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A method is described for calculating the magnetotransport properties of a two-component com-
posite conducting medium which has a periodic microstructure. The method is based on a Fourier
series expansion of the local electric potential. Because a large number of expansion coefBcients
needs to be used in order to get reliable results for the bulk effective behavior, a special approach is
developed that does not require solving a large set of coupled linear algebraic equations for them.
Results are presented for the magnetoresistance and Hall resistance as functions of the magnetic field
in a number of models where periodic arrays of insulating inclusions of various shapes are embedded
in a uniform host material. These samples include cases where the inclusions are well separated as
well as cases where they touch and where they overlap.

I. INTRODUCTION

Composite media are usually either disordered on the
microscale, as in the case of granular or polycrystalline
materials, or partially ordered, as in the case of fiber rein-
forced materials. It is only quite recently that highly or-
dered periodic dielectric composites have been fabricated
in the context of a search for materials where a photonic
band gap might be observed. In the expectation that
conducting composites will also soon be available, fab-
ricated either by the same techniques that were used in
Ref. 1 or by photolithography, we initiated a study of
xnagnetotransport in such a medium, with special em-
phasis on the case where the magnetic field H is strong
enough so that the Hall resistivity is large compared to
the Ohmic resistivity at least in one of the coxnponents.
We found and reported earlier that, even if none of the
components exhibited any xnagnetoresistance by itself,
the composite invariably had a strong magnetoresistance.
Moreover, the Ohmic components of the bulk e8'ective
resistivity tensor were found to exhibit a strong depen-
dence on the direction of H, which was quite remarkable
in its similarity to the angular variations of magnetore-
sistance in soxne metallic single crystals. In this article
we describe in detail the approach that was developed
to attack this problem, and also describe results for the
magnetoresistance and Hall resistance of periodic arrays
of nonoverlapping as well as overlapping insulating inclu-
sions of various shapes (see Fig. 1) which are embedded in
a &ee-electron conducting host medium. We obtain these
results for diferent values of the magnetic field which
range all the way &om very weak to very strong.

Magnetotransport in a composite conductor was dis-
cussed in the past mainly in the context of weak fields
H. In that case, when the Hall resistivity pH is much
less than the Ohxnic resistivity p in all compOnents, , the
focus was xnostly on a calculation of the bulk e8'ective
Hall resistivity or Hall conductivity. Interesting results

were obtained for the behavior of that quantity near a
percolation threshold, first in calculations ' ' ' and
later in experiments. 5'

Strong-Geld magnetotransport in composite media
turned out to be a difBcult problem, except in the two-
dimensional case where the duality transformation leads
to some useful exact results which are valid for arbi-
trary field strengths. ~~ In particular, it follows &om
that transformation that the relative magnetoresistance
of a metal-insulator composite is the same as that of
the pure metal (see also Refs. 18 and 19). In the past

a.

C.

FIG. 1. Possible examples of a periodic composite mi-
crostructure with various shapes of inclusions: (a) Nonover-
lapping spheres, (b) overlapping spheres, (c) nonoverlapping
cylinders, (d) nonoverlapping rectangular prisms.
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II. THEORY

A. Magnetotransport in a composite medium

In the presence of a magnetic Geld, the conductivity
as well as the resistivity become nonsymmetric tensors
which must be represented by matrices. In a composite
medium these tensors usually have a difFerent value in
each component. In the case of' a two-component com-
posite we use the characteristic or indicator function of
component No. 1, deGned by

1 for r inside component No. 1,
0 otherwise, (2.1)

in order to represent the position dependent conductivity
tensor o(r) as

0 (r) = or&i + o2(1 —oi) = o.2 —8o.0i,
bo- = o-2 —o-i,

(2.2)

(2.3)

where o i, o 2 are the conductivity tensors of the two com-
ponents.

The bulk efFective conductivity tensor of the composite

the only discussions of strong-6eld magnetotransport in
three-dimensional composites were based either on low
density or efFective medium approximations, or in-
volved special microstructures. It is only
quite recently that accurate calculations have been per-
formed on a regular &actal structure and a random per-
colating system using a discrete network model.

