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The half-filled extended Hubbard model (including nearest-neighbor interaction) is considered in
perturbation theory at weak coupling on a d-dimensional hypercubic lattice (d + 3). lt is shown that
the exact critical temperature and the exact order parameter in the weak-coupling limit di8'er from
the corresponding Hartree results by a renormalization factor q of order unity. This renormalization
factor q is calculated systematically up to O(1/d) in a 1/d expansion. The results depend sensitively
on dimension and on the relative strength of the nearest-neighbor interaction. The renormalization
factor in d = 3, estimated from the 1/d expansion, is q = 0.282 for the pure Hubbard model,

q 0.179 near the spin-density-wave to charge-density-wave transition and q 0.830 in the limit of
pure nearest-neighbor interaction.

I. INTRODUCTION

It is well known~' that Hartree-Fock theory, the
canonical mean Geld theory for interacting many-particle
systems, is equivalent to self-consistent Grst-order pertur-
bation theory. As a consequence, Hartree-Fock predic-
tions are asymptotically exact at weak coupling, at least
up to linear order in the interaction. However, many
Hartree-Fock predictions, in particular, those concern-
ing symmetry breaking, involve physical quantities that
(at weak coupling) are much smaller than linear in the
interaction. For instance, the order parameter and the
critical temperature are exponential/'y small as a func-
tion of the coupling constant, both in antiferromagnetic
Hartree-Fock theory for the Hubbard model and in the
BCS theory of superconductivity. 4

The central question addressed in this paper is, there-
fore, what is the relevance of Hartree-Fock theory for the
low-temperature phase in the weak-coupling limit? In
view of the Mermin-Wagner theorem this question is of
interest only in higher dimensions (d ) 3) and possi-
bly for the ground state in d = 2. To test the quality
of Hartree-Fock theory in higher dimensions we consider
the extended Hubbard model, which is a standard model
for electrons on a lattice, interacting through short-range
(screened) Coulomb repulsion. For this model we show

that although the Hartree-Fock predictions for the low-

temperature phase in higher dimensions are qualitativeLy

satisfactory, quantitatively they can be ofF by a factor of
three to Gve. A summary of the main results of this pa-
per was previously published as Ref. 6. Here we present
the details.

The pure Hubbard model describes itinerant electrons
on a lattice, interacting through on-site Coulomb re-
pulsion. Since its introduction in 1963 by Hubbard,
Gutzwiller, and Kanamori, the Hubbard model has be-
come a standard model for correlated fermions on a
lattice. It has been used to explain various impor-
tant phenomena in condensed matter physics. Examples
are the (Mott-Hubbard) metal-insulator transition, '

the paramagaetic-antiferromagnetic transition, ' ferro-
magnetism, incommensurate phases, and, most
recently, high-T, superconductors in their normal
state. However, it has been pointed out already by
Hubbard7 that the Hubbard Hamiltonian as it stands can
be derived only under rather drastic assumptions. Many
other interaction parameters, some of which may appre-
ciably acct the phase diagram, are simply neglected.
The largest of these is the matrix element for nearest-
neighbor Coulomb repulsion. The generalization of the
Hubbard model that includes also nearest-neighbor in-
teraction is usually referred to as the extended Hubbard
model.

Accordingly, the Hamiltonian of the extended Hubbard
model has the form

t+KU+Kv+Kp, ~ (1)
where

Hg= — ) (c,. c,. , + H. c.), H„= —p) n;,

Here ct (c,. ) creates (destroys) an electron with spin o

at site i, n; = c,. c, , n; = n;~ + n;t and d is the space
dimension. In the sum over bonds (ij) in Hq and H~,
it is understood that i and j are nearest neighbors and
that every bond is counted only once. The grand canon-
ical Hamiltonian (1) describes hopping of electrons (H&),
interacting with each other through on-site (HU) and
nearest-neighbor (H~) Coulomb repulsion. For simplic-
ity we assume that the lattice has a (hyper-) cubical struc-
ture. The prefactors in Ht and Hy are chosen such that
a finite, nonvanishing energy contribution is obtained for
d ~ oo. ' Below we set t = 1 to fix the energy scale.
Moreover, we consider only U & 0 and V ) 0, since we

assume Coulomb repulsion, but the results are valid in
a wider range of parameters (see the discussion). The
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original Hubbard model corresponds to V = 0 in (1). In
this paper, we investigate the extended Hubbard model
at weak coupling (U, V $ 0), keeping the ratio

6xed. In order to obtain symmetry breaking at low tem-
peratures, even for U, V J. 0, we focus on the half-filled
band (n = 1), which corresponds to a chemical potential
p, = 2U+ 2V.

The extended Hubbard model has been intensively
studied previously, both analytically (at weaki and at
strongis'is coupling) and numerically (usually at half o 2i

or at quarter22 filling). These studies have been carried
out primarily in low dimensions, but some analytical re-
sults for the ground state in higher dimensions (d & 3)
are also available. ' As a result of this work, it is well
known that the ground state of the extended Hubbard
model exhibits a transition between a spin and a charge-
density-wave phase at v 2 in all dimensions. These
phases will be referred to as SDW and CDW throughout.
On the basis of the Mermin-Wagner theorem, which ex-
cludes long-range order at positive temperatures in d & 2,
a mean 6eld description of the extended Hubbard model
(such as the Hartree-Fock approximation) is meaning-
ful only in higher dimensions (d & 3). The Hartree-Fock
approximation for the extended Hubbard model was con-
sidered, e.g. , in Ref. 23.

In this paper, we study the extended Hubbard model
beyond the mean Geld approximation. Our aim is to ob-
tain exact results in the weak-coupling limit (U, V $ 0).
Below we show that, to obtain exact results, one has to
go to second order in perturbation theory. The Hartree
(or Hartree-Fock) approximation by itself does not yield
exact results for U, V $ 0. This is even true in the limit
of high dimensions, where various other mean field re-
sults for classical and quantum mechanical systems
are known to be exact. Our main result is that the ex-
act results for the critical texnperature and the order pa-
rameter differ from the Hartree predictions by a factor
q(v) of order unity. The renormalization factor q(v) can-
not, in general, be calculated exactly in 6nite dimensions
(such as d = 3). However, we show below that q(v) can
be calculated exactly in d = oo; approximate results for
finite-dimensional systems can then be obtained in a sys-
tematic 1/d expansion.

The starting point of our investigations (but not their
goal) is therefore the infinite dimensional limit. This
limit was introduced several years ago by Metzner and
Vollhardt ' as an approach to correlated Fermi sys-
tems on a lattice. The infinite-dimensional approach
has yielded various valuable results, such as the exact
solution of the Falicov-Kixnball model by Brandt and
Mielsch, its relation to exact mean field theories,
and the mapping of Hubbard-type models to single im-
purity problems. ' Unfortunately one of the most
interesting goals, the exact (analytical) solution of the
Hubbard model in d = oo, still seems far out of reach.
Recently, this shortcoming was partly made up for by the
beautiful numerical results on the infinite-dimensional
Hubbard xnodel. However, analytical results remain

of interest, since the nuxnerical simulations cannot cover
too small or too large values of the interaction, or, for
instance, the T ~ 0 limit. Part of the intention of this
paper is to add to the available analytical information
about Hubbard-type models in higher dimensions.

