FIG. 3. The density of states versus energy for a parabolic
band under quadratic Stark effect (solid line). The dashed line is
the square-root function of a nonperturbed band. The arrow in-

dicates the photon energy of the excitation.
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density of states significantly alters the quasi-Fermi levels
only when the excitation is very near the transparency
point which is precisely the situation we are most con-
cerned with in this paper. The shift in EQF can be viewed
as a process to ensure the conservation of the total carrier
density in the absence of a net population exchange. This
adjustment is not instantaneous and has a characteristic
time determined by the carrier-carrier scattering time
(r, , =100 fs), ' after which the Fermi distribution is
reestablished. The energy shift (b,EQ„) can be obtained
from the Fermi integral for the total electron (or hole)
density:

ff(E,(k) —EQF —EEQ„}dk=const, (&)

—e/k~ T
where E, is given by Eq. (2) and f (e)=(1+e )

' is
the Fermi distribution function. Using a variational pro-
cedure, we solve Eq. (8) for b,EQ„ to first order in the ex-
citation irradiance I and obtain

b,EQF =BI
2

T(Ace/Eg ),
noEg

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I1 5

1.0

I

C3
0.5

x 0.0
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9 1.0 1.1

0co/Es
1.2

FIG. 4. The calculated shift of the quasi-Fermi levels due to
quadratic Stark splitting of the energy bands as a function of ex-
citation photon energy for two values of initial quasi-Fermi lev-

els. The transparency points of each curve at fico„/Eg=1.03
and 1.05 are marked.

where B =2' ire A' /Smoc and T(x2 ), which contains the
spectral dependence of this energy shift, is given by

f FP (x„x2)f((x,—x«)Eg/2}x, dx,
T(x2}= f "(x, 1)'"—[af((x, x„)—E, /2}/ax, jdx,

e2+m, E,
ao(co') =

3ctii2 rio+E
tf, f. I . —(12)

(10)

Here Fp corresponds to the broadened QSE spectral
function given in Table I. It is worth noting that, just as
the absorption change due to the QSE is the virtual ana-
log of spectral hole burning (band blocking), the conse-
quent shift of the quasi-Fermi levels is effectively a virtual
analog to a similar effect arising from carrier heating that
follows the hole-burning process. Thus one may regard
the shift of the quasi-Fermi levels as given by Eq. (10) as a
"virtual carrier heating" effect.

Figure 4 shows T(x2) calculated as a function of the
excitation photon energy fico/E assuming quasi-Fermi
levels corresponding to fico„/Es=1.03 and 1.05. Note
that the general features of T(x2 }do not strongly depend
on the initial E&F although the shift at the transparency
point is smaller with a larger initial EQF. It is evident
from Fig. 4 that E&F, and hence the transparency point,
is blueshifted for below and around transparency excita-
tion, but as fuu exceeds %co„, the sign of AEQF ultimately
reverses, resulting in a redshift of the transparency point.
Of practical importance is the situation when excitation
is at the transparency point. According to Fig. 4, there is
a blueshift of EQF which results in a net decrease of the
absorption coefBcient, since A'co now overlaps the gain re-
gion. The effective a2 coefticient associated with this en-
ergy shift is found to be

c)ao(co') EEQ„(co)
aQ2

"(~';a }=
QF

where ao is the linear interband absorption given by

The total change in the absorption spectrum due to the
QSE is depicted in Fig. 2(a} (dashed line} as the sum of
aQ2" and aP from Eq. (4). The overall a2 (assuming
quasiequilibrium has been reestablished) is shown in Fig.
2(b) (dashed line) and can be represented by the same re-
lation as in Eq. (4) provided that we modify the FQ2 in
Table I to become

QsE Q$E 4T(x2 ) (x i
—1 )

2 total 2 3'g x)
1

1 +cosh(vo)

Although the nonlinear response dynamics of such a sys-
tem requires a more rigorous time-domain analysis (i.e.,
Bloch equations), we will attempt to infer a qualitative
picture for the nonlinear absorption dynamics from the
approach presented here. We may conclude from Fig.
2(b} that a probe beam having the same wavelength as the
pump will undergo an initial decrease in the transmission
due to two-photon absorption. For laser pulses contain-
ing many optical cycles, this will appear instantaneous.
This will be followed after a time ~=~, , by an increase
of transmission due to the QSE and subsequent blueshift
of the quasi-Fermi levels. Although this qualitative
description is consistent with certain experimentally ob-
served ultrafast gain dynamics, one cannot generally ig-
nore the real excitation effects such as carrier heating and
spectra hole burning in analyzing the experimental data.
For example, carrier heating arising from free-carrier ab-
sorption (with a rise time comparable to that of the
quasi-Fermi-level shift) would tend to redshift the tran-
sparency point, thus opposing the eS'ects of the QSE.
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IV. NONLINEAR REFRACTION