Our approach to magnetotransport in a periodic com-
posite medium is based on the fact that the local elec-
tric potential P(r) has a periodic component with the
same periodicity as the underlying microstructure. Con-
sequently, it can be expanded in an appropriate Fourier
series, and the difFerential equation for P(r) is then trans-
formed into an infinite set of linear algebraic equations
for the expansion coe%cients. What makes this approach
nontrivial is that we have succeeded in taking into ac-
count a far greater number of these coefIicients than one
could hope to obtain by a straightforward solution of
those equations.

The rest of this article is organized as follows. In Sec. II
we describe in some detail the approach that we devel-
oped for calculating the magnetotransport properties of
a periodic conducting composite. In Sec. III we describe
some technical aspects of the computations and present
the results for a number of systems with difFerent types of
insulating inclusions. Section IV provides a discussion of
those results and some of their implications. In Appendix
A we discuss the analytic properties of a function that
plays a crucial role in the theory, and how we attempted
to evaluate it from a divergent power series expansion.
In Appendix 8 we derive closed form expressions for the
Fourier coeKcients of the characteristic or indicator func-
tions that characterize some of the microstructures that
were studied, and a series expansion for these coefIicients
in the case of an overlapping spheres microstructure.

o, is defined as providing the linear relationship between
the volume averages of the electric field VP(r) and the
current density J(r) = g(r)VQ(r)

(2.4)

o(r) VP~ ~(r) = 0

P~ ~(r) = 0, I for r = 0, 1,
i.e. , at the capacitor plates. (2.6)

inside the capacitor, (2.5)

We Gnd it more convenient to base our discussion on an
integral equation for Pl l(r).

In order to obtain such an equation, we first use (2.2)
to rewrite (2.5) as

(2.7)
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FIG. 2. Scheme used to set up the calculation of the electri-
cal potential P(r) in a two-component conducting composite
The direction of H is arbitrary. The average electric 6eld

(E) = Eo lies along the z axis, which is perpendicular to the
thoro equipotential plates.

The final result for o, will be independent of the pre-
cise way in which the local electric potential is created,
provided that the composite microstructure, as well as
the boundary conditions that determine 4 (r), are macro-
scopically homogeneous. We are, therefore, free to choose
the most convenient among a rather general class of pos-
sible boundary conditions when setting up a scheme for
calculating P(r).

We choose a scheme where the composite medium oc-
cupies the entire volume in between the infinitely con-
ducting plates of a parallel plate capacitor (see Fig. 2).
The plates are taken to be infinitely large, and the dis-
tance between them is taken to be Gnite but large com-
pared to any scale of inhomogeneity of the system. Keep-
ing the medium and the magnetic field axed, we can
choose the orientation of the plates to be perpendicular to
any of the coordinate axes. We denote by P~ i(r) the lo-
cal potential Geld that results when the plates are perpen-
dicular to the r axis and a potential difference equal to
their distance apart I is applied between them. The vol-
ume averaged electric field is then (VP~ l) = V'r = e
i.e., a unit vector in the r direction.

The potential field P~"~(r) is usually taken to be de-
termined as the solution of a boundary value problem
with a partial difFerential equation that follows &om the
current conservation condition V' J(r) = 0, namely
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We then define a Green function G(r, r'~cr2) as the solu-
tion of the following boundary value problem:

q(-) = I r. + I y(-). (2.15)

V. o2. VG = —h (r —r') inside the capacitor, (2.8)
G = 0 at the capacitor plates, (2.9)

and use it to "solve" (2.7) and (2.6) by treating the right-
hand side of (2.7) as though it were given. In this way
we obtain

81 1(r) = r —f dV' G(r, r )8r)
'V'. 8r(r') 88 V'81 1(r')

= r + dV'Og r' V'G r, r' o2 b& V' r'

+ I"y(~) (2.10)

where we used integration by parts to get the second
line and where the linear integro-difFerential operator I'
is defined by

f'dt—:f dV'8 (r')2r"G(r, r ~8 )88r. 'V'8(r'). (211)

Although G, and hence also I', depend on the orienta-
tion of the capacitor plates, this dependence is only im-
portant if at least one of r, r' is near the plates. For most
purposes G can be approximated by the Green function
that vanishes at infinity, and in that case the only depen-
dence of (2.10) on the boundary conditions comes from
the term r, which ensures that 811( ) satisfies them. The
microstructure enters into I' through the characteristic
function 8i(r). Due to the symmetric dot products of o2
and the two V operators in (2.8), the antisymmetric part
of &2 does not participate in that equation. Therefore,
G(r, r'~(r2) actually only depends on the symmetric part
cr2, of 02. The Green function that vanishes at infinity
depends on r, r' only through their difFerence r —r'. In
the case where o2, is a diagonal tensor, this Green func-
tion has a relatively simple closed form, namely

