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Stimulated Brillouin scattering of electromagnetic waves in magnetized semiconductor plasmas
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The phenomenon of stimulated Brillouin scattering of a large-amplitude electromagnetic wave by the

electron acoustic wave has been analytically investigated in a piezoelectric semiconductor plasma in the

presence of an external uniform magnetic field. The Boltzmann equation with a Krook model for the

collisional term has been solved in the guiding center coordinates for the nonlinear response of the plas-

ma electrons. It is noticed that the magnetic field enhances the growth rate of the parametric instability

in contrast with the fluid-model results.

I. INTRODUCTION

There has been an increasing interest in the interaction
of eletromagnetic waves in solid state plasmas, viz. , met-
als, semimetals, and semiconductors in recent years. '

Microwave techniques are used for the diagnostics and
other studies of optical properties of these systems. At
large amplitudes of the incident electromagnetic waves, a
number of nonlinear mode-coupling interactions may
take place which modify the electrical and optical prop-
erties of solid-state plasmas. ' A number of work-
ers" ' have studied the nonlinear interaction of large-
amplitude electromagnetic waves in semiconductor plas-
mas.

In an n-type InSb sample, the temperature of the mas-
sive doping centers can be taken to be zero (T, =0).
However, these doping centers are rearranged by the
electron pressure, and this can form a wave pattern. This
low-frequency ion-acoustic-type wave created by the
thermal pressure of electrons is called the electron acous-
tic wave in the n-type semiconductor plasma. ' In
previous studies of the excitation of these electron acous-
tic waves in magnetized semiconductors, a hydrodynamic
model of plasmas are employed for the short-wavelength
perturbation mode. However, in the presence of short-
wavelength perturbations due to electron acoustic modes,
the Quid model of plasmas breaks down for typical pa-
rameters in magnetized semiconductors. The Larmour
radius may be comparable to or even greater than the
wavelength of the perturbation present in the semicon-
ductor. Therefore, a kinetic model should be more ap-
propriate for all these studies. We have chosen the n-

InSb sample for our study because it possesses a low
effective mass of electrons and, therefore, the electrons
can attain high oscillatory velocities even at low pump-
wave power.

In this paper we have studied the three-wave paramet-
ric instability, viz. , the simulated Brillouin scattering of
electromagnetic waves by a low-frequency electrostatic
electron acoustic wave in a piezoelectric semiconductor
in the presence of external static magnetic field. The non-
linear response for the low-frequency perturbation has
been found by using the Boltzmann equation in the
gyrokinetic variables. '

The paper is organized in the following way. In Sec.
II, we present the kinetic model for the nonlinear
response of electrons in the magnetized piezoelectric
semiconductor. The Krook model for the collisional
term has been assumed. The nonlinear Boltzmann equa-
tion expressed in the guiding center coordinates has been
solved for the low-frequency perturbation. The non-

linearity at the high-frequency sideband has been taken
through the current density. Using Poisson's equation
for the electrostatic mode and wave equation for the elec-
tromagnetic sideband mode, we obtain the nonlinear
dispersion relation for the low-frequency electrostatic
mode in the magnetized piezoelectric semiconductor in

Sec. III. Then we obtain the growth rates and threshold
power density for the three-wave parametric instability
viz. the stimulated Brillouin scattering in Sec. IV. Nu-

merical results and graphical representation of them are
presented in Sec. V. Finally, a brief discussion of the re-

sults is given in Sec. VI.

II. KINETIC ANALYSIS
FOR THE NONLINEAR RESPONSE

OF ELECTRONS

where the angular frequency ~0 and the wave number ko
obey the dispersion relation

co I (t coo vo)

coot to, +(vo —tcoo) )

1/2

where co =(4tre2no/m )'~ is the electron plasma fre-

We consider a sample of n-type piezoelectric semicon-
ductor, viz. , n-InSb immersed in a uniform static magnet-
ic field B,=B,z. The semiconductor is assumed to be the
source of a homogeneous and infinite plasma which is
subjected to an externally driven large-amplitude elec-
tromagnetic wave (pump wave) —a high-frequency laser
or a microwave —propagating in the extraordinary
mode. The electric and magnetic fields of the pump wave
are described by