Following Eq. (1), the induced change in the refractive
index is now obtained using the Kramers-Kronig (KK)
transformation of the calculated nondegenerate ho. spec-
trum. Similar to the case of passive materials, we derive
the following formula for the nonlinear index n 2:

"v/E~ (eV)
nz X10 "(cm /W)=E'

4 z Gz(fr~/Es),
Eg (eV)Xnc

(13)
where j." =AcK/2 and G2 is the dispersion function of n2
related to F2 via the KK integral. Specifically,

„Fz(x„'x)
Gz(x) = —I dx, . (14)

x) —x

It is important to note that just as F2 is a function of tem-
perature (ks T/Es) and broadening (fi/TzEg ), as well as
optical frequencies, Gz will also contain such depen-
dences. This is in contrast to the case of passive materi-
als (at Are (Eg) where Fz and Gz were only functions of
frequencies.

Since the KK integral represents essentially a linear
transformation, the G2 function corresponding to each of
the mechanisms involved in the absorptive process can be
separately evaluated by using the relevant F2 function in
Eq. (14). Figure 5 depicts the calculated Gz functions
corresponding to the different absorptive contributions in
Fig. 2 at a transparency point of x„=1.03. Note that the
magnitude of Gz due to the QSE is small initially (solid
line) before allowing for the shift in the quasi-Fermi lev-
els. This means that n2 is initially dominated by two-
photon effects (2PA + Raman). Figure 6 shows the total
G2 function for various quasi-Fermi levels corresponding
to different injection current levels in a diode laser, with
the transparency points indicated. The dispersion curves
in Fig. 6 contain the total contributions from 2PA, Ra-
man, and the QSE (including the quasi-Fermi-level shift),
and all have a negative sign at the transparency point.

0.
~n/ L-. „,

FIG. 6. The calculated total G2 dispersion function for vari-
ous quasi-Fermi levels. The dashed line represents G& for a pas-
sive semiconductor. The transparency point of each curve (at
Aco/E~ = 1.0, 1.03, and 1.05) is marked.

Q Q e ~ s ~ i I a

—0. 1
-'

—0.2

----- QSE. ——— 2PA+RAMAN

—Q 4

—0.5

For the remainder of the paper, we will refer to 62 as the
total contribution, accounting for the shift in the quasi-
Fermi levels.

Also evident from Fig. 6 is the moderate increase in
magnitude of nz at the transparency point as the E&F is
raised, i.e., injection current is increased. This depen-
dence is explicitly illustrated in Fig. 7 where the variation

I I I I I I I I I0,
I ~ ~ I I ~ ~ I ~ ~ ~ I ~ ~ I I I

Q
Q Q5 I I ~ ~ I I I I I I I I I ~ I 1 I I I ~ I

—0.0

—0. j

—0.00-

—Or2 —0.05— 0.90
095

------- 0 98

1.0
F1 cd/Eg

1.2

FIG. 5. The calculated dispersion function of n2 due to vari-
ous mechanisms. The contribution from QSE is shown for un-

shifted (solid line) and shifted (dashed line) quasi-Fermi levels.

Q IQ c s s I & I s I s & a l i s s I ~ e

0.50 0.52 0.54 0.56 0.58 0.60
QF

FIG. 7. The variation of G2 as a function of quasi-Fermi lev-

el, E&F, (a) at transparency point (Ace=~, ) with contributions
from QSE and 2PA + Raman shown explicitly, and (b} below
band edge with Ace/Eg =0.9, 0.9S, and 0.98.
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of 62 versus E&„ is plotted for photon energies corre-
sponding to the transparency point [Fig. 7(a)] as well as
to the below-band-edge region with fuu/Es=0. 9, 0.95,
and 0.98. In Fig. 7(a) the separate contributions from
QSE and 2PA + Raman are explicitly shown. The van-
ishing contribution of the QSE as the transparency point
moves up in the conduction band is a consequence of
equal but opposite-sign contributions due to blueshifting
of the states with E,„&%co and redshifting of those with

E,„&%co. The main features of Figs. 7(a) and 7(b), name-

ly, the increase in magnitude of n2 at the transparency
point, as well as the reduction of n2 below the band edge
as a function of E&F, are in good agreement with the re-
cently reported experiments. '

In calculating the dispersion curves of Fig. 2, we as-
sumed rl=0. 02 [defined in Eq. (7)] for the carrier temper-
ature and y =0.02 [defined after Eq. (5)] for the broaden-
ing. This corresponds to T2 ——130 fs and T =350 K for a
semiconductor with E =1.5 eV (e.g., GaAs). The value
of

