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We calculate the fermion Green function and particle-hole susceptibilities for a degenerate two-
dimensional fermion system with a singular gauge interaction. We show that this is a strong-coupling
problem, with no small parameter other than the fermion spin degeneracy N. We consider two in-

teractions, one arising in the context of the t-J model and the other in the theory of the half-filled
Landau level. For the fermion self-energy we show that the qualitative behavior found in the leading
order of perturbation theory is preserved to all orders in the interaction. The susceptibility yg at a
general wave vector Q g 2pF retains the Fermi-liquid form. However, the 2ps susceptibility y2rr
either diverges as T ~ 0 or remains finite but with nonanalytic wave-vector, frequency, and tem-
perature dependence. We express our results in the language of recently discussed scaling theories,
give the fixed-point action, and show that at this fixed point the fermion-gauge-field interaction is
marginal in d = 2, but irrelevant at low energies in d & 2,

I. INTRODUCTION

The problem of fermions in two dimensions interact-
ing with a singular gauge interaction has arisen recently
in two physical contexts. One is the "gauge theory"
approach ' to the t-J model which has been argued '4 to
contain the essential physics of high-T superconductors.

. The other is the theory of the half-Glled Landau level. '

In both cases one is led to the theoretical problem of a
degenerate Fermi gas interacting with a gauge Geld char-
acterized by the propagator D(ur, k) (~& + ~k~

+
)

This notation is conventional; z = 1 in the t-J model
case and, because of the unscreened Coulomb interac-
tion, x = 0 in the v = 1/2 case considered by previ-
ous authors. 5'6 If the Coulomb interaction in two dimen-
sions were screened, e.g. , by a metallic gate, the model
with z = 1 would apply even to the v = 1/2 case. The
three-dimensional version of this model with x = 1 was
shown by Reizer to describe electrons in metals interact-
ing magnetically via a current-current interaction. The
highly singular behavior of the gauge propagator at small
~, k complicates the analysis of the theory and has led
to con8icting claims in the literature. In this paper we
present what we believe is a correct treatment of the low-
energy properties of the theory.

We study fermions interacting with a gauge Geld a,
and also with each other via a short-range interaction
O'. We assume the simplest form of the interaction with
the gauge Geld allowed by gauge invariance:

where we omitted higher-order terms in the gauge field
a which lead to less infrared singular eEects. Here, as
usual, f„„=B„a„—D„a„,go is the bare fermion-gauge-
Geld interaction constant, o = 1, ..., N is a spin index and
v = &'. The f„„term comes from integrating out high-

energy processes. In the t-J model the spin degeneracy
N = 2; however, it will be convenient to consider general
values of X because the limits N -+ 0 and N ~ oo are
solvable. Indeed, as we shall see N is the only expansion
parameter of the model.

In the t-J model the fermion operators c~ create
"spinous" which are chargeless, spin-1/2 quanta. Be-
cause the spinons have no electric charge, there is no
long-range Coulomb term in W. In this representation
the charge is carried by diferent, spinless quanta which
obey Bose statistics ("holons"); we shall not consider
their properties in this paper. The Hamiltonian (1) de-
scribes the magnetic properties of the "spin-liquid" state
of the t-J model. For a more detailed discussion of the
physical situations to which this model may apply, see,
e.g. , the review paper by Lee.

In the v = 1/2 case the spin degeneracy N = 1 and
one must add to the Hamiltonian (1) additional terms
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containing the Coulomb interaction and Chem-Simons
term. This changes the k2 term in gauge propagator
to ~k~; the efFects of this change will be discussed below
in Sec. IV. Other authors9 have found it convenient to
consider a continuously varying exponent ~k~ +; we find
that the behavior for all x ) 0 is the same as that for
z = 1 except for minor changes in exponents. The z = 0
case is exceptional because there a controlled expansion
for the in&ared behavior exists for any N. We give results
for general x ) 0 in Sec. V. For the rest of this section
we explicitly consider only the "spin-liquid" case, x = 1.

Treating the fermion-gauge-field interaction in (1) by
perturbation theory leads immediately to two eff'ects.
Dressing the gauge propagator by a particle-hole bubble
leads to the propagator

D((u, k) = 1
(2)

+ ~l/Q&a

Here the first term in the denominator is due to Landau
damping of the gauge Geld, and pp is the curvature of
the Fermi surface at the point where the normal to the
Fermi surface is perpendicular to k. The second term
in the denominator has contributions from the f2„term
in the efFective action and Rom the fermion diamagnetic
susceptibility; in this term we have redefined the inter-
action constant g~ so that the characteristic energy scale
remains finite in the limits N -+ oo and N —+ 0 which we
consider below.

Using the gauge-field propagator to calculate the
fermion self-energy Z in the first order of the pertur-
bation theory one GndsaP

. ~p '/'3
Z~'l(e) = —i —' (3)

where the energy scale up is defined in terms of g, yp,
and the Fermi velocity v~ via

1 ) 2v~~g4

(2j3) ~ po

For high-T, materials (N = 2) g3 was estimated to be
6y 2am (where m is the fermion mass). This leads to

500 K if the fermion bandwidth is of the order of
2J.

The dramatic efFects found in the leading order of per-
turbation theory lead one to question whether the per-
turbation theory makes sense. Several different treat-
ments have appeared. ' The appearance of N in the
denominator of the gauge-field propagator (2) suggests
that the theory should have a tractable N -+ oo limit and
that a 1/N expansion about this limit is well behaved.
The N ~ oo limit and the leading 1/N corrections to
the fermion propagator have been studied by Ioff'e and
Larkin, by Reizer, and by Lee but the higher-order
corrections and the issue of convergence of the expansion
have not to our knowledge been previously examined. We
present this analysis in Sec. II of this paper. We find that
the 1/N expansion is indeed well defined and the lead-
ing order results are qualitatively correct for all physical
quantities except the 2@~ susceptibilities, which acquire
additional nonanalytic power law dependences with ex-
ponents which vanish as N —+ oo.

In order to explain the idea of the analysis we need to
introduce some notation and establish typical values of
momenta and energies involved in virtual processes. The
typical momentum k transferred in a low-energy process
afFecting a fermion with energy cu and momentum p is
found from the gauge-field propagator, Eq. (2), to be

It is convenient to choose Cartesian coordinates in mo-
mentum space so that k~ is the change of the momentum
of the fermion along the Fermi surface (i.e., perpendicu-
lar to p) and k~~ perpendicular to the Fermi surface (i.e. ,
along p). At low energies k~~ ~~ —Z(~)~/v~ becomes
much less than k~ which is determined by the gauge-field
propagator (2), i.e., k~ k~.

Qualitatively the small value of the higher-order cor-
rections at large N can be attributed to a comparatively
large typical moxnentuxn transfer (5) in this limit as fol-
lows. In a typical virtual process a fermion probes only
a small patch of the Fermi surface of the order of k .
The curvature of this piece of the Fermi surface is impor-
tant if the change in the fermion energy induced in such
a virtual process [v~k&3/(2pp)] is large compared to the
imaginary part of its self-energy (3). Comparing the two
we find

vpk,
2ppZ~ 1(t)

Thus, in the limit of large N the curvature of the Fermi
surface becomes important and we expect that the scat-
tering becomes essentially two dimensional. Ia this case
the usual phase space arguments ~ show that all crossing
diagrams are small in 1/N, so that a 1/N expansion is
possible.

An alternative solvable limit, namely N -+ 0, was
pointed out by Ice, Lidsky, and Altshuler. In this limit
the curvature of the Fermi surface becomes u~~mportant
and the terms proportional to k&2 in the denomiaators of
the fermion Green function are aegligible. %hen these
terxns are dropped the Green function does not depend
on k~, which enters only via the propagator of the gauge
field (2). Thus, in any diagram one can integrate inde-
peadently all the gauge-field propagators over k~. The
gauge-Geld propagator becomes

D '
(w) = fD(~, k)(dk~) =

(~(1/3

where g = ~3v~ (2wg4/p()) = 3 us is the effective
interaction constant. Note that k~~ does not appear' be-
cause it is negligible relative to ~ for the reason given
below Eq. (5).

After these transformations diagrams which do not
contain fermion loops (except for those loops implicit
in the gauge-field propagator) become the same as in a
one-dimensional (1D) theory with a retarded interaction
given by (7) and the diagrams which contain loops are
negligible. Therefore, in the limit N m 0 the theory can
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be solved by bosonization. methods. Moreover, by repro-
ducing this solution using the diagram technique we find
that the one-dimensional results depend crucially on the
exact cancellations specific to 1D models and that at any
N g 0 these cancellations are not exact. These obser-
vations allow us to obtain some information about the
behavior at X (( 1. The analysis of N ~ 0 limit is given
in Sec. III. The solution at N -+ 0 turns out to be very
similar to the results for the fermion propagator obtained
by Khveschenko and Stamp via eikonal methods and by
Kwon, Marston, and Houghton via a two-dimensional
bosonization. From our results we see that these calcula-
tions are only valid in the strict X ~ 0 limit, so that the
claim of these authors to have determined the low-energy
behavior at N = 2 or for the half-filled. Landau level is
in disagreement with our results.

