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Conditions for Anderson locahzation are derived for three cases: (1) anisotropic three-dimensional

metal, (2) quasi-two-dimensional metal, and (3) quasi-one-dimensional metal. For all these cases the con-

ductivity at T =0 as well as the interference correction are calculated. The simplest models are used.
From the estimate her/u-1, localization conditions are obtained. It is shown that localization takes

place in all three cases but in cases (2) and (3) the critical value of the random potential is essentially re-

duced if the overlap integrals are small. In a two-dimensional metal this refers to the conductivity along
the planes whereas for the conductivity perpendicular to the planes the three-dimensional condition ap-

plies, i.e., contrary to common wisdom localization in this direction is more difBcult to reach than along
the planes.

I. INTRODUC. IlON

As is well known, Anderson localization is a result of
quantum interference of de Broglie waves representing
the wave function of an electron scattered from lattice
defects. The conductivity of an infinite sample with im-
purities vanishes at T=0 (see, e.g., in Ref. 1). The locali-
zation condition depends, however, on the dimensionality
of the model. Whereas in a three-dimensional (3D) iso-
tropic metal the localization condition is I (A, , 1 being the
mean free path and A, the Fermi wavelength, in 1D and
2D metals the localization takes place at any magnitude
of the random potential, and only the range of the local-
ized state depends on the mean free path. For a 1D state
this is proven exactly (see, e.g., Ref. 2), and for a 2D state
there exist convincing arguments.

At the same time with the exception of metal-oxide-
semiconductor field-effect transistors (MOSFET's) real
systems are quasi-1D or quasi-2D substances, i.e., they
have a 3D but strongly anisotropic conductivity. A very
popular example is the copper oxide high-T, supercon-
ductors, and this makes the question about localization
conditions in these more realistic models of considerable
interest. We consider here three such cases: (1) a 3D
metal with a highly anisotropic energy spectrum, (2) a
quasi-2D metal with the Fermi surface being a slightly
corrugated cylinder, and (3) a quasi-1D metal with a Fer-
mi surface in the form of slightly corrugated planes.

We will obtain the localization condition in the follow-
ing way. It is well known that in various cases the so-
called interference correction to the conductivity can be
easily calculated (see Ref. 1). If the calculation is done
for an object of finite size at T=O, the condition that the
correction becomes of the order of the main contribution
permits one to obtain the "localization length" or the
width of the wave function of the localized state. The va-
lidity of such aa estimate is con5rmed by exact calcula-
tions in cases where they are possible: 1D metal (see Ref.
2) and a long wire of finite thickness. It is natural to as-
sume that this general consideration applies also for an
in6nite sample wj.th various relations between the mean

free path and the parameters of the energy spectrum.
This idea will be the basis of our consideration. Since our
task is only the evaluation of the localization conditions,
we will use the simplest models, permitting us to avoid
unnecessary complications.

II. ANISOTROPIC 3D METAL

I UI n; p, dp, dp&dy
sgnco=

2~ (2~)3 f co g+i5—sgnco
(2)

where g=s —p, q is the polar angle in the (p„,p ) plane,
n, is the impurity concentration, and U is the Born
scattering amplitude, which we assume to be isotropic. A
simple integration gives us

where P=(2m&ij, )'~ is the Fermi momentum along the
symmetry axis.

Now we calculate the static conductivity in the zeroth
approximation. According to Ref. 6 we have

l COp

ImQ, J
=

cT;, (coo),
C

(4)

where Q,k is the retarded function corresponding to the
diagram in Fig. 2. Hence,

FIG. 1. Self-energy due to impurity scattering.

The condition I (A, was found for an isotropic case. In
order to trace the infiuence of anisotropy we consider the
simplest axially symmetric quadratic energy spectrum

e=p( /2mc+p, /2m, ,

where p, =(p„p„). According to Ref. 6 the scattering
time can be obtained from the self-energy due to impurity
scattering (Fig. 1),

0163-1829/94/50(3)/1415(5)/$06. 00 50 1415 1994 The American Physical Society



1416 A. A. ABRIKOSOV 50

the electron lines in every link contain the same frequen-
cies, co+cup in one line, and ~ in the other. Let the
momentum transferred along the ladder be q. In this
case a single link is equal to

FIG. 2. Diagram for conductivity in the zeroth approxima-
tion.