The thermodynamics of the extended Hubbard model
at small U and V can be determined by applying per-
turbation theory. The small parameters are, first, the
interaction strengths U and V and, second, the inverse
dimension 1/d. The starting point of the perturbation
expansion is the Hartree-Fock, or rather the Hartree ap-
proximation: We shall find below that the Fock contribu-
tion to T, and to the order paraxneter is small compared
to the Hartree contribution, of relative order U/d. How-
ever, the standard perturbation expansion around the
Hartree solution, which is self-consistent only to linear
order in the interaction, would lead to incorrect results.
Instead one finds (by using self-consistent second-order
perturbation theory) that the results, from the Hartree
approximation are renormalized by a factor of the order
of unity, even for d ~ oo and in the limit U, V $ 0.

To obtain these results, we proceed as follows. First,
in Sec. II, we suxnmarize the most important results from
the Hartree approximation, notably those for the critical
temperature, the order parameter, and the free energy
gain due to symmetry breaking, analyzed in the limit
U, V + 0. Then, in Sec. III, we discuss the perturba-
tion expansion at small U and V, including all diagrams
which contribute to second order in U and V and up to
erst order in 1/d. The calculation of these diagrams is
discussed in Sec. IV. Finally, in Sec. V, we combine the
results for the various diagrams and give explicit expres-
sions for thermodynamical quantities, valid in the limit
U, V ~ 0 and including the 1/d corrections. We end
with a discussion and a summary. Technical details are
deferred to the appendixes.

II. THE HARTREE APPROXIMATION

The Hartree approxixnation is obtained by decoupling
the interaction terms in H~ and Hv in (1):

Since we consider half 6lling, we make the usual
assumption that the average density has the form

where A = +1 on one sublattice [labeled by (+)], and
A = —1 on the other [labeled by (—)]. The symmetry be-
tween t and $ electrons implies that either r = 1 [which
corresponds to a charge density wave (CDW)], or r = o
(which corresponds to antiferromagnetism). s The order
parameter 4 is denoted by A~ in the Hartree approxi-
mation, and can be calculated from the consistency re-
quirement (n;~)~ —— 2(l 6 b,~) if i p (+). As usual
there are two solutions: a trivial solution 4 = 0 and
a nontrivial solution b,~ & 0 that has a lower (Hartree)
free energy for T & T, , where T~ is the Hartree critical
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temperature. We focus on the nontnvial solution below.
What does the Hartree approximation predicts Be-

low we give the results for the critical temperature, the
order parameter, aad the free energy gain due to sym-
xnetry breaking, calculated for a d-dimensional hypercu-
bical lattice in the limit U, V ~ 0. Details concerning
the asymptotic analysis for U, V ~ 0 can be found in
Appendix A, Sec. A4.

We start with the critical temperature T, , which can
be determined by putting A~(T, ) = 0 in (A7) and solv-
ing for T as a function of U and V. One finds that the
critical temperature is exponentially small for U, V —+ 0:

kiiT, exp
~

Iq—
2oiUvg 0 )

(U, V m 0) . (4)

where vg(y) is the density of states. In high dimensions
(d )) 1) the constant I& can be calculated explicitly. In-
cluding the 1/d corrections one finds

Ig = —ln2+ -p —ln~+ —+ 0(d ),=3 1 1 —2
2 2 4d

(6)

where p 0.577 is Euler's constant. The numerical value

of Id, in (6) is Ig 0.1836+ 1/4d.
The order parameter, too, is exponentially small as a

function of U and V. The temperature dependence of
68(T) can most conveniently be formulated by intro-

ducing a rescaled order parameter h = zaUb, +/kBTH
and a rescaled temperature 8 = T/TP . These rescaled
quantities are for U ~ 0 related by

For small U, the corrections to the right hand side are
exponentially small, of order (k~T, )2. The parameter
a in (4) is given by n = 2v —

2i in the CDW and by
n =

2 in the antiferromagnetic (SDW) phase. In general
dimensions d & 3 the constant Id can be expressed in
terms of an integral,

Iq = dy —
~

tanhy —1+
~

—ln2,
1( v~(y) &

o v~(0) j

FIG. 1. The order parameter as a function of tempera-
ture, expressed in the rescaled variables 6 = QUA/-knT,
and 8 = T/T,

where

28 (cosh(gy2 + h2/8) )
b2 ( cosh(y/8) )

tanh y

Note that the lowest &ee energy is obtained for the state
with the largest value of o.. This illustrates the well-
known fact that the system is in the CDW phase for
v & 2 and in the SDW phase for v ( 2, at least in the
Bartree approximation.

behavior, h(8) A(1 —8)i/2 with A. 1.53. Details can
be found in Appeadix A4.

The gain in free energy OH& due to symmetry breaking
can also be calculated. For small U and V one finds (see
Appendix A 4) that

B~~(T) - —n2U2(A )2'(0)4(8) (U $ 0), (8)

tanh y2 + b2 8
0= dy

0 gy2 + h2
(7)

III. PERTURBATION THEORY
AT SMALL U AND V

Note that the rescaled order parameter h(8) in (7) has the
same form for all values of the interaction ratio v. Start-
ing from (7), b(8) can be calculated numerically. The
result is presented as Fig. 1. In fact, the relevance of
Fig. 1 extends beyond the Hartree approximation: Be-
low we shall see that the exact order parameter of the
extended Hubbard model, after proper rescaling, also has
the form of Eq. (7) or, equivalently, Fig. 1. The limiting
behavior of h(8) for 8 $ 0 and 8 f 1 can be calculated
analytically. For 8 $ 0 one finds that h'(8) approaches
the limiting value b(0) = &me ~ 0.882 exponentially,
where p = 0.577. . is Euler's constant. This implies
that the gap ratio 2aUb, ~(0)/k~T, is exactly given by
2me ~ 3.5285, independent of v. This result for the

gap ratio is identical to the standard BCS result for
this quantity. For 8 g 1 one obtains mean field critical

The Hartree result (8) for the free energy gain due
to symmetry breaking implies that one cannot use stan-
dard perturbation theory around the Hartree solution to
study the Huctuations. The reason is that the contribu-
tion of the second-order diagrams to the free energy gain
is also of order U (4 ) (see below). Hence the thermo-
dynamics at small U and V has to be determined self-
consistently from the Hartree contribution and the Huc-

tuations together. There are various equivalent ways to
do this. Below we will use a method proposed by Georges
and Yedidia. An alteraative, which leads to the same
result, is the self-consistent perturbation scheme of Bick-
ers and Scalapino, which is a conserving approximation
in the spirit of Baym and KadanofF.

The method of Georges and Yedidia is based on an
expansion of the free energy per site f (U, V, b, ) in powers
of U and V at a fixed value of the order parameter 4:
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f(U, V, b) = fP(4) + Ufi(6) + U f2(h) +
= fO+ fi+ f2+. . . . (9)

4 oo

fs ——hob, —— ds va(s) ln 2cosh (2pq, )
'

0

fi ——4U+ V —2aUA —2V[Gi(0)]
P P

f2 d rl d7 2 ([HU (r1) + Hv (ri )]2Po o

x [HU(w2) + Hv ('72)])o .

(loa)

(1ob)

(loc)

The various contributions f„depend on the field ho ——

b(0), which in turn depends upon b, through the consis-
tency relation (B3). The optimal (equilibrium) value of
6 is deterxnined by minimization of the free energy at
fixed (U, V, T):

df Bf dhp Bf
dA Bhp dA 84

The quantity Gi(0) in fi is the Hartree Green function
Gt;(v) for nearest neighbors i and j and v = 0. The
factors HU and Hv in f2 represent the fiuctuations in
H~ and Hv, see the definition (B4). The average ( )o
refers to connected diagrams, which are to be calculated
using Hartree Green functions with gap paraxneter h0.