A third theoretical approach involves scaling equations
constructed by eliminating high-energy degrees of free-
dom. Gan and Mong derived an action for the gauge
6eld alone by integrating out the fermion degrees of free-
dom in Hamiltonian (1) and then showed that this ac-
tion has an in&ared stable weak-coupling fixed point in
two spatial dimensions. From this they concluded that
Eq. (2) gives the correct asymptotic form of the gauge-
field propagator. Kwon et cl. obtained the same re-
sult via bosonization. Our results for finite X imply
that "correct asymptotic form" means that the scaling

q is preserved, as is the behavior in the limits
k &) k and k (( k, but not the precise functional
form when k k . An alternative scaling treatment
was given by Nayak and tA'ilczek, extending previous
work of Shankar on short-range interactions. Nayak
and Wilczek wrote a scaling relation for an action based
directly on Eq. (1). They concluded that for the v = 1/2
problem in d = 2 the fermion-gauge-6eld interaction is
marginal and in the "spin-liquid" case it is relevant, so
that no statements can be made until the strong-coupling
fixed point is found. However, our results imply that the
strong-coupling 6xed point has a straightforward inter-
pretation: in the "spin-liquid" case in d spatial dimen-
sions the bare scaling e vk v~kz/(2po) is replaced by
the new scaling e"~ v~k~~ v~k&/(2po) found from
the leading order gauge-field. corrections to the fermion
propagator. In d & 2 we show that any additional correc-
tions &om the ferrnion-gauge-6eld interactions are irrele-
vant. In if = 2 we show that the corrections are marginal
at x & 0 and lead for x & 0 to new power laws only in
the 2pp susceptibilities. In the case of half-6lled Lan-
dau level (x = 0) these power laws are replaced by a
much weaker singularity. For the case of the half-filled
Landau level with unscreened Coulomb interaction our
results amount to a justification of the leading order ap-
proach of Halperin et al. The interpretation of our re-
sults in terms of scaling theory is discussed in Sec. V.
Section VI is a conclusion in which the physical interpre-
tation of our results is discussed.

After this manuscript was completed we learned of
two preprints reporting results very similar to some of
those reported here. Kim, Furusaki, Men, and Lee cal-
culated particle-hale bubbles at small q to order 1/N
in the spin-liquid model, finding, as we did, that the

Fermi-liquid form is not modified by the gauge interac-
tion. Polchinksi performed a scaling analysis of the
large-N spin-liquid model and concluded, as do we, that
the curvature of the Fermi surface is important and that
Migdal-type arguments justify the results of the leading
order perturbation theory calculation. He also obtained
our result, Eq. (27), for the renormalization of the 2pp
component of the four-fermion interaction.

II. LARGE-N LIMIT

This section will show that in the limit X m oo the
leading contribution is given by the diagrams with the
minimal number of crossings; this will allow us to con-
struct a perturbative series in 1/N and obtain physical
results in the leading orders of this expansion. %e find
that to all orders in the expansion the self-energy remains
proportional to e /', that all particle-hole susceptibilities
except those at ~Q~ = 2p~ retain the usual Fermi-liquid
form and that correlators at 2p~ momentum transfer ac-
quire an anomalous power law dependence.

In order to develop a consistent large-% expansion for
the Hamiltonian (1) we must take N —i oo limit so
that the interaction parameter g in (2) remains con-
stant. At N = oo the only diagrams that survive are
the random-phase approximation (RPA) bubble graphs
shown in Fig. 1. These bubbles screen the 1/k2 behavior
of the gauge 6eld. Because the gauge field is transverse,
it is not completely screened and the result is Eq. (2).

We now consider the 1/N expansion for the fermion
propagator. These are shown diagrammatically in
Fig. 2. The self-energy appearing in the leading diagram
[Fig. 2(a)] was given in Eq. (3). One sees that at energies
less than uo or length scales longer than v~/uo, the self-

energy becomes larger than the inverse of the bare Green
function. We have chosen the way the limit X ~ oo is
taken so that the scale uo remains constant. Because the
first correction is of the order of 1 and not of 1/N, care is
required in carrying the 1/N expansion to higher orders.

Now consider the O(l/N ) terms. The first of these
-, 2

[Fig. 2(b)] scales as [Kl l(e) /e e ~ . Direct calcu-
lation using bare fermion propagators shows that the
second term [Fig. 2(c)] scales as e (up to logarithms).
Specifically,

Z, (e, p(~) =, , (ie —v~p~() ln,
(27r) ¹ ( [e + xv~p(( [)

FIG. 1. RPA sum of bubble diagrams leading to a dressed
gauge-field propagator (denoted by thick wavy line). The
solid lines vrith arrows denote fermion propagators and the
heavy dots denote the bare gauge-6eld propagator. Whether
the fermion propagators are bare or renormalized does not
acct the result of the calculation.
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FIG. 2. Fermion self-energy diagrams. The wavy line de-
notes the gauge-field propagator (2) and the solid line the
fermion propagator.

wher« = 3 28 and pti
= Ipl

—p~.
in the low-energy limit the self-energy is more singular
than the vertex correction and should be summed erst.
To calculate to higher order in the 1/N expansion we
should therefore use the Green function G~ ~ given by

FIG. 3. Correction to fermion-gauge-Seld vertex. The
wavy line denotes the gauge-field propagator (2) and the solid
line the fermion propagator.

moreover, it is of order (ln[Nj/N) 2 for external momenta
of order k . Explicitly, we 6nd

ie —v~p —Z(1) (e)
' (9) F(*)= 0.9422, *= 0 . (10)

with the self-energy Z(1)(c) given by (3). In fact this
G~ ~ solves the self-consistent Eliashberg equation Z =
f DG also, because Z(1) (e) is momentum independent. 1s

Therefore, the rainbow graphs have been summed and
we need only to consider graphs with crossed lines such
as shown in Fig. 2(c).

Returning now to the vertex corrections we reevalu-
ate the leading vertex correction, shown in Fig. 3(a), us-
ing (9) for the fermion Green functions. We find that
this correction is at most of the order of the bare vertex,

I

Qualitatively, the small value of the vertex correction
at large N can be attributed to the argument underlying
the Migdal theorem in the electron-phonon problem, ~5

namely that the "velocity" of the boson is much less than
the "velocity" of the electron (by "velocity" in the present
case we mean u/Ikl). However, the arg»ment is more sub-
tle than in the electron-phonon problem because here we
have only small angle scattering. To understand how the
argument goes, consider again the second order crossed
graph for the self-energy Fig. 2(c), using now (9) for the
fermion Green function:

z (ey) =vj,, ) fG~ (e'+~&, y+kg)G' (e+~g, @+kg)
~1~~2

xG (6+ (d1 + K2) p+ kl + k2)D(&1~ kl)D(&2) k2)(d kid K2)

In order to evaluate (11) we integrate over the parallel components of the momenta k1~~ and k2~~ obtaining

~(2) 2 ~ D(~1~ kJ 1)D(~2)kJ 2)(dkJ ldkJ 2)Z 6, p~~
= vs A+ ~k kJX i2

laPg 14Pg

(12)

where the prime means that the sum over &equencies is restricted to the region where ~q + u2 + e has sign opposite
to ~, + ~ and ~2+ ~ and

+(~1 ~2 Pf~) +En~~ + ~~, ((~ + ~i '+ ~2(' ' + i~ + ~i(* ' + I~ + ~ I' ') (13)

Clearly, the second-order contribution to the self-
energy is at most of the order of 1/N because it contains
1/N2 coming from two gauge propagators and N from
the phase volume (note that k oc N1~2). In fact, the co-
efBcient of the 1/N term vanishes because the expression
under the integral in (12) is odd in k1J and k2J and the
leading behavior turns out to be

(2) . ) lnN ) (upZ (e, p(( =0) = ic'I —
I

e —,c'=2.16.
(4~Np

(14)

I

The reason for the powers of 1/N is essentially that the
phase volume available for the process when all three
electron lines are on the mass shell is negligible as in
the usual Migdal arguments, although here the phase
volume is small only in 1/N. Note that the nonzero cur-
vature of the Fermi surface is essential to the argument.
Note also that in spatial dimension d ) 2 the leading
self-energy is e+ so that at any N the small parameter
of the "Migdal expansion" is e ~ . This is related to the
fact, to be discussed at greater length in Sec. V, that the
interaction is marginal in d = 2 and irrelevant in d ) 2.
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Note that although Z~ ~ has the same form as Z~ ~ in
the limit aro lel ~ )) v~p~~ it does not have exactly the

same functional forxn for ~o lel ~ vip~~.
Thus, at N » 1 all diagrams can be classi6ed by the

number of crossings and the sets of diagrams with mini-
mal number of crossings should be summed 6rst, a pro-
cedure well known from localization theory. The result
of this summation shows that such diagrams indeed give
the leading contributions to the higher-order terms of
the perturbation expansion but these contributions are
not sufficiently singular at low energies and contain ex-
tra powers of 1/N. We discuss the calculations leading
to this conclusion in Appendix B.