Z =n;
~ U~ I 3
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(2~) 2r
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(7)

cr; (0)=2e lim
c) dcod p

4 UI. Ul
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The quantum interference correction can be calculated
as the sum of diagrams presented in Fig. 3 (see Ref. 7).
We will start with the "ladder" which is sometimes called
"the cooperon. " Since the impurity scattering is elastic,

where U; =cia/clp;.
Due to the symmetry of the problem it is evident

that the tensor 0;k has the principal va1ues o„=o.l
and 0 ~~

=
0yy o t Taking into account that d p~—,'dyd(p, )dpi and integrating first by dcod(p, ) and

then by other variables we obtain

Assuming q to be small, substituting g(q —p) =g(p) —v q
and expanding with respect to v q, we perform the in-

tegration over the momenta and find

P
3 ml

1 . 1
Z — l cop+

T

This expression is correct only for sufficiently sma11 q,
such that the second term in Eq. (8) is smaller than the
first term:

qI «ml/Pw, q, «(mrm, )' /Pw . (9)

The whole ladder is a geometric progression. The sum
with the "locking" impurity line is equal to

n/U/' n ftr ' r p2 q,
' q'

l COO+ + (10)
1 —Z 3 ml ml m,

(we assumed coo « 1/7 ). The expression obtained here is

the well-known diffusion pole for the case under con-
sideration (see Ref. 7).

Now we will find the remaining part of the diagram in

Fig. 3. Similarly to the diagram in Fig. 2, we obtain

m l2e vm, — d'
'n, ~irr~i'fI& —z)-' ~ ~'x.

3~2 (2~)3 (m, m, )

—1

& p' ql q,
1NO+

ml l t

m I

(mimt )

Comparing with op and putting cop=0 we get

2 2
50 3m mt d q ql +
oo p3r m, (2~)3 mi m,

(12)
ml mt

and hence

ml 1

PH pr

In the integral the q& and q, close to the upper limit are
important, and they are defined by the conditions (9). In
this case

CTp

ml

v P (p~)

It follows that the localization condition is

(13)

(14)

For the principal directions this condition is equivalent to
I ~k.

III. QUASI-2D METAL

FICz. 3. Diagram with the "cooperon" representing the quan-
tum interference correction.

The energy spectrum of a quasi-2D metal can be taken
in the form
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Ps
e = +a cos(p&d ),

2m,
(15)

with a «p (d is the period of the structure). According
to formula (2} with the integration limits vr—/d
= —K/2&pl K/2 (I'd=2m/d is the reciprocal lattice
period along pI ), we obtain

where U, has the value at the Fermi boundary, i.e.,
v, =(2ru/m, )'

Using formula (7) we obtain for the link of the coope-
ron

m, n, ~U~ K 1 u, q,

2n is—oo+ 1/7 2(1/r)
' '/U/'IC

277

The conductivity to the first approximation is defined by
formula (5). This time the velocity along 1 is

2a sin (q&d/2)—a
( I /r)' (18)

v, =Be/Bpl= ad —sin(p, d) .

Op

The velocity in the plane is u, =p, /m, . Substituting these
values and performing the integrations we get

e m~Er ad
X ' (17)

+Ip 4~ V,

Here we assumed that the second and third terms are
small compared to the first. This means

q, «1/(v, r), asin(qrd) « I/r . (19)

The second limitation can be achieved at large values of
qrd, if ar «1. The analog of Eq. (10) for the cooperon
will be in this case

1 —Z
l Sp+ 7

V

+2a sin (qI d /2 } (20)

Calculating 60 according to the diagram in Fig. 3, we obtain

ha=- q
e m, E:r d3 n, ~U~ a d cos(qrd)

X '

2m (2m} 1 —Z v,
(21)

Using Eq. (18), putting coo=0, and comparing with ou [Eq. (17)],we get

CTp

4m. d q

m, Er (2~)3

r

cos(q, d )

+2a sin (qrd/2} X
'

(22)

Consider first the conductivity along l. In case a~ «1 the integration over qI is within the limits
—K /2—:—m /d &

qI
&K /2. Hence we obtain [see Eq. (20)]

&pI

m/d 1
dq& cos(qrd ) ln

7Tm&K'TU& 2a r sin (qrd/2)

4 ~n 2
z f dy(2cos y —1) ln(siny)=

m, u,'~
1 1

77m, V, 7 27TpV
(23)

In the opposite case a~&& 1 only small values of qrd are permitted [see Eq. (20)], and we get from Eqs. (22) and (19)

d(q, ')dq,

~m,« f
u, q, +a q, d 2n.par

(24)

The localization condition is ho I/oo~ —l. Using Eq. (24) we obtain a-(2'~ } '. This contradicts the assumption
ar »1. On the other hand, assuming ar «1 we get from Eq. (23) the condition pr- 1, fitting our assumption, since
a «p.