The various diagrams that have to be calculated in
this approach (up to second order in U and V and up
to first order in 1/d) are listed in Fig. 2. A vertex HU
is represented by a dashed line, a vertex Hy by a wig-
gly line. There is one first-order diagram [diagram (a),
the Fock term]. Diagrams (b)—(e) correspond to the var-
ious second-order diagrams. We also listed an example
of a higher-order diagram, (f), which can be shown to
be small. The calculation of these diagrams is discussed
below, in Sec. IV.

The basic simplification occurring in high dixnensions
is that the Green functions (T c.+, (7)ct (0)) in posi-

tion space fall off very rapidly with distance (oc d
as d -+ oo). As a consequence of thi.s rapid falloff of the
Green functions, it becomes possible to explicitly eval-
uate diagrams in high dimensions, whose calculation in
d = 3 would have been either impossible or at least nu-
merically very costly. The physical idea is now that s»m-
mation of the first few terms in the 1/d expansion of a
diagram in high dimensions yields a good approximation
to the value of that diagram in d = 3. As an exam-
ple, consider the general second-order diagram of order
U, containing two Hubbard-interactions with site labels

The functions f„(b) in (9) depend implicitly on v and
T. The order parameter in (9) is kept fixed by introduc-
ing a I agrange parameter h(U), which couples linearly
to the staggered magnetization (in the SDW case) or to
the staggered charge density (in the CDW case). For
the purposes of this paper, we need a generalization of
Ref. 39, tailored to the extended Hubbard model in posi-
tion space and at positive temperatures. The necessary
formalism can be found in Appendix B.

According to Appendix B, the contributions f„ to the
free energy per site are for n = 0, 1, 2 given by

(a)
I I

i+e ———— I+e In (c)
)i+ e~

i+ en

i+ e~

FIG. 2. Various diagrams encountered in perturbation the-
ory at constant order parameter. The dashed line represents
the Hubbard interaction KU, while K~ is represented by a
wiggly line. The vertices are labeled by site indices; here, e„
is one of the 2d possible lattice vectors.

IV. CALCULATION OF DIAGRAMS

Of all diagrams listed in Fig. 2, diagrams (a), (b), and
(f) are special. Diagram (a), the Fock term, is the only
first-order diagram to be calculated; its evaluation is (rel-
atively) simple and instructive. Diagram (b) is numeri-
cally the most important diagram in high dimensions: it
yields a contribution of order unity as d —+ oo, while the
other diagrams are smaller by a factor of either 1/d or U.
Diagram (f) is of interest, since it leads to a stabilization
of the SDW phase and hence to an upward shrift of the
SDW-CD%'-phase boundary in the phase diagram. The
calculation of diagrams (a), (b), (f) will therefore be dis-
cussed in some detail (technical details can be found in
Appendix C). Results for the other diagrams will simply
be stated.

I et the contribution to the f'ree energy f of diagram v
(v = a, , f) be given by f„It turns ou.t to be conve-
nient to calculate not f„ itself, but instead its derivative

B„(ho,P) =—1 Bf„
0 0

(12)

One reason is, that one needs the derivative to deterxnine
the equilibrium value of b, , see (11). Another reason is
that it turns out to be easy to determine the free energy

i and j, respectively [the diagrams (a) and (b) in Fig. 2
are special cases, corresponding to ~i

—j~ = 0, 1]. Since
the U2 diagram contains four lines, its value is propor-
tional to (d )')~2)4 = d 2)'), where s = i —j. For each
i the number of difFerent ways to choose a j at distance
(s( is proportional to d)'). Thus, the total contribution
from all sites at a distance )s~ is oc d )~). Hence only the
terms corresponding to ~s~ = 0, 1 are needed to calculate
the U2 diagram up to O(1/d). Along similar lines one
concludes that the only first- and second-order diagrams
contributing to the free energy up to O(1/d) are those
given in Fig. 2(a)—(e). All these diagrams can be cal-
culated if one knows the Green functions for )s~ = 0, 1.
The explicit form of these Green functions is given in
Appendix A 2.
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gain f„(hp, P) —f„(O,P) from B„by integration in the
end.

In the calculations of diagrams, it is convenient to re-
strict consideration to those solutions hp(U, T) of Eq. (11)
which have the same exponential U dependence as the
solution of first-order perturbation theory. In particular,
we assume for the ground state,

1
lnhp{T = 0) -—

2aUx g(0)
(U ~ o) . (13)

No assumptions are made concerning the prefactor of the
exponential U dependence. Concerning the critical tem-
perature we assume that k~T, is of the same order of
magnitude as the gap ho in the ground state, so that
P,hp(T = 0) = O(l). Physically this is obvious. These
assumptions will be justified a posts ori, since the solu-
tion for hp(T), to be found below, has the stated proper-
ties.

From the last term in fx in (lob) it is clear that the
Pock contribution to the free energy is given by f—2V[Gx(0)], where Gx(0) follows from Appendix A 2 as

1 2

Gx(0) = — ds x g(s) —tanh (2xPxl. )2d p

J(hp, P) .
2d

Hence f can also be written as

f = ——J(hp, P)j

and, consequently,

B-(hp &) = — J(ho &)J'(ho &)

where we defined J' = BJ/Bh2p. The calculation of B in

(15) is discussed in Appendix C. It is shown there that,
to dominant order in U, one obtains a very simple result:

B (hp, P)

U2
fs = — d7x d» ) Gp~(7.x

—7.2)
4l3 o o

xG,",(» —~,)G,",(» —~, )G,",(T, —») .

This result is characteristic for many calculations in the
limit U -+ 0: the right hand side of Eq. (16) is indepen-
dent of temperature. In fact, the dominant temperature
dependence in B appears only in the dominant correc-
tion terms to (16), which are of relative order U.

We turn to the calculation of diagram (b), which de-
scribes the Buctuations in HU at a given site. Diagram
(b) is numerically ixnportant, since it is the only second-
order diagram in Fig. 2 that survives in d = oo. Since
we are interested in the thermodynamics up to O{d ),
we have to calculate diagram (b) including its 1/d cor
reactions.

The integral form of diagram (b) is

Since the Green functions for even values of 1 have
the symmetry properties Gt" (7 ) = r G&&(r w) and

Gt "(v) = —Gt (—~) (see Appendix A2), Eq. (1?) re-
duces to

U2 P
fs= drx d» Gp+~(~, —»)Gp+t(» —Tx)

2P o o

U2 P
d7. [Go(T)Go(—~)]

0
U'2

~s(P) .
2

In the second step we used the periodicity of the inte-
grand as a function of 7y —72 and we simplified the no-
tation to Gpt(v):—Gp(r). Details concerxung the eval-

uation of the integral Zs(P) can be found in Appendix
C. The main result for fs, or rather for its derivative

Bb(hp, P) is

Bs(ho, p) - pa/n' (U +O), - (19)

where the constant pg is given in (C?). Again the most
striking feature in (19) is that Bs(hp, P) is independent
of temperature for all T & T, . In fact the temperature
dependence of Bs(hp, P) enters only to linear order in U,
due to the first line on the right in (C8). The situation
here is thus completely analogous to that for diagram (a),
where the temperature dependence of B (hp, P) was also
suppressed by one power of U.