The absence of low-energy singularities in the higher
orders of the perturbation theory implies that the results
obtained in the leading order are modi6ed only slightly
by higher-order terms.

The discussion so far has shown that the 1/N expan-

sion is well defined and has established the qualitative
form of the fermion propagator. Now we verify that
higher-order corrections in 1/N do not change the qual-
itative form of the gauge-6eld propagator. This follows
&om the general considerations of Gan and Wong, but
we believe an explicit derivation is valuable because the
validity of the approach of Gan and Wong (which in-
volved integrating out gapless fermions and dealing with
an action involving the gauge field only) may be ques-
tioned and because the derivation makes clear that al-

though the two limits (k && k and k « k ) are correctly
given by Eq. (2), the precise form for k k is changed
by higher-order diagrams.

We first consider the leading term DiRl (~, q), which
is obtained by evaluating the polarization bubble (Fig.
1) but with renormalized fermion propagators. This may
be written

D(R) i( ) „,t~o'le+ ~l" —v~pii —2„,(» ~+ q)' t~o' l~l" —v~pii —
2 p~

This may be most easily evaluated by subtracting and
adding the bare bubble obtained using bare Green func-
tions in (15). In the di8'erence term one may integrate
over p~~ first, then sum over e. The result is

&/'3 5/S
D(R) —i( ) D —i( )

Po o

V~/

Thus, for lul « ufo (v~q) ~, the full propagator is still
of the bare form (2). Further, we only need this propa-

gator for cu N s~ g 2po 'qs && u)o
~ (vpq)s~2. Thus,

the only eKect of using renormalized Green functions is to
reduce the upper frequency cutoff (which enters no physi-

cally interesting result) from vq to uo (v~q) ~2. A very
similar calculation shows that 1/N vertex correction to
the polarization bubble shown in Fig. 4(a) is of the same
order as the self-energy correction to the bubble, i.e. ,

1/3
po~o

8yg

Thus, for ur less than the upper cutoff &uo (vRq)a~2 the
renormalization of the gauge-Geld propagator is small. In
particular, for q k it is smaller than the bare part by
a factor of order of q. However, the two-loop diagram,
Fig. 4(b), leads to a correction which is of the same order
as the leading diagrams (Fig. 1) in the infrared limit. We
do not discuss the details of the evaluation here (except
to note that the dominant contribution comes when the
internal gauge-Geld momentum q is almost parallel to
the external momentum, k, and that the fermion loop
vanishes if the external &equency u = 0 but are of the
order of unity if k k ). This diagram therefore does
not change the scaling or the asymptotic forms in the
limits k » k or k &( k but does change the detailed
~, k dependence of D(~, k). This discussion also shows

I

that in general the long wave susceptibilities preserve the
Fermi-liquid form for small &equencies.

So far we have discussed the effects of gauge fields on
the long wave properties of fermions. Now we turn to
the effects of gauge field on the fermion vertices with
large momentum transfer. The corrections to the vertex
with large but arbitrary momentum transfer lql py
are generally small because of the small phase volume
available for virtual processes which leave both fermions
with momentum transfer p + q + k and p + k close to
the Fermi surface. The situation changes only for lql
close 2py. In this case a virtual process with momentum
transfer g along the Fermi surface leaves both fermions
with momenta p+ g+4 and p+k near the Fermi surface.

The leading contribution in 1/N to the fermion vertex
I'q is logarithmically divergent at Q = 2pp, we find that
higher powers of N contain higher powers of logarithms;
we sum these logarithms using a renormalization group
method and find power law singularities in I'2&~. These
singularities imply that the calculation of the particle-
hole susceptibility must be reconsidered. Finally, a sin-

gular susceptibility near 2p~ may be further modified

by the short-range four-fermion interaction; therefore we

must consider also the renormalization of this interaction
by the gauge 6elds.

We begin with the diagrams for I'g shown in Fig. 5.
The diagrams shown there diverge logarithmically if all

FIG. 4. Corrections to fermion polarizability. The wavy
line denotes the gauge-field propagator (2) and the solid line

the fermion propagator.
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+ &j+ +Q C)+ C9
FIG. 6. Ladder sums giving renormalization of fermion 2py

polarizability. Notation is the same as in Fig. 5.

+ 1 '(N) I'
din(l/o/) '(2N 2vr N (20)

FIG. 5. Parquet equation giving renormalization of fermion

2pF vertex I'si,
&

(shaded triangle). (a) Leading order in

ln[N]/N. (b) and (c) Subleading order in 1/N (d) .The lead-

ing order in (ln[N]/N) . The unshaded triangle indicates the
bare 2pF vertex, the gravy line denotes the gauge-field prop-
agator (2) and the solid line the fermion propagator.

(»)

o = + ln (N)+01 (22)

From (20) we see that the vertex grows at large scales as

I ipp"
) II 1/2 ) 4 3/2 1/2

'

(do VF (dP
(18)

If, say, the largest is the external &equency we evaluate
the diagrams in Fig. 5 and get

hl',„,( ) =
l +, , 1'(N) ll

l

—lI",„.,
(1 1 l (11

(19)

where I"0 is the bare vertex at small scales or large &e-
quencies. The logarithmic nature of the corrections to
the effective interaction allows us to sum higher orders
of the perturbation theory by constructing the renormal-
ization group equation:

external momenta are on the Fermi surface, external en-
ergies are zero and the momentum transfer is exactly
Q = 2p~. Since the energy only enters the Green func-

tion via (dp lel /s, the momentum component across the
Fermi surface via vFk~~ and the momentum along the
Fermi surface via k&2, the divergence is cut off by the
largest among

Here we used energy u for the in&ared cutoff assuming
that it sets the largest scale among ~, E, E~~, &~. The
result (21) is derived using a large-N expansion. It is

also of interest to evaluate these diagrams at N = 2.
The leading order diagram gives 0. = 0.25; the sum of the
diagrams shown in Figs. 5(b) and 5(c) gives 0 = 0.35.

The power law growth of the vertex at 2p~ distin-

guishes fermions with a gauge interaction from. an ordi-

nary Fermi liquid with short-range repulsion and leads to
anomalous behavior of the spin correlators at Q = 2py.
In the absence of a short-range interaction effective at
2p~ [i.e., if the interaction W in Eq. (1) vanishes] the spin
correlator is given by the polarization diagrams shown in
Fig. 6. The leading contributions in powers of (& in'/)
come Erom the diagrams in which the vertical lines of the
gauge 6eld do not cross. In these diagrams the leading
contribution originates from the frequency range (and
corresponding momentum range, which we have not ex-
plicitly written)

F +An +' 'V]. +QJ(' '(4) n Q6F
where ~ is external &equency. Therefore, the sum of all
diagrams is given by the diagram shown as the left-hand
side of the equality in Fig. 6 with renormalized vertices
(»):

II(w, q) = JG(q+~/2, 2+q/2)G(r —ra/2, 2 —q/2)(rI )(ru q)) (dydee) . (23)

To evaluate the integral in (23) we note that the main contribution to it comes from the range of momenta and
energies related by e e~~ e~ (d (18). Estimating the result by power counting we find that if 0 ( 1/3 (as occurs
for large N) the integral (23) converges, but if 0 ) 1/3 it diverges at o/ = 0, q = 2pz. We evaluate the integral in
these cases separately and 6nd

——2''
pp ((d)'II(,q) = II

(2/pVF E(d/p
+ cq(lq —2p~l&p)'

" o. ( 1/3, (24)

2qq

11(~,q) =
(ddpV~ ( (2/p )

q
—1

+ cs (lq —2p~l~p) ~ »/3 (25)

where the coeS.cients cq and c are of the order of unity
for a curved Fermi surface. Below we shall assume that
cq ——c = 1. Since these coefBcients depend strongly
on the curvature of the Fermi surface, the case of a Bat

I

Fermi surface should be considered separately. We do
not discuss it further here.