Eo= Eoexp[ i (coot —kox )—],
Ho= c «o X Eo)~coo
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quency and co, =eB, /mc is the electron cyclotron fre-

quency; —e, m, np, eL, vp and c are the electronic
charge, effective mass of the electrons, unperturbed equi-
librium density of electrons, lattice dielectric constant of
the semiconductor, average electron-phonon collision fre-
quency, and the speed of light in a vacuum, respectively.
Obviously, the pump wave is a mixed mode having

Ep„=—iPpEoy,
2

topic

[eL cop[co +(vp lcop) ] ico (—icop vp)]

(3)

We now assume the existence of a low-frequency elec-
trostatic short-wavelength perturbation (to, k } which may
be present in the semiconductor due to thermal noise or
an inhomogeneity in the doping of the semiconductor.
The oscillatory drift velocity of the electrons due to the
pump wave and the oscillatory magnetic field of the
pump wave interact parametrically with the perturbation
mode (to, k) and produce a high-frequency electromagnet-
ic sideband (co„k„co,=to —

cop, k, =k —kp). This generat-
ed sideband in turn interacts with the pump wave (top, kp)
to produce a low-frequency ponderomotive force which
amplifies and drives the low-frequency perturbation.
Thus we consider the three-wave parametric decay of the
pump wave into a low-frequency perturbation and a
high-frequency sideband.

In the phase, most studies used hydromagnetic models
of semiconductor plasmas, which are sufficiently valid for
the long-wavelength perturbations. However, some
workers' used a fluid model of plasmas for very
short-wavelength perturbation for the magnetized semi-
conductor plasmas. However, in these studies the Lar-
mour radius p, =v,„/to„where v,„ is the thermal veloci-
ty of electrons, is comparable to or even larger than the
wavelength of the waves involved for the usual plasma
parameters in the semiconductor plasma (kv,z/co, &1).
The fluid model of plasmas is no longer valid for these
conditions and one must employ the kinetic model of
plasmas. Therefore, we describe the response of the high-
ly collisional semiconductor plasma in the presence of
external magnetic field by the Boltzmann equation ex-
pressed in the gyrokinetic variables ' —the guiding
center coordinates x, the magnetic moment p, the polar
angle 8 of the perpendicular velocity (i.e., the angle v~
makes with the x axis}, and the parallel momentum p, :

The overdot denotes the derivative of the quantity in-

volved with respect to time, the superscript T refers to
the total quantity, and the symbol 1 denotes quantities
perpendicular to the external magnetic field. It can be
shown that because (p, 8), (x,ye), and (p„z) constitute
the canonical set of variables, Eq. (5) foHows directly
from the continuity equation of the electron density in
the six-dimensional space of the additional variables. Us-

ing the Krook model the collisonal term on the right-
hand side of Eq. (5) can be written as

dF

collision

vo(F—fp) —.

p p m
fo o2 T— exp

mU

2T

fp and f, are high-frequency responses at the pump and
the scattered sideband frequencies, respectively, and f is
the low-frequency response. Using the equation of
motions for electrons, we can write

e T dHp= — E v=-
ae '

8= =to, — (E„sin8—E cos8},
~ QH

Bp mvj

e(Ej Xco, )
x

mco2
C

Pz
H=pco, + —e4(co, k},

2m

where

(10}

(12)

(13}

4(to, k}=/exp[ i (cot —k x)—]

is the electrostatic potential of the low-frequency mode.
Using the identity

In the presence of the electromagnetic pump wave and
electrostatic and electromagnetic decay waves, the total
distribution function of electrons in Eq. (5) may be
decomposed as

F=fp+ fo(too, ko)+ f(co,k)+f&(to&,k]),
where the space and time variations are implied and the
equilibrium distribution function fo is taken to be
Maxwellian at the electron temperature T, :

' 3/2

BF+ BF + BF+gBF—E BF
at+ ~ ax, +"a~+ ae '

ap,
7

collision

(5)

exp[ i(cot —k x)]——=exp[ i(cot —k xe—)]
X +exp[in (8—5) ]J„(kjp), (14)

where where J„ is the Bessel function of order n, and the sum-
mation over n runs form —oo to + cc, we can express

x =x —psin8,

yg =y+p cos8,

Z Z 7

p= v~/co~

p=mug2/2a), .