Next we summarize the results for diagrams (c)—(e).
Diagram (c) describes fiuctuations due to Hubbard in-

teractions at neighboring sites. The diagram is of or-
der O(d ), since it contains four nearest-neighbor Green
functions [yielding a factor (1/v d) = d 2] and all possi-
ble nearest-neighbors are summed over (yielding a factor
d). The expression for diagram (c) in terms of Green
functions is

f, = —U d d~ [Gx(~)Gx(—v)]
0

= —U d d~ [Gx(~)]
0

(2o)

which is of O(U2/d), since Gx(7.) = O(d x~2). The form
of (20) is very similar to that of Eq. (18) for diagram
(b), the main difFerence being that Gp is replaced by Gx.
However, this di8'erence leads to a qualitatively diferent
result for the derivative B(hp, P): whereas Bs is of O(1)
for U —+ 0, one finds that

B,(hp, P) = O(U/d) (T & T~), (21)

which is smaller than Bs(hp, P) by a factor of U for U ~
0. Hence diagram (c) is negligibly sma/1 in the limit U ~
0. The difFerence between diagram (a) and (c) comes
about because for E = 1 the term proportional to Qe
in (A5) vanishes. The term containing Qt distingmshes
the two sublattices (A = 6) and yields the dominant
contribution to diagrams involving Gp(r).

Diagram (d) describes the 1/d corrections due to fiuc-
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2V' 2V2
fg = — dT [Gp(T)G0( —T)] = — Zg(p),

d d

so that fg is simply equal to 4v2fs/d T.he immediate
consequence for Bg(hp, P) is

4@2
Bg(hp, P) = (T & T.), (22)

tuations in IIv. The only contribution to order 1/d
comes &om the term with equal site indices at both ver-
tices; all other terms are smaller by at least one power of
1/d. The 1/d correction due to diagram (d) is therefore
given by

for U $ 0. This is smaller by one power of U than the
contributions B„ofthe diagrams (a),(b),(d), (e), so that
in the limit U $ 0 diagram (f) can be neglected. How-

ever, at small but finite U diagram (f) nevertheless has
important implications. We will come back to this in the
dlscusslon.

V. COMBINATION OF RESULTS

Combination of the results for B„(hp,P), obtained
above for the various diagrams (a)—(e) yields the follow-

ing results. If we define the Bee energy correction, due
to these diagrams, by

which is again temperature independent for T & T .
Diagram (e) describes the fluctuations due to mixing

of HU and Hv. The main contribution comes 6.om terms
where the lattice site, connected to HU, is equal to one of
the sites connected to H~. The expression for diagram

(e) in terms of Green functions is given by

then the derivative

B(hp, P) = — C
1 Bf
0 0

(U~ 0)

f = f.+ f3+ f.+ fa+ f. ,

(25)

f, = —4UV dT Gp(T)Gp( —T)G1(T)G1(—T) )
p

and the resulting expression for B,(hp, P) is

B,(hp, P) = v

21r )
(T & T.), (23)

U3„P f3 P
fy = dT3 dT2 dT1 [T(T1) T2) Ts)] ) (24)

6/3 0 0 0

where

T(T11T2& T3) = GO(T21)GO(T32)GO(T13)

+Gp(T12) Gp(T23) Gp(T31)

and v2q
——v2 —7q, etc. The factor rg in the right hand side

of (24) is important because it distinguishes the CDW
(rg = 1) and SDW (r~ = —1) phases. It comes about be-
cause diagram (f) has three t and three $ lines, yielding
a factor r&r&3 ——rg to (24). In Appendix C we show that
the free energy contribution due to diagram (f) can be
calculated explicitly. The result has a very simple form,
namely, fy = 2UrgCyhp, where the (positive) constant
Cy is explicitly known in the form of an integral (see
Appendix C). As a consequence, the derivative B(hp, P),
corresponding to diagram (f), is given by By = rgCyU

which is temperature independent and of O(d 1) for U +

0.
Finally, as an example of a higher-order diagram, we

consider the third-order diagram (f) in Fig. 2 and show
that the corresponding derivative By(hp, P) is negligibly
small compared to the second-order contributions. In
fact (for reasons to be explained in the discussion) di-
agram (f) has interesting implications for the phase di-
agram of the extended Hubbard model at finite U and
V, so that its calculation is very much worthwhile. The
integral form of diagram (f) can be expressed in terms of
the Green function Gp(T) = Gz+&(T) as

is temperature independent for T & T„ the constant C
being given by

v pg 4v p v ( 1+ —2+ 2 + c2d E ~&~)
'

(26)

The order parameter 6 is determined by minimization of
the total kee energy, which is the sum of the Hartree con-
tribution and the diagrammatic corrections: f = f++f
The resulting equation for 6 is

d

dE
dhp= hp —oUA+ Chp

(27)

where hp is related to 4 by (B3). Equation (27) can be
rewritten as

hp = ~*Us
o. —o. UC+2

(28a)

(28b)

where the dots ( . .) are small compared to U if U +
0. Insertion of (28a) into (B3), and comparison with
Eq. (A7) for the order parameter in Hartree approx-
imation, shows that 4 has the 8ame form as 6 if in
addition one replaces a —+ n*.

As the immediate result one finds that the actual crit-
ical temperature T and the order parameter 4 can be
expressed in terms of their Hartree equivalents and a scal-
ing factor

( 1 —C/2vgj', 0) —Co —Cgd (29)

with

hp nUb, / (1+Cdhp/db, ) .

From (B3), in combination with (13), we know that
dhp/db, aU, so that
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phase q(v) is v independent for d = oo; due to the 1/d cor-
rections this is not true in any finite dimension, as is ap-
parent from Fig. 4 for d = 3. In the SDW phase in d = 3
the renormalization factor drops below 0.2 for v
so that near the SDW-CDW transition the Hartree re-
sults are off by a factor of more than five. Note that the
1/d corrections for the pure Hubbard model (v = 0) are
very small: here q(0) ~ 0.288 —0.016/d. In the CDW
phase the renormalization effects become weaker as v in-
creases. They vanish for v + oo only in d = oo; in finite
dimensions (e.g., in d = 3) renormalization effects are
appreciable even at v = oo.

Next I compare my results to existing numerical sim-
ulations. The most reliable simulation results are those
obtained by various groups ~ for the Hubbard model
in infinite dimensions. In particular, Jarrell calcu-
lated the critical temperature T,(U) for U values down to
U = 1/~2 (in our units). As the result he finds that, at
U = 1/~2, the Hartree critical temperature TP is indeed
renormalized by an effective q factor q' 0.4, in rea-
sonable agreement with our result q 0.288 at U = 0+.
For the special case of the infinite dimensional Hubbard
model it can be shown45 that higher-order perturbative
corrections to q(0) lead to fair agreement with the Monte
Carlo data for all U & 2 (again in our units). Unfortu-
nately it is not possible to compare the order parameter
curve of Fig. 1 to the Monte Carlo simulations, since none
of the groups published data for the order parameter at
small U.

The relevance of the results of Ref. 6 for supercon-
ductivity has recently been emphasized by Freericks. 4

At half filling the positive-U Hubbard model (v = 0)
can be mapped to the negative-U Hubbard model by a
special particle-hole transformation. 4 As a consequence
the superconducting transition temperature in the model
with U & 0 differs from the BCS prediction by the same
renormalization factor q(ii = 0) that was first presented
in Ref. 6 for U ) 0. Qualitatively, the same result (a
renormalization of T, and b, by a factor of order unity)
was obtained by Martin-Rodero and Flores, 48 who con-
sidered the negative-U Hubbard model in d = 2 using
the local approximation.