The spin polarization bubble (25) is equal to the spin
susceptibility if the effects of the short-range interaction
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on the spin correlators at 2pF can be neglected. We jus-
tify this by showing that a sufficiently weak bare inter-
action is renormalized to zero by the gauge field. Renor-
malization of the eH'ective interaction by the gauge field
occurs in the two competing channels shown in Fig. 7.
In both channels the corrections diverge logarithmically
if all external momenta are on the Fermi surface, external
energies are zero and the momentum transfer is exactly
Q = 2p~. This divergence is again cut off by the largest
among ~, ~~~, and e~. If, say, the largest is the external
&equency we evaluate the diagrams in Fig. 7 and get

PIC. 8. Diagram leading to a singular interaction between

spin waves. Solid lines denote fermion propagators, shaded
triangles I'q„~vertex.

(26)

where R'0 is the bare interaction at small scales or large
&equencies. Using the renormalization group to sum
higher orders we conclude that interaction at 2pF decays
rapidly at large scales:

the scaling relation between energy and momentum is

changed to (18), (ii) spin correlators acquire anomalous
power law behavior (24) at 2p~, (iii) interaction vertices
with external field at momentum 2pF are strongly en-

hanced, but (iv) the short-ranged interaction between
quasiparticles is suppressed.

rw
I

—
I

wp.
Cdp )

Certainly, Eq. (27) holds only for sufficiently small bare
interaction R'0. The decay of the interaction implies that
the spin susceptibility y(u, q) = II(u, q). For larger bare
interaction Wo & W, we expect a transition into an or-
dered state to occur. We will give the theory of this
transition in a separate paper, Here we note that at R',
the interaction does not scale and that the basic ingredi-
ents of the theory of the transition are polarizability of
the fermion system [(24) and (25)] and the four-spin fluc-
tuation interaction shown in Fig. 8. The renormalization
of the four spin interaction may be treated in the same
way as that of II. We find that at large N the leading
diagrams are those shown in Fig. 8; these lead to a diver-

gent U with the divergence cut oE by the largest among
I~/s~I', q))/pp, and qg/p~. .

EFPF2

(28)

«re we den«e
qadi

= m~(llqil —2p~ll Ilail —2pF II) ~ =
max(lail~ I~21)~ and q& = (qi qs)q ~h~~~ q is the u»t
vector in the direction of qp + qq.

To summarize: in the limit of large N the physi-
cal properties of the spin liquid resemble conventional
Fermi liquid with the following important difFerences: (i)

FIG. 7. Diagrams leading to renormalization group equa-
tion for short-range fermion vertex W (heavy square). The
wavy line denotes the gauge-6eld propagator (2) and the solid
line the fermion propagator.

III. SMALL-1V LIMIT

In this section we shall show that in the limit N -+ 0
the motion of fermions becomes essentially one dimen-
sional and apply methods borrowed Rom 1D theories to
obtain physical results which turn out to be qualitatively
similar to the results obtained in the limit N + oo. For
the fermion propagator the N ~ 0 limit is not singular
and the 1D theory gives qualitatively the same result as
the N )) 1 2D calculation. We find that for the vertex
function the N m 0 limit is singular because it predicts
an exponentially divergent vertex function rather than
the power law derived in the limit N m oo. We shall
show that the power law behavior remains valid for all
finite X, but the power tends to infinity as N -+ 0.

The N -+ 0 limit is defined via Eq. (2) for D(ur, k).
In this formula we take N to zero with g2 constant. To
see why this N ~ 0 limit is essentially one-dimensional
consider again the second-order (in the gauge-field prop-
agator) contribution to the fermion self-energy shown in

Fig. 2(c). Let us perform the integration over k~ first.
In the limit N ~ 0 the k~ dependence of the diagram is
controlled by the gauge propagators, which implies that
the main contribution is at A:~ ~ N /'

~ /; this means
that k& Ne2/ is negligible compared to the self-energy

of the fermion (Z s ~ ). Therefore, at N ~ 0 one may
neglect the k~ dependence of all Green function lines.
In addition we may neglect all diagrams except those in
which all gauge-field lines connect two electrons moving
either nearly parallel or nearly antiparallel. The reason
is that if the gauge field couples two fermions moving
in arbitrary directions all components of the transferred
momentum are limited by fermion Green functions and

become small: uy lkl —~o Iel ~ . This decreases the

phase space volume to k~~k~ —~4~s (instead of s) and

decreases the gauge-field propagator to 6' / . As 8
result these processes are small (of relative order s ~ )
and irrelevant in the in&ared hmit.

Very similar arguments apply to diagrams containing
internal fermion loops other than those contributing to
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the gauge-field propagator. Here the reason is that the
gauge-field propagator is small in Ni/2 In the calcula-
tion of the fermion propagator this smallness was com-
pensated by the in&ared divergence of the integral over
momentum component perpendicular to the Fermi ve-

locity. This divergence was cut off by k~
cancelling the factor of N / . In the diagrams contain-
ing fermion loops, momenta in different loops are not
exactly parallel (k~ e ~ ) and integrals over k~ are cut
off at k~ ~ e ~; this in&ared cutoff does not contain
compensating factors of¹

In the remaining diagrams one may integrate the gauge
I

field lines over the components of moment»m perpendic-
ular to the Fermi velocity and obtain a one-dimensional
theory of electrons (with propagator depending on fre-

quency and one component of momentum) coupled to
the moment@~ independent but retarded interaction
D~+(ur) de6ned in (7). As we shall show below, the re-

sulting theory can be solved by bosonization methods.
We shall then use Ward identities to obtain information
about the behavior at small but nonzero N.

Therefore, in the limit N + 0 the sum of all diagrams
can be found f'rom a mapping to a 1D theory with the
action

(29)

Here pq ——4~ 4~ is the density operator and a is a
replica index which runs over K values. We take the limit
K ~ 0 to exclude fermion loops, which we have argued to
be negligible. In a conventional one-dimensional theory
with short-range interactions loops would be present and
would affect the values of the exponents. Our N -+ 0
limit is defined so that loops are negligible in the d = 2

gauge problem. If loops are not negligible in the d = 2
gauge problem, their effect is not correctly given by the
1D theory.

To compute the fermion propagator we may restrict
our attention to the right-moving particles. The theory
is then the Tomonaga model with a retarded interaction,
and has been solved by bosonization i yielding

G(p, a) = J G(z, t)e'" '"~~ 'dtdz"

G(z, t) = ,„,( -~(2/3)l "i*i l
2z(z —ivpt) ([~z~ —isgn(z)vent]»s

~

'

In the limit of low energy and momenta close to the Fermi
surface G(p, e) acquires a simpler scaling form:

—1 r I (2/3) l
e)p = g I 2/'3vs(p p~) I, v„(p——p~) )

(3o)

[—( g) ~dy

2 4~ p y2+iy —1

Although the Green functions (30) and (9) have com-
pletely different analytical structures their qualitative
properties are similar: both are equal to 1/v~~p~ —

p~

in the limit aro~ (e( ) (( v)p —p~) and both behave as

1/(u)a~ [e) )'s) in the opposite limit (us~ (e)
)'

&& v(p —pp (.
We therefore expect a smooth crossover &om formula
(30) to (9) as N + 0. Both describe overdamped

12 (~) - exp
I

R r 3g

i 27' (d )
(31)

In order to understand the reason for such rapid growth
it is convenient to consider the calculation diagrammat-
ically. In order to obtain the renormalization of the 2p~
vertex in a conventional Luttinger liquid with a short-

fermions with a characteristic energy that scales as (p-
p~) ~ . Thus, the limit N -+ 0 is not singular for the
fermion Green function. Khveschenko and Stamp ob-
tained via eikonal methods a form very similar to (30).
They claimed their result was asymptotically exact for all¹ Our derivation, on the other hand, suggests that the
precise form depends on two special "one-dimensional"
features: the neglect of internal loops and the neglect
of the perpendicular momentum in fermion propagators.
Both these features are present in the N ~ 0 limit and
in eikonal approximation of Khveschenko and Stamp, but
are not present at arbitrary N. Of these two approxima-
tions the most crucial is the neglect of the perpendicular
momentum. If the p~ dependence of the bare Green
functions is retained the dressed Green function will not
have the exponential form (30). We do not give the al-

gebra here but below we apply similar arguments to the
2p~ vertex. If the p~ dependence is neglected but loops
are taken into account, the one-dimensional formalism
will lead to Eq. (30) but with a renormalized argument.
For this reason we do not believe that the exponential
form is generic, although the correspondence between the
N ~ 0 and N ~ oo limits lead us to believe that the
scaling e / oc p~~

is. Kwon et al. also obtained a result
very similar to (30) from a two-dimensional bosonization
method in the problem of half-filled Landau level. Again,
we do not believe the result is correct for any N & 0.