E =Epexp[ i (coot —kpxg —}]+exp(in8)J„
n

—ikt}I exp[ —i(cot —k.xg }]+exp[in(8—5 }]J„
n

+E',exp[ i(co, t —k, .x —)]+exp[in(8 —5&)]J„',

(15)
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F=fo+exp[ i—(coot —kox )]+exp(in 8)f„

+exp[ —i (cot —k.xg ) ]+exp[in (8—5) ]f„

+exp[ i(—co, t —k, x )]+exp[in(8 —5, )]f„' .

In Eqs. (14}—(16),

(16)

J„=J„(kip),
J„=J„(kop),
J„'=J„'(k,ip),

and 6 and 6& are the angles between the x axis and kz and

k, i, respectively. Using Eqs. (15) in Eqs. (10)—(13), we
can wr1te

eEpy u&
( —i Pocos8+ sin8)exp[ i (coo—t —kox ) ]+exp(in 8)J„

C n

eEIy Vg
(
—iP,cos8+ sin8)exp[ i (co,—t —k, xg ) ]+exp[in (8—5) ]J„'

C Pl

+ieP exp[ i (cot ——k xs)]gn exp[in(8 5)—]J„,

eEpy
8—

CO +
Plu y

kpuy—iPosin8 —cos8+ exp[ —i(coot —koxg )]+exp(in8)J„
COp n

e

PlUg

kixux
E, sin8 —E, cos8+ E, exp[ i(co, t——k, xg)]+exp[in(8 —5, )]J„'

CO I

iek~cos5 sinO
exp[ i(cot ——k xs)]+exp[in(8 —5}]J„,

eEpy kpu~cosO
x — I

g m co& COp
exp[ i (coot——kox )]

eE, k& VJcosO
X +exp(in 8)J„+ 1—

mco CO I

Xexp[ i(co, t ——k, x )]+exp[in(8 —5, )]J„',

eEp
3'

mco,

kouzsin0
iPo

COp
exp[ i (coot —kox ) ]+ex—p(in 8)J„

mco,

kI„u~sinO
EI +

CO I

E, exp[ i(co, t —k—, x )]+exp[in(8 —5, )]J„'

iePk I cos5
+

mco
exp[ i(cot ——k xg)]+exp[in(8 —5)]J„, (20)

i =i=@,/m
ekoEo u

exp[ —i (coot koxg ) ]+exp(in—8)J„
m COpCO,

I~E1y uz
~ Iexp[ i(co, t —k, .x —)]+exp[in(8 —5, )]J„.

m co1co

Using Eqs. (15}—(21) in the Boltzmann equation (5), we obtain the following linear response of electrons:

0 eEo Pocos8+i sin8
UiJnfo ~

Te cop neo~ + l vp

le E I cos~+ EIy sm0
oiJnfo

T, col —neo, +ivo

e4 ncoc o

T, co —nco, +lvo

(23)

(24)
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Substituting Eqs. (22)—(24) in Eq. (5), we obtain the nonlinear part of the distribution function for the low-frequency

mode (co,k) as

(co —nco, +i vo)

iekpE, „+ 1—
2m coc

k)„v~cosO

«k
~ Ep kpvxcos81— Jof i

2m coc COp

tek pk &,Epy eEQy , af,'JI'f„— "
u, J„fl' —

(
—iPpcos8+sin8)vi J„

2mcoom,
' " 2' Bp

e afq eEpy kpui
(E»cos8+ Ei~ sin8) vi JI' + —i Ppsin8 —cos8+ ilJ„f&'2' ap 2tnv, COp

e

2mvy

klan vl i pEi„sin8 —Ei cos8+ Ei~ inJ& f„
N)