This equation can be solved symbolically by using the
resolvent operator 1/(1 —I')

0( '(r) =
1 —I' (2.16)

This expression can be further processed by using (2.14)
and recalling that (V(t)( )) = e . In this way we get

(o2 —o, ) e~ = b'o (8iV'r ) + bo (8iVQ ), (2.18)

which reduces to

(o.2 —piho —o,) p = b& ~(8iV~@(~)), (2.19)

where pi ——(8i) is the volume fraction of the No. 1 com-
ponent. Here and in the rest of this article we use the
convention that a summation over repeated tensor indices
is always implied.

B. Periodic composites

When the composite medium has a periodic mi-

crostructure, great simplifications ensue due to the fact
that 8i(r) is now a periodic function. From the fact that,
away &om the external boundaries, G depends on r, r'
only through their difference r —r' [see (2.12)], we get
that for any periodic or linear function f(r), I'f is also
periodic except near those boundaries. Hence @( )(r) is
periodic and can be expanded in a Fourier series

While it is usually impossible to calculate the resolvent
operator in closed form, we shall see in the following sub-
section that it can sometimes be useful to express it as a
power series in I' or her.

Using (2.4) and (2.2) we can write for o,

o., (V(t)( )) = o.2. (V(t( )) —bo . (8iV8)) ). (2.17)

1 ( (*-~')' (~- ~')'
2 2 1/2 (2) +

4~ ~(2)~(2) (2) O. 0uv
(2) 2I(,(~)(r) = ) @(~)e'g (2.20)

-Z/2

+ (2)
. (2.12)

~(2) )

where the sum is over all the vectors g of the appropriate
reciprocal lattice. The Fourier expansion coefficient of an
arbitrary periodic function f(r) is given by

The Fourier transform of the G which vanishes at infinity
has an even simpler form, namely fg

—— dVe 'g'f(r)1

v.
(2.21)

f dVe '"' ' ' G(r, r'~(72, ) = k. O2s k (2.13) Instead of the Fourier coefficients fg, it is convenient to
introduce the following coefficients:

&''()—= (t"()—. (2.14)

and satisfies an integral equation which immediately fol-
lows from (2.10)

which is valid regardless of the detailed form of o2, . This
result is easily obtained by performing a Fourier trans-
formation of (2.8).

The distorted part of P( ) (r) is defined by

2(g. ~2. g)'~'fg = i(g. o2. . g)'~'fg f» I W o.

(2.22)

These characterize the function f(r) up to an additive
constant.

Some straightforward calculations lead to the following
results for the Fourier coefficients of I'r and I'f, where

f(r) is an arbitrary periodic function:
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)1/2(f )
gP P~ s

g O g 1/2

( ~
. )"(1'f) = ) 1 (g' " g')"f

gl Qo

(g ~o g')

(g ~ . g) '"(g' o . g')'" ' ' '

(2.24)

(2.25)

where 8+ is the Fourier coeffrcient of 81(r). Clearly, the
matrix defined in (2.25) represents the integro-differential

operator I' in this scheme.
We now translate the integro-differential equation

(2.15) for Q( )(r) into an infinite set of linear algebraic

equations for the Fourier coefficients gs, which are rep-
resented by

Ref. 29), we expect that greater values of g are needed
in order to obtain accurate results for 0, in the case of a
nondilute composite.

In order to include more values of g in the calcula-
tion, we use a diferent approach, similar to the one 6rst
used in Ref. 29. The basic idea is to substitute the sym-
bolic solution (2.29), written in a slightly different form,
namely

a( )—:i(g ~2 g)'/'y( ) for g go. (2.26)

This is done by Fourier transforming (2.15) and using
(2.23) and (2.24), and leads to , , &s —r)ss, s (2.31)

gl gP

( ) gpbaj9
8 (g, o, g)1/2

for g $0, (2.27)

(2.28) (&2 —p18& —&,) p = F p(1), (2.32)

where

in (2.30), and then expand the result in powers of 1/s.
This leads to

which can be solved symbolically by

()
{,1 —I')g' g{) gg

(2.29)

Substituting the Fourier expansion of g( )(r) in (2.19),
we now get

=),Scr ~ha„p (2.33)

(o'2 —P1b'& —o', )~P = dV01(r) ) ig~Q+ e's'
V

= bo, ) ig, q(p)e,

,~, &8 2. 8)

Note that the coeKcient multiplying a in the last sum

looks similar to r ', but actually difFers from it, because
ho pgbo. p .