We now consider the renormalization of the 2@~ vertex.
In the strictly 1D limit N ~ 0 all diagrams leading to this
renormalization coincide with the diagrams of 1D Lut-
tinger model (29) which has both right and left movers.
The Luttinger model can be solved by bosonization. One
finds that the renormalized vertex p2„grows exponen-
tially:
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range interaction vsR one first notices that the first cor-
rection to the 2@~ vertex is logarithmic; then it can
be proved that renormalization of vg~ cancels with the
fermion self-energy, so that the leading contribution to
the 2@~ vertex comes from the ladder sum. In each block
of this ladder one can use bare vertices and Green func-
tions; finally, the ladder sum exponentiates leading to a
power law dependence with exponent determined by vsR.
In the present problem the singular interaction means
that the first correction, br2~, to the bare 2pF vertex

2p+ is a power law

p 3g
2ml(ul'~s

(32)

but renormalization of the interaction
~

~,&, still can-

cels with the fermion self-energy and the series exponenti-
ates leading to the exponential dependence given in (31).
The cancellation of the interaction renormalization with
the fermion self-energy is guaranteed by the Ward iden-
tity of the 1D theory. This relates the exact density
vertex r, ,„(u,q) to the exact Green function G, and(»)
I eads

r, '„(~,q)
(iD) G (e + ~/2, p + q/2) —G (~ —~/2, p —q/2)

ZLd —V g

This identity implies that the singular part of the product of the full Green function and the renormalized vertex is

equal to the singular part of the product of the bare Green function and the bare vertex.
This cancellation no longer holds in two dimensions. Instead in 20 the Ward identity is

iver, „(ur,q) —q((r~~„(u),q) —q~r, „((u,q) = G '(e+ ~/2, p+ q/2) —G '(e —ur/2, p —q/2) .

Here we have distinguished the density vertex I kom the two components of the current vertex, and we have written
the two components of the current vertex in coordinates parallel and perpendicular to vp (p). The gauge Beld couples
to fermions via the current vertex.

In the one-dimensional Tomonaga model I'+ is absent and I ~~ = V~I' = V~I' because the current is proportional
to the density for fermions moving in one direction. In a general two-dimensional theory I', I ~~, and I'+ are not
simply related; however, in the present model which has only small angle scattering the identity I'~~ = vgI' is still
valid up to terms of the order of e~~s or q&~. Further, we show in Appendix A that at sufFiciently small q~, r~~ and
I + are related via

r (~, q) = B(~,q)sgn(q, )r (~, q) (35)

( Fqii)' )
' (36)

/~v
where o. =

2
" ~ . The range of q over which this result applies is given in Appendix A.

Using (35) and (36) in Ward identity (34) we find

r, '„(u),q) =(o) G '(e+ur/2, p+q/2) —G '(e —ur/2, p —q/2)

vFq/f vF le. lB(q~~, ~)

The vertex of the two-dimensional theory difFers &om the one-dimensional vertex (33) by the term proportional to
q~ in the denominator of (37). Although this term is small in the limit N ~ 0, it is important because it smears
the singularity which appears at u = vFq~~ in the 1D theory Fro. m (37) we can calculate the renormalization of the

2pF vertex as was done for the strictly 1D theory. Consider the diagram shown in Fig. 5(a), put the external Green
functions on the mass shell and use (37). The result is

1 1
8I 2&& = dk~~lk~CL4)

lice —vk() —lk~ lB((u, kg) l2
(38)

The k integral in (38) is dominated by k k oc lurl ~;
for k~ in this range we estimate B(u, k~~) &

which

implies that the k~~ integral is dominated by the region

k~~ (( k while the main contribution to the

k~ integral comes &om the region k~ k . Combining
these estimates with Eq. (5) gives

1 du)dkg kg

(~k~) i~2 ~[1+ (k~/k. )'j
1 (ku ( k„

l~l &l~l")
1

lnO .
N

For a more precise calculation, including the coefEcient of
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1/~N, see Appendix C. These corrections exponentiate
as before leading to a power law form for I'2„~with an
exponent cr which diverges as N ~ 0. Explicitly, we find

propagator which includes the RPA self-energy of fermion
loops and takes into account the dielectric constant ~ of
the host semiconductor is

o = + O(1) .16~2
9z N

(40) J ol~l + ~&'
2~I&l + &+

(43)

bW((u) = P(N) ln
i

—
~

W + O(W ) .(11
E~)

(41)

In a strictly 1D theory, P = 0 and the leading term in
the scaling equation is proportional to W2. In our case
we find for small N

It is interesting to numerically evaluate the exponent at
N = 2. We find 0 = 0.56.

From the result for I'2~~ we may obtain as before an
expression for the polarization bubble if the short-range
2py interaction TV can be neglected. The calculation of
W is similar to that leading to Eq. (27) in the previous
section. One obtains a scaling equation

2
Here u = s', and the appearance of the 1/(Sz) instead
of the conventional 2' may be traced to a 1/(4vr) in the
coeKcient of the Chem-Simons term.

In this section we treat the case tc = 0; we expect the
results to apply if the momenta of interest k' are greater
than e. In the other limit, one should use the results
of the previous section interpolated to N = 1. The mo-
menta k' are those for which two terms in denominator
of (43) are comparable. At temperature T, typical fre-
quencies are cu = 2+T and, if e = 0, we find that typical
momenta k& (Sn pok~Te/e~) ~~2. Using a typical Fermi
momentum for Ga-Al-As system po ——(4zn) ~~2 —8 x 10s
cm ~ and a typical t" = 13 we find that the unscreened
results apply if

P(N) = —)c~~N . (42)
~ [cm '] ( 4 x 10 T'~ [K] . (44)

Because the P function is negative both at small and at
large N we believe it is negative at any N. Therefore
we may again apply the calculation which led us to Eq.
(24) for polarization bubble, however, since 0 diverges as
N ~ 0, the result is Eq. (25).

IV. HALF-FILLED LANDAU LEVEL

Thus if at T = 0.1 K the screening layer is further than
1000 A from the 2D electron gas, the unscreened results
apply. If it is much closer, then one should use the results
of the previous section interpolated to N = 1.

We turn now to computations using D (43) with ~ = 0.
The leading order self-energy (Fig. 2) is

In this section we treat the singular interaction argued
to be relevant to the problem of the half-filled Landau
level. The physical problem leads to two new features: a
Chem-Simons term coming &om a singular gauge trans-
formation which eliminates the explicit dependence on
magnetic field and a long-range Coulomb interaction (ab-
sent in the spin-liquid case because spinons have no
charge). In previous treatmentss's's the Coulomb in-
teraction was taken to be long ranged. We note that
in many experimental situations the device containing
the half-filled Landau level may also contain a metallic
gate which screens Coulomb interaction on length greater
than a screening length ~ . The resulting gauge-field

]

(45)

Here the ellipsis indicates terms which are less singular as
e -+ 0. Arguments identical to those of Sec. II show that
Z& ~ also solves the leading order Eliashberg equation, so
it sums correctly all rainbow graphs.

We now argue that higher-order crossed diagrams give
less singular contributions to Z(e, p), so that the leading
dependence is given exactly by (45). Consider the leading
crossed diagram, Fig. 2(c), with the fermion propagators
dressed by the self-energy (45). After integration over
parallel momenta and symmetrization in k~q, k~2 one
finds

(2) 2 . & (dkg) (dk2) A
gaol I ~&[k

~

s' I I ~u[k
~

A + ~k&k2
2~lkyl + 1 2mlk2l + 2 po

(46)

with

A((dy~ tlf2ypII) = Uy'@II + Z (e + (lP] + 4/2) + Z (e + M] ) + Z (e + big)

The prime on g denotes the contraint that sum
over &equencies is restricted to the region where uq+cu2+
e has sign opposite to ~q + e and u2 + e. This constraint
implies that cuq and cu2 cannot vanish simultaneously, so
no in&ared singularities arise &om the &equency inte-

grals. To extract the infrared behavior of (46) we may
replace A by its typical value min(e~/e) and ruq 2 by their
typical values e. The sum over &equency gives a factor
of e2. The main contribution to the integrals over k~,
k2 is a logarithmic divergence coming &om the region
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~ & q ( e in@; the 6nal result is

(2), , E U'p'ln 1n(ep/e)
e2 ln ~p

This is smaller than the leading term by the factor

singularities occur in the 2@~ vertices. The leading 2p~
vertex correction, Fig. 5(a), is given after summing over
parallel momenta by

(dk) 1

(in in(e~/e) ) '
!

q In(e~/e)

Similar considerations apply to higher-order crossed
graphs.