(25)

We obtain the linear and nonlinear density perturbation associated with the low-frequency electrostatic mode (co,k}
from the relation

n N~=exp[ i(co—t —k x)]f f f +exp[in(8 5)]—exp
n

ikiu~sin(8 —5)
f„vidvid8dv, .

a)c
(26)

Thus the linear and nonlinear density fluctuations at (co,k) are given by

nope—y neo,
n =+exp[ i(cot —k—x)] . I„(b)exp( b), —

T, co —n roc+i vp

exp( —i5i)exp[ i(cot —k.x)]co—&Ep&(XE] +iYEi& )NL

16m ~2m T,u,hkicoocoi(co, co i v—o}—
where

X=exp(i5)( —cooco, k &„+co,ki )+kok» kiv ih + [i co (1 Po)/2j t pc(ok +i4ki)+coi(kp+4ki ) ikico j

Y=exp(i5)[copco, k» —co,ki+coico kp(1 Pp)]+kpk& k~uih(Pp 2)

+ [ico,(1—Pp)/2] [cop(ki +4k')+coi(kp+4ki) icoki j—
1/2

kj v,h

coc

(27)

(28)

(29)

(30)

Vth
2k~ T,

and I„(b) is the modified Bessel function of the firs kind
and order n In deriving . Eq. (28} we have retained only
the dominating terms having (co—co, +i vo) in the denom-
inators where n =+1.

For the high-frequency sideband, we use the Quid mod-
el of plasmas and obtain the nonlinear current density at
(co, ,k, ) as

noe 4co [EpiXco, (icop+v—o)Eo~i]

2niT, &2~b (co co, +ivp—)[co,+(vp+icoo) j
(31)

where the asterisk (') denotes the complex conjugate of
the quantity involved.

III. NONLINEAR DISPERSION RELATION

I

sideband, we obtain

4'
k

D).E)=
47Tl co )

J)
C

where

2

D] =k )I k]k)
C

co~ (i vpco+ co ku, h
)—

e(co, k)=eL+
2 2

co~co +(vpco ico +tk vih }

SC2k2C2
S

2 I 2C2
S

(32)

(33)

(34)

(35)

Using Eq. (28) in Poisson s equation and in Eq. (31) in
the wave equation for the high frequency-electromagnetic

and I is the unit tensor or rank 2. In Eq. (32), e is the
linear dielectric function of the low-frequency electrostat-
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ic perturbation. The last term in the E is the piezoelectric contribution from the lattice, where C, is the ion-acoustic
speed and E is the dimensionless electromechanical coupling coeScient. The numerical value of &2 for most of the
piezoelectric semiconductors is —10 . The dispersion relation of the electron acoustic wave is obtained from
E„(co,k) =0, where e„ is the real part of the dielectric function given by Eq. (35). e, in Eq. (34) is the linear dielectric ten-
sor' at (co),k, ):

E1—

vp)
EL

co)Ico +(vp )co)) j

~ 2
l CO CO

co +(vp ) co) ) co]

2
l COp

co~ + ( v ) co ) )

2
) co ()co) vp)

co, Ico, +(vp ic—o)) j

l Np
EL+

co)(vp ) co, )

Eliminating 4 and E, between Eqs. (31) and (32), we obtain the nonlinear dispersion relation for the low-frequency
perturbation as

where

2 2
'

2 2 2
CO1 Np N1 N

2
1 1

i ~vs/v)), ~
co co copexp( —i5))Z

4rrk)k v,hc (co, co iv—p) t—co, +(vp+icop)2j

4 2
NpN 2

4 2 1x
C CO1

1 p
EL

c
(37)

(38)

Z=X k 2
1x

CO N1 p
EL

C2 L
1

2 2 ~ 2
CO1 Np l CO CO

~ k, —
eL

— (co, iPp(icop+—vp) j
— IiPpco, +(icop+vp) j

C CO1 C CO1

CO CO

+Y
C N1

N 1

c 2

2
CO1. k1„—
C

2
COp

L 2
N1

2
Np

L 2
CO1

2
N1

~ k1—
2

I co, i Pp(i—cop+ vp) j

2
COp

&I, q 'I~pcoe+(cop 'vp) j
CO1

(39)

IUp I
=eEp /mcop,

and X and Yare given by Eqs. (29) and (30).