In this paper we assumed that the interaction param-
eters U and V are positive, corresponding to Coulomb
repulsion. However, our results are in fact valid in a
wider range of parameters. The relevance of this paper
for the negative-U Hubbard model (U ( 0, V = 0) has
already been mentioned. From the phase diagram of the
extended Hubbard model, sketched in Ref. 46, we further
know that the CDW phase is stable in the region U & 0,
V & 0. Inspection shows that all our results for the CDW
phase are also valid in this region. Hence the renormal-
ization factor q(e) for U ( 0, V ) 0, is also given by (29),
where now v & 0 and n = 2v —

&
& 0. One easily verifies

that the constants Co and Cz are again strictly positive,
so that T and L are reduced by the Quctuations and
1/d corrections. Similarly our results for the SDW phase
(where n = z) are valid whenever this phase is actually
realized. The phase diagram of Ref. 46 shows that the
SDW phase is stable in the region U ) 0, V & 0, pro-

vided ~v~ is not too large. Hence our results for q(ii) also
apply to this range of parameter values. In this range,
too, the constants Co and Cq are strictly positive.

We now come back to the calculation of the third-order
diagram (f) in Sec. IV. Diagram (f) is important for the
oo-dimensional model at small but finite values of U,
since in d = oo it is the only surviving diagram to or-
der U and the leading diagram containing a factor r~.
This has several interesting consequences. To start with,
we showed in Sec. IV that diagram (f) leads to a contri-
bution By(hp, P) = YACC'yU T. his contribution is to be
added to (25), implying that C in (26) is to be replaced
by C + r~CyU. This combination is to be inserted into
(29). Since Cy is strictly positive (see Appendix C), we
conclude that the third order diagram implies a further
decrease of T, if r~ is positive (i.e., in the CDW phase),
but an increase of T, if r~ is negative (which happens in
the SDW phase). This increase of T, in third-order per-
turbation theory in the SDW phase was recently observed
numerically by Freericks (Ref. 45). His result improves
the agreement between perturbation theory and JarreOs
Monte Carlo simulation. ss Moreover, diagram (f) has an-
other interesting implication: It gives rise to an upward
shift of the phase boundary between the SDW and the
CDW phases, which (up to second order in perturbation
theory) is located exactly at e = zi. This effect is due to
the factor r~ in (C9) or By(hp, P), which raises T, (lowers
the free energy) in the SDW phase but lowers T, (raises
the free energy) in the CDW phase. The upward shift of
the phase boundary, which is demonstrated here at weak
coupling in high dimensions, is well known in the one-
dimensional system &om the Monte Carlo simulations
by Hirsch, and has been demonstrated numerically in
d = 2 by Zhang and Callaway.

A technical remark concerning the perturbation
scheme proposed in Ref. 39 is in order. The method
of Ref. 39 leads to a systematic expansion in U provided
one keeps the order parameter 4 fixed while taking the
limit U $ 0. However, in all practical applicationss ss 4s

the equilibrium value of the order parameter is strongly
U dependent for U $ 0. As a result the systematic char-
acter of the perturbation expansion for the &ee energy
is not guaranteed. In fact, we have shown in this pa-
per that the expansion is indeed "mildly unsystematic, "
in the sense that several diagrams are smaller than they
appear at first sight. For example, the first-order Fock
diagram leads to a contribution to q(v) of order unity, like
most of the second-order diagrams, while the contribu-
tion to q(v) of diagram (c), which is also a second-order
diagram, is negligibly small for U $ 0. A consequence
of this mildly unsystematic character is that, in equilib-
rium, the expansion reduces to the IIartree rather than
IIartree Fock approxima-tion to first order in U (see Ap-
pendix B).

The techniques which were applied in this paper to the
extended Hubbard model can obviously also be used to
study other, related models. One example is the model
for spinless fermions. This model can be viewed as
a special case of the extended Hubbard model with only
one spin species and hence without the local Hubbard
interaction. It turns out that the calculations for spin-
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less fermions are virtually identical to those carried out
above for the extended Hubbard model. The connection
between both models is explicitly demonstrated in Ap-
pendix D. The main result is that the Hartree predictions
are renormalized for small interaction, as in (31), (32),
and (33), but that the q factor for spinless fermions is
close to unity: q exp( —Cid ) for d ~ oo with the
constant Ci given in (D2). In fact the constant Ci for
spinless fermions is precisely twice the value Cq one would
obtain for the extended Hubbard model at U = 0. Hence

q = [q(v = oo)] . This expresses the physically obvious
fact that the stronger the renormalization of the Hartree
results due to Huctuations is, the lower the number of
"colors" (spin species) in the model is.

VII. SUMMARY AND OUTLGOK

To summarize the results: We studied the thermody-
namics of the extended Hubbard model at weak coupling
on a hypercubic lattice in high dimension (d )) 1). Spe-
cial attention has been paid to the critical temperature
T, and to the order parameter 6(T). These quantities
have been calculated in second-order perturbation the-
ory with respect to the interaction parameters U and V,
and up to first order in 1/d. Our most important result
is that the Hartree results for T, and b(T) are renor-
malized by a factor q(v) ( 1 even at arbitrarily weak
interaction (U, V $ 0). For example, for the standard
Hubbard model (V = 0) in d = 3 one finds q 0.282,
so that the Hartree results are renormalized by a fac-
tor of more than three. This result is in agreement with
existing Monte Carlo simulations. Up to second order
in perturbation theory, the phase boundary between the
SDW and the CDW phases remains fixed at V/U = ~.
We showed that an upward shift of the phase boundary is
obtained if the third order in perturbation theory is also
included. Furthermore, we found that the exact gap ra-
tio 2nUE(0)/k~T, for U $ 0 is identical to the gap ratio
2xe ~ 3.5285 found in Hartree approximation. The
close relation between the renormalization eÃects in the
extended Hubbard model and those for spinless fermions
was pointed out.

The results of this work can be extended in various
other directions. For instance, it would be interesting
to investigate the renormalization e6'ects in the super-
conducting phases of the extended Hubbard model with
V ( 0. Another extension would be to study the eÃect
of other interactions on the phase diagram at small U
and V. The calculations presented here can also be gen-
eralized to the non-half-filled band (n 1), or to the
extended Hubbard model in the presence of a weak mag-
netic field. Work in these directions is underway.

for drawing my attention to Ref. 39. I am furtherxnore
obliged to J. K. Freericks (University of California at
Davis) for valuable correspondence on his work on. su-
perconductivity (Ref. 45) and on the comparison of cal-
culated and observed Neel temperatures in the infinite
dimensional Hubbard model. This work is supported in
part by the Deutsche Forschungsgemeinschaft under SFB
341.

APPENDIX A: THE HARTREE
APP RGXIMATIGN,

EXACT AND ASYMPTOTIC RESULTS

In this appendix we give the basic expressions for ther-
modynamic quantities and Green functions, needed in
the text. We also derive asymptotic results for the criti-
cal temperature, order parameter and grand potential in
the weak coupling limit.

1. Basic relations

The Hartree approximation to the extended Hubbard
Hamiltonian (1) is defined by the decoupling scheme of
Eq. (2). The expectation value of n; in (2) is given in
(3) with b, = r b, with r = ~r for the spin-density wave
(SDW) and r = 1 for the charge-density wave (CDW).
The chemical potential at half filling is in both cases given
by p = ~U+ 2V.

Insertion of the decoupling (2) into (1) leads to a
Hartree Hamiltonian of the form

H" = H, —) h AN" + —,'QUA'3, ' —A(V+ —,'U) .