Our result, that the leading behavior at small ke-
quencies is given exactly by the first-order diagram, is
reminiscent of the Migdal theorem, which states that
the leading low-&equency behavior of the electron self-
energy in the electron-phonon problem is given exactly
by the leading-order diagram. The physical fact underly-
ing Migdal theorem is that the momentum transferred in
an electron-phonon process is large (of the order of p~)
while the energy is small (of the order of Debye frequency
and much less than v~ky ). A very similar argument ap-
plies here. In the calculations leading to Eq. (45) the
energy transferred by the gauge 6eld is small, while the
integral over momenta is logarithmic and only cut off at
the scale p~. In the spin-liquid case discussed in the pre-
vious sections all momentum integrals were confined to
the region of small momenta. The problem simplified
only in the large-N limit where the range of the momen-
tum integration became large in ¹ Thus, the problem
of half-6lled Landau level is analogous to the large-X
limit of the spin-liquid case. Kwon et al. obtained a
somewhat difFerent result for the fermion Green function
via a two-dimensional bosonization method. Their re-
sult is equivalent to applying our previously discussed
N = 0 bosonization technique to the half-filled Landau
level problem. As explained in Sec. III we do not believe
this is a correct procedure.

We now turn to polarization bubble and vertices. As
in the previously considered spin-liquid case, the only

I

Again, the leading contribution to the integral over k~
is a logarithm coming from the region e ( n~kz/pe &

min. Performing this integral and evaluating the sum
over frequencies we get

2 (max[T, ~, ey(Q —2py) /pp]j)

(49)

Although it is of only academic interest, we note that
the higher-order corrections may be summed to obtain
the leading singular behavior. As in the case of the self-

energy, crossed. graphs are less singular than ladder ones.
As in Sec. II, the sum of the ladder graphs exponentiates,
leading to

2 6y
I'2 ——exp —ln lnP" 2 . T (5O)

This weak singularity implies that the polarizability is

not singular, but the leading frequency and momentum
dependence is weakly singular.

V. SCALING

In this section we recover some of the results obtained
in previous sections via a scaling analysis. Our principal
result concerns the properties of the efFective action S,g
of dressed fermions, 4, coupled to a gauge field a in d

spatial dimensions:

~ "/~2+*~ —p~k~~ + Q @ ~+ dud"q q +*+ a u, q
Po q

+g d(dye"ky d4)2d"I(.2 4'
g y~, k, vy ky + v/ k2 ~ 4)y —~2, ky —fc2 + H.c. .

We 6nd that the fermion-gauge-6eld interaction g is
irrelevant for d ) 2 and marginal in d = 2. Further, for
2: ) 0 in d = 2 the marginality of the interaction leads to
logarithms only in the 2p~ response functions.

Note that S,g involves dressed fermions with one-loop
self-energy Z = !u! ~( + & rather than the linear u depen-
dence expected for unrenormalized fermions. As shown

by Nayak and Wilczek, if the linear ~ dependence is
used in S ~, then the fermion-gauge-field interaction g is
relevant for d & 2 + x, and is in particular relevant in
d = 2 for x & 0. We argue that the strong-coupling 6xed
point to which the Nayak-Wilczek scaling Qows is simply
the S g we have written above. The argument has two

steps. The first is the known result that the first-order
correction to the fermion propagator &om the gauge-field
interaction is of the form!u! ~( + 1. The second step is
that further corrections do not change the form given by
the first-order correction. We have shown this in previous
sections by explicit solutions of the model in two limits.
In this section we give a scaling argument leading to the
same conclusion.

We 6rst explain our choice of notation in more detail;
it comes &om the fact, seen in the calculations of the
previous sections, that a gauge Quctuation of momentum

q couples primarily to fermions in a patch of the Fermi
surface where the fermion velocity vp is perpendicular to
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the direction of q. Therefore, in the effective action we
have written the moment»m dependence of the ferxnion
fields using local coordinates de6ned in a patch centered
on the point (in d = 2) or strip (in d = 3) of the Fermi
surface where vp is perpendicular to q. In this patch the
gauge-field-fermion interaction is simplified because the
transverse component of the gauge-Geld is almost parallel
to vp, so we may replace the cosine of the angle between
the gauge field a and vg by unity.

To see that this construction is reasonable, note that
&om the gauge-6eld propagator in S,g we learn that at
frequency ur the important momentum scale is iv) i

i~1 + 1.
From the fermion propagator we learn that the important
momentum scale in the direction perpendicular to the
Fermi surface is lul ~lz+ 1; for d ) 1 this is always much
less than the scale de6ned from the gauge propagator,
so that the moxnentuxn transferred from the gauge field
to the fermion is essentially perpendicular to the Fermi
velocity, and the patch construction is well defined. Also
&om the fermion propagator we see that the k~ scale is

d
lul'&'+ &. Thus in d ) 2 the dependence of the fermion
propagator on k~ is essential. In d = 2, the momentum
scale derived from the gauge 6eld and &om the fermion
propagator are the same, and the ixnportance of the cur-
vature term k&2/(2pp) is determined by a dimensionless
parameter (e.g. , N). We see that in these arguments
the curvature of the Fermi surface (specified by pp ) is
essential. We shall show below that po changes under
scaling, so one must interpret it as a charge in the renor-
malization group equations.

We now discuss the "tree-level" scaling procedure. The
theory has three coordinates: frequency, k~~, and q (which
we have shown is the same as k~). All three scale differ-
ently. We choose the scaling of k~~ following Shankar:
that is, we imagine integrating out fermions in a shell
given by A/b ( es ( A about the Fermi surface and then
rescaling the momentum perpendicular to the Fermi sur-
face to restore the upper cutoff. We then choose the
scaling of frequency to keep the lul"~1 + 1 term in the
fermion action invariant, and then choose the scaling of
q (which is the same as that of k~) to keep the gauge-
6eld propagator invariant. Finally, we choose the scaling
of the fields to compensate for the scaling of the coordi-
nates and integrals, so that the quadratic terms remain
invariant. Note that we must interpret f d~q in the gauge
field term or the fermion field term as f dq~~d" iq~. This
implies

3d+1+a
4 ~Cb

4+1++aMab

Gombining all factors we get the following tree-level scal-
ing equations for the charges 1/pp and g:

(
dlnb q dp

dg

dlnb

Therefore, the gauge-Geld ferxnion coupling is marginal

dI'2„2+z
gin b

(52)

where o is a number which depends on the fixed point
values of po and g. Our results of the previous sections
may be viewed as calculations of the fixed-point values
of po and g in the large- and small-N limits.

Although there are no logarithmic corrections to the
fermion propagator, the 6nite renormalizations gener-
ated by marginally irrelevant operators do mean that the
fermion propagator G (e, p~~, p~) is not precisely given

by the form lel &+ —v~[p~~+p&/(2pp) j written in Eq. (51)
when lel +, v~p~~ and p&/(2pp) are of the same order,
although the limits when one argument is much larger
than the others are correctly given.

Finally, we consider d = 2, x = 0. Here at tree level we
would conclude that for the action with inverse fermion
propagator (ur —vFk~~ + P k&2) and for inverse gauge

propagator (lql + j—j ) the fermion-gauge-field coupling is
I~I

marginal. However, caution should be excercised in de-
riving renormalization group equations beyond tree level,
because in the two-loop calculations presented in the pre-
vious section no terms of order (ln A) were found so that
the logarithms found in one-loop order do not sum to
powers. Instead, the calculations presented in Sec. IV
show that the asymptotic form of the fermion propaga-
tor is iv) ln lurl —v~k~~ —2~ k&, and the 2p~ vertices are

extremely weakly singular ( exp 2 ln lnui).

VI. CONCLUSION

We have presented a discussion of the low-energy prop-
erties of a system of ferxnions in spatial dimension d

for d & 2 but in d ) 2 the effective curvature of the Fermi
surface grows. For large curvature the usual arguments
leading to the Migdal theorem imply that the crossed
graphs may be neglected, so we may restrict ourselves to
the leading order of perturbation theory, which gives the
self-energy l~ I

'+
Alternatively, one may consider a scaling procedure

which preserves the form of the fermion propagator. In
this case one must scale k~ as b ~ and in d & 2 both the
coefficient of the qi+* term in the gauge propagator and
gauge-field-fermion coupling g scale to zero (indeed the
tree-level scaling equation for g becomes g~ g 4 so
that a manifestly weak-coupling fixed point is obtained).