IV. GROWTH RATES

To obtain the growth rate of the parametric instability,
viz. , the stimulated Brillouin scattering, we express E and
~D) ~

around the resonant frequencies

I

where y is the overall growth rate of the instability and

yL and yi) are the linear damping rates of the decay
waves, and the suffix r on e and ~D) ~

denotes the real
part, and e;= —yL(Be„/Bco) the imaginary part, of e.
Thus the growth rate of the three wave parametric insta-
bility is given by

(Be„/Bco)(BiD, i, /Bco) )
r+y L )(y+rl. ) =—rp=—

N —CO„+l P

BE»
E(co,k)=E„+)r +EE;

where yo is the growth rate in the absence of a damping
of the waves. The linear damping rates of the electron-
acoustic wave and the scattered laser radiation are given

18,26

BE„
=i(r+yL )

Bco

~D) ~ =i(r+rL)
BCO1

(41)

&2m.vpK k v,hc,

4co&coI(co~ co) +vpj

cop ( vp +coq )

VL1
EL COO

(44)
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where

2
CO)P=.k)—
c2

2
Cop

L
CO)

3CO)
~ k

C2

2
Cop

eL—
CO)

4 2 2
CO Co CO

4, kix+
E'L CO )C C

(46)

and Z is given by Eq. (39).
From Eq. (42) the overall growth rate y in the presence

of the linear damping of the decay waves can be obtained
from

y=[I(yL+yLl) + (yo yiyL—1

(yl. +yL1)V2 (47)

and the threshold electric field for the onset of the insta-
bility can be obtained from

2=
VP XLXL1 (48)

Now we consider two frequency regimes which are of
practical interest.

A. High-frequency laser

Using Eqs. (35), (37), (38), and (42), we obtain the
growth rate of the three wave parametric instability in
the absence of the linear damping of the decay waves:

i lvoy/vthl coyc0 co cooexp( i5t)Z

16nel krak v,bc0, (co, co—i—vo} tco, +(vo+icoo) ]P

(45)

V. NUMERICAL RESULTS
AND GRAPHICAL REPRESENTATIONS

To gain some numerical appreciation of the results of
our theory, we made calculations for the growth rates
and threshold power densities for the stimulated Brillouin
scattering for the following typical plasma parameters in
n-InSb: eI = 18, T, =77 K, m =0.014mo (mo is the mass
of a free electron), vo=3. 5X10" sec ', co =2X10'
sec ', coo= 1.778 X 10' sec ' (for a CO2 laser) and
2X 10' sec ' (for a typical microwave). The results of
our calculations are depicted in the form of curves in
Figs. 1 and 2.

Figure 1 shows variations of the growth rates of the
stimulated Brillouin scattering as a function of the elec-
tron cyclotron frequency. It follows that the normalized
growth rate of the three-wave parametric instability in-
creases with the external uniform magnetic field. The un-
damped growth rate (yo/co) of the stimulated Brillouin
scattering is higher for the high-frequency pump wave
than the microwave range of frequencies. However, the
growth rate in the presence of damping (y/co) of the
daughter waves is of the same order of magnitude.

Figure 2 shows the variation of the threshold power
density of the instability as a function of electron cyclo-
tron frequency. It is noticed that the threshold power
density for the stimulated Brillouin scattering decreases
rapidly with the increase of magnetic field.