(A1)

Here X" denotes the number of o spins on the A sub-
lattice (A = 6) and h = r hp with hp = AUD. The
parameter o. takes the value o. =

z in the SDW phase
and o. = 2v —

z in the CDW phase. Fourier transforma-
tion of (Al) into k space yields

H =
z ) Hi, + zaUA/6 —JV(V+ 4U), (A2)

where

Hi, = si, (ni, —ng g ) —h (c„c„q + c„q c„).t

Here, si, = 2t g i cos(k ) —is the dispersion for U =
0. The Hamiltonian (A2) is diagonalized by a canonical
transformation of the form cg ——ai, dg + bg di,
The real numbers ai, and bp are given by
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where re, :—sgn(ri, ) gs&~ + hzp. As a result, (A2) reduces
to the form
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HHF = ) ~.~.+ -', am S' N(V + -,'U), (A3)

where ~ is the number operator for the dk particles,
"k~ = dkAw.t

for Pg and Qr given above, holds in all dimensions d, not
just in d = oo.

3. Thermodynamics

2. The Green functions

Since the Hamiltonian (A.3) for the dk~ particles is di-
agonal, one can immediately write down the correspond-
ing Green functions:

(T dk (r)dkt, , (~')) = hkk h gk (~ —~'), (A4)

where

g -(~) = e """[~(~-0')(1-K-))
—~(0+ —&)4 )l.

G," (~) —= (T c~+i (r)c~ (0)) (j 6 A-sublattice)

one finds that

The Green functions of the c; particles (in position
space) can obviously be expressed as linear combinations
of the Green functions in (A4). With the definition

The thermodynamical results follow immediately &om
the Hamiltonian in the form (A3). The average number

of dk particles is (vk ) = (e~"" + 1) and hence the
grand potential per site is

(u = 2aUb, —(V+ 4U)— ) ln(1+e ~"")
ka

= —,'aUS' —(V+ —,'U)
4 oo

ds vg(s) ln 2cosh (-Pil, )2 (A6)

tanh( 2Pg, )1 = 2aU de vg c
p gg

(AT)

The critical temperature T, = 1/k~P, is determined by
b.(T,) = 0 in (A7), i.e.,

The consistency relation for the order parameter 6 fol-
lows from the condition Gpt(v = 0) = —2(1+ b,). One
finds that either b = 0 (which is the solution in the
high-temperature phase) or

GA ( ) ) kl( Pl )
k

X ak —A(-1)'bk gk (r) .

tanh( 2i P,s)
1 = 2aU ds vg(s)

0
—:2aUJ(2p, ) . (AS)

In general dimensions this expression for G&" still has the
form of a complicated d-dimensional k integral. However,
in the limit d ~ oo this integral can be reduced to a (rel-
atively) simple one-dimensional energy integral. We give

only the result: With the definition E = (I( = P„ i )l„~
for the length of I on the lattice one finds that GI" (r) has
the form

Gq (7) = Pr(7-;P) —Ah Qr(7.;P), (A5)

where

Pr(7. ; P) = —(2d) ~' ds vd(s)Her(s)—
0 7)+

x [g.(~) —g-.(r) l

Q&(~;P) =0

if / is odd. Here Her (s) is a Hermite polynomial and vz(s)
is the density of states for U = 0, which is a Gaussian for
d -+ oo, see (A9). The Green. functions for E = 0 and f =
1 are special in the sense that (A5), with the expressions

Pr( &) =(2d) '~' d ~()H r()[g.( )+g-.( )j,
0

Qr(~; P) = (2d) ~ ds vq(s)Her(s)
0

x [g.(~) —g-.(~)j/n. ,

if 8 is even and

%e discuss the asymptotic behavior of the critical tem-
perature T„ the order parameter 4, and the 6.ee energy
gain due to symmetry breaking, in that order.

To obtain results for T, we consider the function J(p)
in (AS) for large p; one finds that

J(7) = vg(0) (ln p + Id + ln 2) + 0 (p '),
where the constant Ig is defined in (5). As a consequence,
Eq. (AS) reduces to

1 = 2aUvg(0) (lnP, + Ig) + 0 (P i),
which is equivalent to Eq. (4) for T, given in the text.

In general dimensions d the expression (5) for Ig is
too complicated to be evaluated explicitly. The integral
in (5) becomes tractable, however, in the limit d -+ oo,
where the density of states, including the 1/d corrections,
has the form

vg(r) = v (s) [1 —„'„(3—6e'+ s4)j . (A9)

Here v is the density of states in infinite dimensions,
which is given byis v (s) = —e ' ~2. To calculate Iq
in (5) we cut off the integral with an exponential factor

These equations for u, 6, and T, will be analyzed below
for U $0.

4. Asymptotic results for sma11 U
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e "~. The first term, containing y
~ tanhy, can then

be expressed in terms of gamma functions using formula
(3.551.9) of Ref. 53. To calculate the second and the
third term we use an algebraic cutofF y, with a $ 0. The
second and the third term can then also be expressed in
terms of gamma functions, whose asymptotic behavior
is known for a $ 0. Combining results one obtains the
result (6) in the liinit e $ 0.

Next, we consider the order parameter A(T). A quick
estimate of 4 for small U can be obtained by considering
the ground state. For T = 0, or P = oo, it follows from

(A7) that

ds vg(s)/p 2aUV&(0) ln
~

t'

0 (aUA)

(U $0) .

Hence the gap 2aUb, (0) is exponentially small if U is
small, of the same order as k~T .

To calculate the precise behavior of 6, including its
temperature dependence, we reconsider (A7) and sub-
tract from it the T, equation (A8):

tanh(-'Pil, ) tanh(2P, c)0= lid vg s
0 gg E'

h(e) hp 1 — —e
~o

(8 $ 0) . (A13)

On the other hand, near T, Eq. (7) predicts mean field

critical behavior for the order parameter,

where Z is defined by

28= -o,UA 1 —2nU — dy vg 2y

sinh(2z) —2z

4zs cosh (z)

The numerical value of Z is 0.426. Results for A(T) are
obtained from the relation b, (T) = 2h(8)/aUP, . Thus,

A(T) oc (T, —T)i~2, as usual in a mean field treatment.
Next we calculate the free energy gain (per site) due

to symmetry breaking. The &ee energy gain follows &om

the expression for the grand potential as

Of = ~(T, Q) —cu(T, b, = 0) (A15)
OO cosh( 2 Pil, )= -'aUb, 2 —— ds vg(s) ln

0 cosh 2
E'

(Alo)

Note that [ ] 1/e for e' )) max{P, P, , UA)
P, i. As a consequence the energy integration is ef-

fectively restricted to s = O(P, ), so that vz(s) can
be replaced by vg(0). With the definitions y = 2p,s,
h = 2iP,aUA, and 8 = T/T, = P,/P, Eq. (A10) reduces

to Eq. (7), which determines h(e), and hence A(T), for

U $ 0.
To determine the precise value of A(T = 0), we set

8 = 0 in (7) and obtain an implicit equation for h(e =
0) =—hp'

cosh(gy' + h'/8)
x ln

cosh(y/8)

In the last step, we used the dimensionless variables intro-

duced above (7). If one inserts into (A15) the T, criterion

in the form

1 = 2aU dy vq(2y/P, )
tanh(y)

0 y

one obtains the expression

OO 10= dy
gy2 + h2

tanh y (All)
n, =-a US dy v~

—
~

a
k p. )

bo ——-'ze '0— 7
(A12)