In d = 2, however, all charges are marginal for all x & 0
and further analysis beyond tree level is needed to de-
termine which physical quantities are renormalized. For
our purposes the most efficient method of deriving the
one-loop renormalization group equations is to use the
technique of differentiating the one-loop diagrams with
respect to the upper cutoff. The calculations presented
in the previous sections can be carried over directly to
show that the only quantities which are renormalized are
the 2p~ vertex I'2„~and polarizability II(2p~). In partic-
ular, neither pp nor g scales in d = 2. Rewriting Eq. (19)
in the notations of this section (here we normalize to k~~

and in the previous section we normalized to &equency)
we find
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coupled via a singular gauge interaction with propaga-
tor D(a), q) = (~a~[/[q] + [q~'+*) '. We found that the

d
fermion lifetime scales as ]ai]&+. (in 3 ) d ) 2, x ) 0)
and that in d = 2 the 2py fermion polarizability II(ai, q)
was nonanalytic and possibly divergent as Q -+ 2py and
~ -+ 0. %hether or not the susceptibility is divergent
depends on the value of an exponent, e, which we could
calculate only in certain unphysical limits. In the spin-
liquid case x = 1 extrapolation of our calculated o. to
the physical limit of spin degeneracy N = 2 Rom two
sides yielded estimates for o bracketing the critical value
o, = 1/3 above which II diverges. In the v = 1/2 case
one must distinguish between screened and unscreened
Coulomb interactions. In the unscreened case, x = 0, the
self-energy is ~ ln~ while the nonanalyticity in the 2p~
vertex is very weak: exp {zln [in[a~]]) and the polariz-
ability does not diverge. In the screened case the results
for 2; = 1 apply with spin degeneracy X = 1 and our
estimates suggest that the 2p~ polarizability diverges.

There is a simple physical interpretation for the non-
analyticities at 2p~. a moving fermion emits a gauge
field which relaxes so slowly that if at a later time the
fermion is scattered backwards it meets the gauge Beld
again and is able to lower its energy. It is remarkable
that this physics can lead to an actual divergence of the
2p~ susceptibility if the fermion-gauge-Beld interaction
is strong enough. The form of the divergence is given
in Eqs. (24) and (25) and is controlled by an exponent cr

which can a priori take any value. However, we note that
if o ) 7/6, then P II(w, q) is infrared divergent. Such
a divergence is not possible; for example in a magnetic
system this would imply that the expectation value of the
square of the local spin density (9, ) diverges. Therefore
we believe that for o ) 7/6 some other physics beyond
the scope of our calculations must intervene to cut ofF
the divergence. One mechanism for this feedback can
be seen in the spin-Huctuation contribution to the elec-
tron self-energy. For cr ) 7/6 this diverges, implying a
smearing of the Fermi surface which would suppress the
Fermi surface singularities we have found. However, for
7/6 ) o ) 1/3 we believe this critical phase is stable.

In order to understand the physical properties of the
critical phase, consider Brst a translation-invariant elec-
tron gas (as is realized in the half-filled Landau level).
Then Eq. (25) would predict that the susceptibility di-
verges as T ~ 0 on a ring of radius 2py. For fermions on
a lattice, the situation is more complicated for reasons
very similar to those analyzed by Littlewood et al. in
a study of 2pF singularities in a marginal Fermi-liquid.
picture. First, intead of a circle of radius 2p~ one ob-
tains one or more curves traced out by the vectors Q
connecting points with parallel tangents. Second, the
amplitude (but not the exponent) of the divergent term
in y2„~ varies around the curve due to the variation of
v~ and po around the Fermi surface. Third, one obtains
additional families of curves on which y diverges. These
are generated by Q+ C where G is any vector of the re-
ciprocal lattice. As a result one gets additional peaking

when members of difFerent families intersect. The result,
for band structures appropriate to high-T, superconduc-
tors will be a susceptibility strongly peaked at particular
points in q space which might be qualitatively consistent
with neutron data for La2 Sr Cu04. In addition, the
divergent spin Quctuations imply that the Cu NMR rate
1/T iT oc 1/T ~, so the 1/TiT diverges as T +—0
even at the borderline value cr = 1/3. The value ~r = 2/3
would lead to 1/TiT oc 1/T consistent with Cu NMR ex-
periment on high-T, superconductors. Of course, if these
wave vectors where g"(~, q) is maximal are too far from
the commensurate wave vector (vr, m), the oxygen 1/TiT
will also diverge, in disagreement with experiment. 22

In the half-flied Landau level case with screened
Coulomb interaction the divergence in the 2pp suscepti-
bility could in principle be observed in sound propagation
experiments in which the phonon wave vector is tuned to
2p~. The divergence should lead to a large damping of
the phonon which increases as T is decreased. The ef-
fect should be observable for temperatures and phonon
&equencies less than a scale up which we calculate Rom
Eqs. (3), (4), and (43). We rewrite the expression for ~o
in terms of the Fermi energy e~ = h p~&/(2m), Coulomb

2 1/2 —iparameter E, = ' ",and the screening length K

obtaining
3 K2

~p 0.15 nE2

Assuming typical numbers for GaAlAs inversion layers
m = 0.07m„i = 13 and n = 10 cm we have

2

E~ 50 K and E, 40 K so Rap [K] = 10—". Thus
if the screening length is not too much greater than the
interparticle spacing, the e8'ect should be observable.

Note added in proof The util. ity of Ward identities
in analzying the crossover from one- to two-dimensional
behavior was previously noted by Castellani, diCastro,
and Metzner.
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APPENDIX A: VERTEX AT LOW MOMENTUM
TRANSFER

Here we use the Ward identity to derive the exact form
of the renormalized fermion-gauge-Beld vertex at low' mo-
mentum transfer q~ and

q~~ (the exact conditions under
which this form applies will be obtained below). In this
limit the renormalized vertex becomes singular, and our
goal is to find the form of this singularity. The expres-
sion that we shall find is correct at any N for suKciently
small transferred momenta q~, qI~. The value of N deter-
mines only the range of q~, q~~

over which the expression
obtained in the limit of very low momenta remains valid.

The fundamental Ward identity was given in Eq. (34);
we repeat it here for convenience:

(ai, q) —q((I'" (~ q) —q&I', „(~,q) = G '(e+(u/2, p+ q/2) —t (e —(u/2, p —q/2) .
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Here I' is the density vertex and I't~ and I' are the com-
ponents of the current vertex parallel and perpendicular
to vF(p). We wish to obtain from this an equation re-
lating I' to the fermion Green function. As noted previ-
ously, in the present model at small q, ~ the current ver-
tex I'~~ is related to the density vertex I' by r~~ = v~r .
We now derive the relation between I' and I' . Con-
sider a high-order diagram for I'+ of the type shown in
Fig. 9(a), in which one of the gauge-field lines connecting
one external fermion leg to the other is isolated, i.e., not
crossed by any other gauge-field line connecting one ex-
ternal fermion leg to another. The analytical expression
has the general form

g=n

d k~ kz, D k~ Q,
i=1 j

(AI)

D(kg~)kg dkg ——0 . (A2)

This integral converges poorly at large k~, because the
integrand decreases as I/k~ at large k~, but is zero
at q~ ——0, because the integrand is an odd function of
k~. At any q~ g 0 the dependence of the Green fuctions
on the momentum k~ can no longer be neglected. Since
Green functions depend only on the product q~k~, their

I

where index i runs over n values corresponding to the
gauge-field lines connecting diferent legs and we did not
explicitly write the arguments of the fermion Green func-
tions G. Label the momentum of an "uncrossed" gauge-
field line by k, and pick out the term in the sum pro-
portional to k~ . We show below that all other terms in
the sum are small.

In the limit q~ ~ 0 the fermion Green functions in
diagrams such as Fig. 9(a) depend only on the combi-
nation (k~~ + kz /2po), so their dependence on k~ can
be completely eliminated by the shift k~~ ~ k~~

—k&/2po.
(Recall that the k~~ dependence of D is negligible always).
After this transformation the only remaining dependence
on k~ is in D(k~ ) The rem. aining integration over k~
is straightforward:

FIG. 9. (a) Typical high-order diagram for r . (b) Sum

of these diagrams. Broad wavy line represents propagator
k~D(u, k~) with large momentum transfer in perpendicular
direction.

k~ dependence becomes significant only at large k~
Z(e)/q~. At smaller k~ the dependence of the Green
function on k~ can be neglected and the contributions
&om positive and negative k~ cancel each other. Because
the main contribution to this diagram comes &om large
k~ Z(e)/q~, the Migdal arguments of Secs. II and III
show that at large k~ all diagrams in which other lines
cross the line with large momentum transfer are small.