For the conductivity in the plane cr, we obtain, assuming a~ && 1,

2/(V~ 7 ) g)p
d(q ) d

—1

Ur q& 1 1+2a sin (qrd/2) = ln
2 7Tp7 at (25)
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The condition Ao, /oo, —1 gives

a —r ' exp( —vrp~) &&r
or

'-mplln(p/a) «mp . (26)

Hence our assumption a~ (& 1 is justified.
A strange situation arises. Localization is easier to

reach for the conductivity along the planes than perpen-
dicular to them. This can, of course, be explained by the
consideration that the conductivity across the planes is a
3D phenomenon, and therefore the localization criterion
has to be the same as for 3D systems. Nonetheless, this
result leaves some uneasy feeling. In this connection it
should be remembered that averaging over positions of
impurities can in some cases be misleading. I have in
mind, for example, the paradox with the Ruderman-
Kittel-Kasuya-Yosida (RKKY} interaction in the pres-
ence of impurities (see Ref. 11). A simple averaging con-

FIG. 4. Diagram for the main mesoscopic correction to the
square of conductivity.

tributes a factor exp( r ll—), where r is the distance be-
tween spina and l the mean free path. If, however, the
square of the RKKY interaction is averaged, then, ac-
cording to Ref. 11, terms appear without the exponential-
ly decreasing factor. In order to be on the safe side we
consider the interference correction to cr o&. It is
represented by the diagram in Fig. 4. A calculation of
this type was done by Al'tshuler' and Al'tshuler and
Khmel'nitskii. ' The result for our case will be

'2
AoI

aoI

2 1 cos (qId)

V (nv) q
r [(v,q, ) l2+2a sin (q&d/2)+1/r&r)

cos (q

V (m, v, Kr} & 2a sin (q&d/2)+1/(re&)
(27)

where V is the normalization volume, v =m, K /( 2m ) is
the density of states, and we have added to the cooperon
pole the inelastic phase relaxation time as, e.g., in Ref.
13. The purpose of this is to make the integral conver-
gent at small qI.

Here the sequence of taking limits is important. In
Refs. 12 and 13, mesoscopic effects in small samples were
considered, and therefore the large size of the sample was
assumed to be much less than the phase relaxation length
[in the l direction L&& =ad(sr&)' ]. Here, however, we
consider an infinite sample at very low but nevertheless
finite temperature. Therefore v& is finite, the integral in
Eq. (27) is convergent, and with V~~ the correction
vanishes, as it should, since at sizes larger than the phase
relaxation length self-averaging has to be restored. '

with a„,u (&p. For the scattering time we get

n, /U/' d3
sgnm=

2r (2~)3 co (+i 5 sgn—co

and hence

n, /V f'K„K,

(2~) u&

(29)

where u& =(2p/mI )'», and K„,K are the reciprocal lat-
tice vectors. For the conductivity, as before, we get to
the first approximation

IV. QUASI-1D METAL

We will suppose the energy spectrum in the form

p 2

E +cxx cos(pxdx ~+cxy cos(pydy ~

2m,

ao=

V2

e E K„~2 I

X (a„d„) /2
4~ v

(a d ) /2
(28)

The link of the cooperon is

(30)

dp dp (0+i/r —utq&+a„[cos[(q, —p„)d„]—cos(p„d„)]+a» [cos[(q» —p„)d»] cos(p»d» )—j )n, f
U/'2~i —1

(2m) vI

Expanding in qI, a, and o'.y, putting no=0, and performing the integrations, we obtain

n, /
U/'K„K, rZ= [1—

(v&q&r) 2[a„~sin(q„d„/2—)] —2[a»v'sin(q d /2)] J,(2~) u,
(31)
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with the conditions

Utqt «r, a„sin(q, d„/2) «r i, a„sin(q„d /2) «r
therefore

(32)

n, /U/'

1 —Z
n,. /U/'

r [(U,q, ) +2[a„sin(q„d„/2)] +2[a sin(q d /2)] ]
(33)

As before, we calculate 50. and get

CTp

1

q UIql +2 a„sin q» 2 +2 a„sin q 2 'X, cos q„„mE„It. ~
cos(q d )

(34)

In the case a„,a « I/r we can integrate over q, within the liinits —ac &qt & ac, and over q„,q over the whole Bril-
louin zone; after this, changing the variables, we obtain

1
gg 1 ~rz ~n=0 a„sin +a„sin ' X cos2
pro ~2nr'

cos2
a7

(35)

CTp

1

(ar)
(36)

(the precise coefficients are different for the longitudinal
and the transverse components but our goal is only the
estimate).

If we assume ar»1, we have to use the limits (32).
Small values of q„,q are then important, and after a sim-

ple integration we obtain

V. CONCLUSIONS

The results obtained are not surprising with the excep-
tion of the 2D case, where the results are in some sense
opposite to what could be expected. This is con6rmed in-
directly by the infrared properties of a layered quasicrys-
tal having a true periodicity of the layer sequence and
quasiperiodicity within a layer, ' where the frequency
dependence of the c-axis conductivity shows the usual 3D
metallic behavior, contrary to the other components.
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