It is also possible to calculate K(T) at low temperatures
T ) 0, such that 8 = T/T, (( l. As the result one

finds that the correction terms to (A12) are exponentially

small for small 0:

The value of bo can be calculated explicitly by multi-

plying [ ] with an exponential factor e "",calculating
both terms in (All) separately and taking the limit K $ 0
in the end. The separate integrals can be expressed in

terms of gamma functions, Weber's function Ep(z) and

von Neumann's function Np(z) for z = eb. Details can be
found in Ref. 53, formula (3.395.3), (3.551.9), (8.403.2),
and (8.581.2). One finds as the result that the right hand

side of (All) is equal to ln(m/2bp) —p, where p 0.577
is Euler's constant. As a consequence,

28 cosh(/y2 + h2/8)
h'2 cosh(y/8)

tanh(y)

Os aU A -vg(0)
0

28 cosh(gy2 + P/8)
h' cosh(y/8)

k

tanh(y)

(A16)

The integral in the right hand side is convergent for all

values of 8; it vanishes for 8 g 1 and approaches the vahie

~ for 8 $0.

which is still exact. The integration is again e8'ectively

restricted to y values of order unity, so that in the limit

U $ 0, or p, i oo, the factor vg(2y/p, ) can be replaced

by vg(0). Consequently, one finds for small U that
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APPENDIX 8: PERTURBATION THEORY
AT CONSTANT ORDER PARAMETER

In this appendix we extend the method of Ref. 39 to
positive temperatures and to nearest-neighbor interac-
tion. For the purposes of this paper, it is, furthermore,
convenient to formulate the perturbation expansion in
position space. We will treat the SDW phase and the
CDW phase simultaneously. In either phase, we consider
a grand canonical Hamiltonian of the form

K = Hi + Hv + Hv + p(U) N —)
+h(U) AE —) (—1)'0; (81)

where either 0; = S~
——n;t —n;~ (SDW phase) or 0; =

n; = n;g+ nig (CDW phase). The parameter v = V/U )
0 is kept fixed in taking the limit U + 0. The field h(U)
has been introduced to keep the staggered magnetization
per site (SDW phase) or the staggered density per site
(CDW phase) at a fixed value b, ) 0. We focus on the
special case of half filling (N = JV), so that the chemical
potential is exactly given by p(U) = (2 + 2v)U.

To formulate a perturbation expansion at 6xed 4 we
set h(U) = hp(6) + hi(b, )U+ for U ~ 0, and we

split ofi' the U-independent terms in (Bl) from the rest:
K = Kp+ K1, where K1 is treated as a perturbation and

Ko ——Hi + ho JVb —) (—1)'0;
l

=H, —) h.JN."+h.Ji/~. (82)

tanh(2Pg. )a = 2ho ds vv(s)
0

(83)

and the free energy per site fo is given in (10a). More-
over, the Green functions corresponding to Kp are sim-

ply given by the Hartree Green functions discussed in
Appendix A 2.

The perturbation expansion of the &ee energy in pow-
ers of K1 is

Here, cr takes the values (t, $) or alternatively (+, —),
and A = + on even sites and A = —on odd sites. In the
second step we de6ned h:—r hp, with r = o for the
SDW phase and r = 1 for the CDW phase. Comparison
with (Al) shows that h plays the same role in (82) as it
played in Sec. A 1. As a consequence K0 can be diagonal-
ized in terms of new particles d&, d& with eigenenergies

= sgn(si, ) gsi, + hp. Many results now follow imme-
diately. The consistency relation between the sublattice
magnetization and the ield hp is

Cd =2V
2 G1 0

To obtain C~ correct to 0(d ) it suffices to calculate
Gi(0) to 0(d i~2). One then finds from the expres-
sion (A5) for G&(r) with E = 1 that the derivative

&» [Gi(0)] is of 0(U/d) for small U, so that C~ = 0
and, consequently, hi(b, ) = —aE.

With these values for p, and h1 one can write the per-
turbation K1 as

I'U
Ki ——Hri+Hv+

~

—+V
~

JV

—2aUJVA —2A V[Gi(0)]

H~ = U) bn;ghn;g, Hv = —) bn;bn
(iJ)

(84)

where we defined hn;—:n; —(n; ) and bn;—:bn;g+ bn;g
The expressions for fi and f2, given in (10b) and (10c),
respectively, follow automatically.

Finally, we show that, to linear order in U, the per-
turbation expansion of Ref. 39 leads to the Hartree (not
the Hartree-Fock) approximation. From Eqs. (10a) and
(84) we find that, to linear order in U, the free energy
per site is given by

f = fo+fi
OO

= hpA —— ds vg(s) ln 2cosh (2Pg, )p o

+
~

—+ V
~

—2aUb, —2V[Gi(0)]
(U 2

&4
(85)

The &ee energy is minimal if

0 = (hp —aUb, )
Bf t9b,

0 0
(86)

so that hp and 4 are related by hp aUL, which is pre-
cisely the same condition as was previously found &om
the Hartree approximation in Appendix A. In the deriva-
tion of (86) we used the consistency condition (83). Note
that the Fock term [last term in (85)] does not contribute
to (86) to dominant order: this term leads to a negligibly
small correction, of relative order U/d. Thus, the Fock
term is of the same order as the second-order contribu-
tions (10c). Hence it has to be taken into account in the
calculation of the free energy to order U .

To calculate the various terms in this expansion we need

p(U) and h(U) up to linear order in U. From the Maxwell
relationsso one finds that (Bp/BU) & o

——( 2+2v), so that

p 2U+ 2V as expected, and

= —(a+ &~)&,
$8hb
E~UJ v=o

where

f —fo=
P

d~(Ki(~)) p
0

P
dridrg(Ki(~i)Ki(~2))o +.. .

0 0

APPENDIX C: CALCULATION
OF DIAGRAMS (a), (b), AND (f)

In this appendix, we summarize the most important
steps in the calculation of the Fock diagram (a), the
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second-order U2 diagram (b), and the third-order Us di-
agram (f).

1. Diagram (a)

1 OXg
Zs(hp, P) —=—

0 0
P/2

= 8 dr K(7 , P", hp)K'(7", P, hp),

The calculation of diagram (a) has been reduced to
that of B in (15). In order to calculate B {hp, P), we

split up the factor JJ' into various parts:

J(h,', P)J'(h,', P) = J(o, P.)J'(o, P.) (cl)
+ J(h'„P) —J(o,P.) J'(o, P.)
+J(hp P) J'(hp P) —J'(o P.)

The first line represents JJ' at T, ; the temperature de-
pendence of 8 is contained in the last two lines. The
first line in (Cl) can be calculated in an elementary way:
the J factor reduces to an integral over v (s), and the
J' integral has a logarithmic divergence which is cut off
at s P, i. The result is —1/(4i)) 2xaU) for U ~ 0. The
second line in (Cl) leads to a result which is negligible, of
relative order T, , compared to the first line. In order to
analyze the third line we transform from e to the rescaled
energy y =

2 p,s and similarly from hp to h =
2 p, hp and

from T to 8—:T/T, . The dominant contribution comes
from small energies, s = O(P, i), which corresponds to
y = O(1). In the limit U -+ 0, or P, -+ oo [see be-
low (13)] the third line reduces to a function 4 (b, |]))

depending only on the rescaled variables b and 8. Since
)Ii (8', (5)) = O(1) for U $ 0, we conclude that the third
line is smaller than the first line by a factor of U, so that
it can also be neglected. Thus, we obtain the result given
in Eq. (16) in Sec. IV.