Now consider any arbitrary diagram for I'+. The corre-
sponding analytical expression will be of the form shown

inEq. (Al). Pick out one term in the P,' i k~;. The di-
agram will be important only if the gauge-Geld line carry-
ing this momentum is "uncrossed" in the sense discussed
above. This justifies the assumption made above that
the term in the sum proportional to k~ corresponds to
an "uncrossed" line. Therefore, the diagrams which give
the dominant contribution at small q~ can be represented
as the diagram shown in Fig. 9(b). Here the two blocks
involve gauge-field lines which cross each other and the
double wavy line represents D(k~ )k~ Since t. he in-
tegral over k~ in the double wavy line is dominated by
large k~, the frequency dependence of it can be neglected
while the dependence on k~~ can be neglected always. For
this reason, the outer block is simply with the bare ver-
tex I . The inner block can be also expressed in terms
of the vertex I' . After some manipulation we find

/2 2v3 dzkd(uI', (0, q) = F, (0, q) F~ ~(0,q)G(a+~+0/2, p+k+q/2)G(e+ur —0/2, p+k —q/2)
PO J

(A3)

In this equation the vector character of the vertex is expressed via the factor of k& which may be positive or negative.
Together with the Ward identity Eq. (34), Eq. (A3) forms a closed system of equations for the vertex I' . To solve
it we introduce the notation

r„(~,q) = upB(q~~, q~)r,', (~, q) . (A4)

Here we have suppressed the dependence of B on the &equency ~, because cu is a dummy variable in the analysis that
follows. We use the Ward identity to express Fo in Eq. (A3) through B(q~~, q~), finding

upg2N'~2 (d2kM) G(a+~+0/2, p+k+q/2) —G(e+~ 0/2, p+k —q/2)—
B(q(( q~) =

PO k L LO —Uy (q~~ + ) —qgvpB(q +,qg)

Integrating over k~~ and ur and scaling the k~ variable (k~ -+ k~po/q~) we find

(A5)
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dk iO
B(q~~, q~) = o. sgnq~ P

2~k.n —
(q~~ + k) —B(q~~ + k, q&)q~

where 0 = 0/vF and

vFg2Ni/2

PO
(A7)

f

gleet the kequency dependence of the gauge-field propa-
gator. Both these conditions are satisfied if q~ (( ~k~.
In the limit N » 1 this condition limits drastically the
range of momentum where (A10) can be applied.

is a dimensionless parameter of the order of N / . It is
convenient to consider positive and negative 0 separately.
The considerations are similar so we consider explicitly
only 0 ) 0 here. Equation (A6) can be simplified if we
assume that the denominator in it has poles only in the
upper half plane. We shall show this assumption is self-
consistent. In this case the integration contour can be
closed in the lower half plane and the integral equation
simpli6es to the algebraic equation

1 aO
B(q(~, qi) = —.-

2 if' —
(q(()

—qiB(q((, qi)
(A8)

Solving it we find

B(q(~, qg) =
iO —q)I+ iO —

q)t
2 —2n q~ 0

(A9)
2qg

Restoring the notations of Sec. III and using vFq~~ && 0
we get Eq. (36) of Sec. III.

Combining the Ward identity (34) with Eqs. (A4) and

(36) we get the final expression for the vertex at low

momentum transfer:

G (&+0/2, p+q/2) —G (e —0/2, p —q/2)

vF q~~ + g(«q~~) —2~]nl]q~ [
—iA«q~~

(A10)

Thus, I' is substantially enhanced at low momenta

«q(( « l~o' Il~l' ' «& («q(()'/(~[Ill) T»»ange
of momenta becomes small at N » 1 because a N /'2

and does not contribute much to the self-energy.
The essential ingredient in the derivation of (36) and

(A10) was assumption that the momentum k~ is suK-
ciently large so that crossing diagrams can be neglected.
We also assumed that k~ && k which allowed us to ne-

APPENDIX B: HIGHER-ORDER DIAGRAMS IN
1/1V

The calculations of Appendix A show that the gauge-
field-fermion vertex is enhanced at very low momentum
transfer as is evident from Eq. (A10). This equa-

tion, however, was derived under the assumption that,

q~ (( &k . At larger momentum transfer q~ the correc-
tions to the bare vertex are small and Eq. (A10) is not
valid. Instead, the leading corrections are given by the
first crossing diagram shown in Fig. 3. A straightforward
calculation gives Eq. (10). Equation (10) crosses over

to Eq. (A10) at q~ ~k . So, at large N the mo-

mentum range where the whole series of diagrams should
be suinmed is small in 1/N, moreover, this momentum

range turns out to be so small that it does not contribute
even to subleading order in 1/X for most quantities. For
instance, the contribution of this range to the self-energy
is of the order of N, , whereas the leading term which

comes &om larger momenta is of the order of i~a]

[Eq. (14)]. Thus, in order to obtain the subleading terms
1 Nof the order of '"~~, ~ it is sufhcient to keep only the first

crossing diagrams in the photon propagator. However,

in order to obtain all terms of the order of ~, one needs
to use the Eq. (A10) and the crossover formulas (which
we did not derive) in the range q~ ~k

Similarly, in the calculation of the exponent of the 2pF
vertex, the enhancement of the gauge-fieM-fermion ver-

tex at q~ ~k~ leads to corrections of the order of

~, to the exponent. As we shall see below, the leading
terms are larger by factors of in[A], so in the sublead-

ing term we again can keep only the simplest crossing
diagrams shown in Fig. 5. Only the diagrams shown

in Figs. 5(b) and 5(d) have contributions which con-

tain powers of in[A]. Consider the diagram shown in

Fig. 5(b). Its analytical expression reads

a, r, p (~) =U4q f n(q, a)n(n, q)n(q, a)a(n+q, q+a)G(n, q)a(n+~, )( q
'qd dms—d)a. nq

The contribution containing logarithms of N comes &om the momentum range k~ ) ]k~l ) lq~l ) ~kri. In this

range the self energy parts of the Green functions can be neglected. We integrate over parallel components of momenta

k~~ and
q~~

and symmetrize the resulting expression obtaining:

dk&dq&
bil'2„(n)) = dQ dq

2m o o k~q~ —q~

Evaluating the remaining integrals with logarithmic accuracy we get
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1 ln [N] (11
( )= 8+2 ¹ (IG)

Evaluation of the diagram shown in Fig. 5(d) is very similar. It has the analytical expression

dsI'se (tv) = vr fD(q k)D(B q)G(B k)G(B+q q+k)G(B+q4 tv, —(q+ k)]G(B+tv, —q)(d qd kdBdq) (B4)

In Eq. (B4) we have assumed that the moments of the external fermion legs are +p~, respectively, and have only
explicitly written the dependence of the internal Green functions on the deviation of the momentum &om pF.

We integrate over parallel components of momenta, obtaining after symmetrization:

( )
p' "„„„„"Pl~["'I~+~I"'—q'(k +q )"g [~(~+~)]D(„,)D(„„)„„„,"

o (Plf~l'"+ q4)[PILI+ nl'+ (q~+ ki)']
(B5)

b2I'»H(~) = ln
l

—
l

1 ln [N] (1)
4z.2 ¹ (ur )

(B6)

Here II = 4 (m tve . The hrst term in the nnmere-0 4/3

tor of this integral is logarithmically divergent; the main
contribution to the integral comes from the frequency
range ri ) 0 ) u and results in a 2~, ln (I/(d) contri-
bution which one expects &om general renormalization
group arguments. The second term in the numerator
has no contribution from this &equency range due to
sgn[O(A+ (7)), so it results in only one power of 1n(l/u),
instead it contains ln[N] coming from the momentum
range k„)lk~l ) lq~l ) kii. In this momentum

range we neglect the self-energy parts of the Green func-
tions and perform integrals with logarithmic accuracy ob-
taining:

Adding the contributions from the diagrams in Fig. 5(b)
(which come with a factor of 2) and Fig. 5(d) we get Eq.
(19).

APPENDIX C: EXPONENT OF THE 2'
VERTEX IN THE SMALL-N' LIMIT

In order to find the exponent of the 2pp vertex in the
small-N limit we evaluate the first correction to the 2p~
vertex shown in Fig. 5(a) using the exact gauge-field-
fermion vertices and then exponentiate the result. This
prescription is known to work in 1D Lutinger model and
it gives the leading terms of the 1/N expansion. The
analytical expression for Fig. 5(a) is

4I'sv (er) = —vr f G(q, q)G(q+ tv, q)D(q, q)I'„r(—,——
)

I'—„—s (—,—) (d qdq) . (C1)

This expression simplifies if the external &equency of the fermion is zero and its momentum is on the Fermi surface
because in this case G (e, p) = 0, leaving only one term in the numerator of Eq. (37) for the vertex. Combining (37)
and (Cl) yields

OO OQ
4m~dqzdqllsr» (~) = — d& ,D(g, qg) .

Uq[~ + g(»q[[)' —2~WE.
(C2)

Here we replaced the exact dependence on the external &equency u by an approximate cutoK which is sufBcient for
logarithmic accuracy. Evaluating this integral we get

br, „((D)= o ln
l

—l, (C3)

where 0' is given by (40).
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