It is observed from comparison of our results with
those of Guha and Basu' that the growth rate of the in-
stability leading to the stimulated Brillouin scattering in-
creases with magnetic field, which is in clear contrast
with their results. It is also noticed that our calculation

Xp=

and the threshold power density of the incident laser ra-
diation Po lTh is given by

v n.m cv,zvof(. (k C, u,h)(kv, h) coo
(50)

v 2e cv c0 cop c
Po ITh—

For the high-frequency pump wave, viz. , a CO2 laser,
we can take the approximations cop&co, co„co, vp, and
k »ko, and for backscattering (5,=180) the unper-
turbed growth rate yo. Equation (45} reduces to

l "oy/"th l copcoeco
(49)

16m eL coo(ku, „)

10

3

10
3

~O

B. Microwave radiation

Po ITh—

For the microwave range of frequencies and for the
typical parameters cop(cop co 'co &co vp cop& vp the
growth rate and the threshold of the stimulated Brillouin
scattering are given by

l voy /uth l coyo cpp coo
Qp (51)

16neL (kv,h)

&nm cu,„volt (k C, u,h)(ku, „)
v/2e '~'~'~4~ p

10
1

~c (10 sec j

FIG. 1. Variation of unperturbed normalized growth rate,
yo/co, and overall normalized growth rate, y/co, with co, for the
following parameters in n=InSb: eL =18 (at 77K), E =10
v0=3.5X10" sec ', k=10 cm ', co~ =2X10' sec
m /mo =0.014, C, =4X 10' cm/sec, and lvo„/v, h l

=leEoylmcoov, hi=10 '. The solid curves represent yo/cu,
while the dashed curves represent y/co. The upper curves are
for coo= 1.778 X 10' sec ', and the lower curves are for
co0=2X10' sec
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10

8

P4

E

U

I—

Q
C)

0'

c (10 sec }

FIG. 2. Variation of the threshold power density of the in-

cident wave, PO~Th, with co, for the parameters as in Fig. 1. The
solid curve is for gyp=1. 778X10' sec ', and the dashed curve
is for cop=2X10' sec

of the stimulated Brillouin scattering for laser radiation
yields growth rate approximately one order higher than
that calculated from the Quid model. ' This discrepancy
may be attributed to the correct model of the semicon-
ductor plasma.

VI. DISCUSSION

It has been shown that a large-amplitude electromag-
netic wave propagating in the extraordinary mode decays

efhciently exciting an electron acoustic wave and a scat-
tered electromagnetic sideband in a magnetized semicon-
ductor plasma. It is noticed [cf. Eq. (49)] that the
growth rate of the stimulated Brillouin scattering of

high-frequency laser radiation is directly proportional to
the pump-induced drift velocity of electrons. It increases
with the plasma density and increases rapidly with the in-
crease of the external magnetic field. yo is a sensitive
function of the electron temperature of the semiconduc-
tor, and decreases sharply with an increase of tempera-
ture. The linear damping rates yL and yL, are small for
the usual plasma parameters. Hence the threshold power
density of the incident pump wave [cf. Eq. (50)] is small.
However, it increases sharply with temperature and de-
creases with an increase of the external magnetic field.
We also observe [cf. Eqs. (51) and (52)] that for the mi-
crowave range of frequencies for the pump wave the
growth rate yo increases rather slowly with the external
magnetic field, and the threshold power density decreases
relatively slowly with the external magnetic field in com-
parison with those at the high-frequency pump wave.

Our results differ from those of Guha and Basu' in
one important respect: the growth rate of the stimulated
Brillouin scattering increases with an increase of the
external static magnetic field for the short-wavelength
perturbation in the n-type semiconductor plasma. It is
observed from comparison of our results with those of
Guha and Basu' that the growth rate of the instability
leading to the stimulated Brillouin scattering increases
with the magnetic field, which is in clear contrast with
their results. It is also noticed that our calculation of the
stimulated Brillouin scattering for the laser radiation
yields a growth rate approximately one order higher than
that calculated using the fl.uid model. ' This may be due
to the fact that the correct kinetic model of plasmas must
be employed instead of the hydromagnetic model of the
semiconductor plasmas for studies of the parametric in-
stability for the very short-wavelength perturbation
mode. The results of this paper also suggest that various
aspects of the parametric instabilities can be verified ex-
perimentally in a semiconductor where the plasma pa-
rameters can be conveniently varied over a wide range of
values without much difhculty.
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