2. Diagram (b)

To calculate diagram (b) we consider the integral Zs(P)
in (18). According to Appendix A 2 the Green function

Gp(r) has the form

-', )) tcc)c (-,'))c) cosh
'

(-,')) —c) c]

Is cosh (2Ps)

For U -+ 0, or P, ~ oo [see (13)],one has

P(r; P„o) ds vg(E)e
' =—vg(r),

0

:-(r;P,) - —re(0) ln(P, ) -—
(C5a)

(C5b)

Q(r; P., O) - „(O) ln(P.)-
2o.U

Insertion of these results into (C4) gives

p, j2
Jj,(0, P, ) —8 dr [vg(r)]2aU

+4,~, I~c(c))'I

(C5c)

where we defined K—:P~ —hpQ2 and K'—:BK/Bhp
Note that the domain of integration can be restricted
to 0 ( r ( P/2 since K(r; P, hp) is symmetric under
r M p —r. Below we will evaluate J~(hp, p), first for
T = T, and then for T & T, .

At T„Eq. (C4) simplifies drastically, since the factor
K in the right hand side reduces to P2(r; P„o) and

K'(r; P„o) = P(r; P„o):-(r;P, ) —Q (r; P„o),
where =(r; P) is defined as

(-,'P--) -h (lP--) ):"{r;P)= ds vg(s)
0 s cosh 2 Ps

G()(r) = P(r; p, hp) —hpQ(r; p, h()), (C2)

OO

dr [vg(r)]o2U2 0
(U + 0), (C6)

where

cosh (-,'P —~r]) il.
P(r; p, hp) = sgn(r) ds vd(s)

0 cosh 2Pg,

.nh[(-,'P-] ]) &.]Q(7;P, hp) = ds. vd(s)
0 i1, cosh 2 pal,

and hence

Bs(0,P, ) pg/a (U m 0); pg =— dr [vg(r)]
0

The problem of calculating Bs(O, P, ) has thus been re-

duced to the calculation of pg. In high dimensions, it is
not difficult to calculate p~ explicitly up to O(d ), using
the density of states (A9). The result is

As a consequence the integral Zs(P) in (18) takes the form 7 3 g 7 + g= + (C7)

T (l)) = j dc (P'(c;)),h') —Ic'Q*(;)),)c*)] . (C3)

Again we do not need the free energy fs itself but only
its derivative Bs(hp, P). Hence, we need only

where p = ~ in tan(3vr/8), which can, if desired, be

rewritten as p = ~ ln(i/2+ 1).
Next we address the calculation of the integral

jj,(hp, P) in (C4) for T ( T . For this purpose, we con-

sider the difference of gg(hp, P) and its value gg(0, P, ) at
T, which can conveniently be split up as follows:
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dr K(r; P, hp) K'(r; P, ho) —K'(r; P„O)

dr [K(r;P, ho) —K(r; P„O)] K'(T; P„O)

dr K(T;P, ho)K'(r;P, ho) . (C8)

The calculation of the various terms in (C8) is rather
lengthy, but the result is simple. Both the second and
the third line on the right in (C8) are exponentially small
compared to Jj,(O, P,), of relative order kHT . Hence
these terms can be neglected. Moreover, the first line
in (C8), too, is small compared to J~(O, P,), but now of
relative order U. Thus, one finds that the asymptotic
behavior of Jj(A,p, P) for U $ 0 is independent of temper-
ature for all T & T:

Bs(&o P) Bs(0 P )
g/o' (U m 0),

which is precisely the result given in Eq. (19) in the main
text.

the free energy contribution due to diagram (f), namely,

f~ —1Ur~Cyhp2, where the (positive) constant Cy is de-
fined as

OO t1

Ct = 2o. dtl dt2 [vg(t2) vg(tl —t2)
0 0

—Vg(tl —t2) Vd(tl) —Vg(t2) Vg(tl)]

It is easy to show that the integral on the right is finite.

APPENDIX D: SUMMARY OF RESULTS
FOR SPINLESS FERMIONS

The Hazniltonian for spinless fermions is given by

S. Diagram (f)

In order to calculate the free energy contribution ff
due to diagram (f), we note that T(rl, T2& rs) in (24) is
symmetric in the time indices r; (i = 1, 2, 3). Hence,
fy in (24) is equal to 6x the integral over the region
v3 & ~2 ) 7i. It is, furthermore, convenient to transforzn
from (Tl & T2) to variables (rsl) T21), yielding

Us~ P
Yg

T3 T31

ff = dr3 dr31 dr21 [T(71,r2, T3)]
2

P o o 0

(C9)

The rationale behind this transforznation is that
T(T1, T2, T3) is a function only of (rsl, r21) and that the
dominant contribution to the integral in (C9) comes
from (Ti T2 T3) values which are close together, so that
~3i and 72~ are of order unity. To calculate the right
hand side of (C9), we introduce the shorthand notation
P„:—P(T„;P„O) and similarly Q„=Q(r„;P„O),
with P and Q defined below (C2). In this notation

T(T1, T2) T3) = —260(Q21P32P13

+ P21Q32P13 + P21P32Q13) + O(hp) .

Note that T(rl, r2, T3) is exponentially sinall, of order
hp. From (C5) we know that for U $ 0, or P, -+ oo, P
remains finite: P sgn(r )vg(r ); whereas Q
becomes large: Q (2o.U) l. This gives

hp
T(T1)T2) T3) ~ — (P32P13 + P21P13 + P2i P32)

o,U

Insertion into (C9) finally gives a very simple result for

H = — ) (ctc,. + H.c.) + —) n;n; . (Dl)

The spinless fermion model is closely related to the ex-
tended Hubbard model at U = 0, which is the natural
generalization of IIsp to two colors (spin species). The
similarity becomes clear already at Hartree level. If we
denote the Hartree critical temperature, order parameter
and free energy for spinless fermions (1 color) by T,(Hi)

A(H1), and f(H1) and those in the extended Hubbard
model at U = 0 (2 colors) by T b, ( ), and f(
then

T(H1) (V) T(H2)
(

1 V)
Q(H1) (V T) Q(H2) (1V T)
f(H1)(V T) if(H2)(1V T)

Clearly the tendency towards symmetry breaking is
smaller (i.e., the fiuctuations are larger) for spinless
ferznions than for the model with two colors.

The calculations in second-order perturbation theory
are very similar to those for the extended Hubbard
model. The only diagrams that yield nonvanishing cor-
rections to the Hartree approximation as V $ 0 are
the Fock diagram (a) and diagram (d) in Fig. 2. One

finds that, for V $ 0, the derivatives B (hp, P) and

B& (hp, P) of the corresponding free energy contributions
are identical to the values calculated for the extended
Hubbard model in Sec. IV:

B( )(hoiP) + Bg (ho, P) = + —= C( ),
2d 27r

where p is defined in (Cj). The value of hp is deter-
mined by the condition that the Bee energy be minimal:
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O
(H1) + (1) + (&)

dA a
z (x) SFT(H&).

C C

is for V j. 0 given by

~(1)(T) sF~(H1)(T/ sF)

SF —C'( ) jr' ({j)

Since dho/db, —V for V $ 0, it follows that the ac-
tual critical temperature and order parameter for spin-
less fermions are obtained &om the Hartree expressions
by replacing V with V/(1+ 2VC(~)). This implies that
the q factor for spinless fermions, de6ned by

C, = —,'+ —,'/21n ftan( —', )] . (D2)

Note that the numerical value of Cz is twice that of
the corresponding constant Cq for the extended Hubbard
model with U = 0, see (30).
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