~ G2 ~
at the transparency point increases as these two

parameters are reduced, i.e., n2 is enhanced as the am-
bient temperature is lowered and/or Tz is increased. The
temperature dependence of 62 at transparency, calculat-
ed for different values of broadening (y ) is shown in Fig.
8. The nature and magnitude of Tz in semiconductors
has been subject to much debate and study in the past.
The dephasing time arising from carrier-carrier scatter-
ing was recently calculated by Binder et al. for highly ex-
cited (degenerate) semiconductors. ' Their results indi-
cated a minimum in the electron-electron scattering rate
for k states near the quasi-Fermi wave number, leading to
a large T2 at the transparency point. A qualitative exper-
imental veri6cation of this theory was reported recent-
ly. ' The experiments also showed, in accordance with
theory, a much reduced scattering rate at lower tempera-
tures. ' ' For example, the calculated Tz for electrons in
GaAs at a high plasma density varies from =100 fs to
=1 ps as the temperature is reduced from T =300 to 10
K. ' ' In view of such a temperature dependence, Fig. 8
suggests that a substantial enhancement of n2 may be ob-

served in laser diodes at low temperatures.
For passive bulk semiconductors, the constant E' was

evaluated in Refs. 8 and 12 to be =6 [units of Eq. (13)].
However, this underestimated by a factor of =4 the n2
for Al„Gal As samples at wavelengths very near the
band edge. ' In Ref. 12, we suggested that this
discrepancy may be partially attributed to the electron-
hole Coulomb interaction which has been neglected in
the theory. Similarly to the procedure outlined in Ref. 12,
we can account for this interaction in the nonlinear ab-
sorption spectrum by using an Elliott-type enhancement
factor for the continuum of excitons. However, the high
plasma densities present in the active semiconductors re-
quire that the Coulomb screening of the excitons must
also be taken into account. In the following, a correction
to a2 and n2, due to Coulomb interaction, will be estimat-
ed using a simple formalism. We use the screened
enhancement factor calculated by Banyai and Koch' for
the continuum of excitons. We then generalize this pro-
cedure and, as given in Ref. 12, apply it to the nonlinear
absorption spectrum by multiplying the F2 functions of
each process by the excitonic function U(p~ )

oo
2g 2 2

U(p )= g 1+
(n g)+n g —

p

where g is a screening parameter related to the quasi-
Fermi levels as given in Ref. 19 and

/x, +rnx,
/

—1

Pm (16)
ex g

where E,„ is the binding energy of the exciton. Applying
this enhancement factor to all the processes involved in
the transition rate, we can reevaluate a2 and n2. The
exciton-enhanced 62 function obtained using this ap-
proximation is shown in Fig. 9 for a typical exciton bind-
ing energy of E 0 01Eg Although no appreciable
qualitative difference is seen, it is evident that more than
a two times enhancement of the transparency value of 62

3-
0.0 —.

—0.4—

X

0. 1

—08 I I I I I I I I I l I

0.9 1.0 1.2
250 500

Eq/ksT

750 1000

FIG. 8. The temperature dependence of the transparency
value of G2 for various broadening parameters. The vertical
dashed line corresponds to g =0.02 (k~ T/E~ =50).

fl K/Es

FIG. 9. The calculated n2 dispersion function including
screened exciton enhancement (solid line) in comparison with
the no-exciton case (dashed line). The transparency point is at
Ace/Eg = 1.03.
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is predicted. Using the exciton-enhanced 62 function, we
find that the expression in Eq. (13) gives relatively good
agreement with the sign and magnitude of the measured
n2 values in Al Ga, „As and In-Ga-As-P diode lasers.
Using Eg =1.5 and no=3. 4 for Al„Ga, As, we obtain
n2—-—2X10 ' cm /%' which is in reasonable agree-
ment with the measured value of —5 X 10 ' cm /W re-
ported in Ref. 1. The experimentally reported values of
n2 in In-Ga-As-P vary from ~nz~=(2 —4)X10 " using
spectral analysis to n2-——3X10 ' cm /W using a
time-division interferometric technique. This large
difference may be attributed to diSculties in obtaining ac-
curate effective mode areas for the laser waveguides, as
has been pointed out in Ref. 2. Taking E =0.83 eV for
In-Ga-As-P, we use the Es scaling law in Eq. (13) to ob-
tain n2 ———2X10 " cm /W, assuming the same G2
value as in Al„Gal As. But considering the dependence
of Gz on T/Es and I/T2Es, as given by Fig. 8, we expect
the band-gap scaling to be weaker than Eg if we assume
that the temperature T and dephasing time T2 are un-

changed. From Fig. 8 we see that by lowering E by a
factor of 2, but keeping T and T2 constant, a nearly four-
fold decrease in the value of 62 at transparency is es-
timated. This assumption leads us to estimate
n2-——5X10 ' for In-Ga-As-P at room temperature.
This is well within the range of experimentally reported
values. "

In conclusion, we have obtained a simple expression
that gives the dispersion and band-gap scaling of the ul-
trafast n. 2 in semiconductor lasers near their transparency
point. We have accounted for the effects of two-photon
absorption, electronic Raman, and optical Stark shift, in-
cluding a self-adjustment of the quasi-Fermi levels.
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