One way to proceed is to solve (2.27) numerically for

the ag, using a truncated version of the I'++ matrix of
(2.25), and then use those coeffrcients in (2.30) in order to
evaluate cr . Since the I' matrix is not sparse, we cannot
include too many values of g in such a calculation. For
example, in the case of a simple cubic system with a unit
cell of linear size a, g = —(n, n„,n ) with n, n„,n as
arbitrary integers. If we let each of these integers range
&om —5 to +5, then the total number of nonzero g val-
ues is 11 —1 = 1330, resulting in a I' matrix of size
1330 x 1330. This is about the largest size that can be
conveniently used in solving (2.27) on a modern work-
station. From experience with a related problem (see

s~os ~~ (g

g
I g

(g' o2. g')'" (2.34)

g(o) ) g~gp
lg l2 g(o)

~P - 8 Pn
28

T (~")o2 ) = ).I()sl' = ) l()sl' —Oo

ggo all g

dve2 —l—
v.

'
{,V v. )

=p —p =p(1 —p)

(2.35)

(2.36)

which is used to test the accuracy of numerical compu-
tations with truncated sets of g vectors.

In calculating the expansion coeKczents A &, we do(~)

not need to keep in memory the entire matrix I'gg . when
we apply this matrix to any column vector, we only need
to use it one row at a time, and each row can be re-

The 3 x 3 matrix of coefBcients A
&

is symmetric, al-

though A "&) for general r is not, and obeys a certain sum
rule
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= ~cV')
PH

P
(2.37)

where ur, = e'R/mc is the cyclotron frequency, 7 is the
conductivity relaxation time, and 'R is the magnitude of
the magnetic field in conventional units.

constructed every time it is needed by using (2.25). All
that we need to store are the Fourier expansion coeffi-
cients Ha of Oi(r). Consequently, we do not run into any
memory limitations, such as would be the case if we tried
to solve the set of equations (2.27), which would require

keeping the entire F matrix in memory. Furthermore,
if I'z is an n x n matrix, then the number of basic

arithmetic operations needed to calculate A "& is of order

O(rn2), compared to O(ns) operations which are needed
to solve (2.27). Thus, for r &( n a huge reduction in
computing time is achieved. In fact, working with a Sun
Sparcl workstation we have been able to use g vectors
with integer components ranging &om —10 to +10 in all
directions, a total of 21 —1 = 9260 diferent g vectors.
The only limitation was due to computing time and not
memory requirements, so this number could easily be in-
creased by a factor of 10 (i.e., g vectors with integer
components ranging from —15 to +15 in all directions)
just by using a faster workstation.

The formulation that was presented in this subsection
is a simple extension of the formalism that was developed
in Ref. 29 for discussing the bulk effective conductivity or
dielectric constant of a two-component periodic compos-
ite when both components are electrically isotropic and
there is no magnetic 6eld present.

Since the subsequent discussions are all confined to the
case where the host (i.e. , the No. 2 component) is an
isotropic, free-electron-like metal and the inclusions (i.e. ,
the No. 1 component) are perfect insulators, the most
important parameter is the Hall to Ohmic resistivity ra-
tio pH/p. We will henceforth denote this dimensionless
parameter by H. In a free-electron metal we can thus
write

0.4 i i I
L

r i & ] i & i
] i i r

0.3

o
0 2 4 6 8 10

kom a straightforward summation of the original series.
Reexpansion was based upon a fractional linear trans-

formation to a new variable io(s) (see Fig. 4)

8O —8
SO& &)8+ 8p —2

(2.38)

and substitution of the expansion of 1/s in powers of 1/io
(note that iU = 1 corresponds to s = 1)

FIG. 3. Components cr
' and 0 (' of the effective magneto-

conductivity tensor for the same sample as in Fig. 5, plotted
as functions of the dimensionless magnetic field K. Three
different techniques are compared for obtaining results from
the series expansion (2.33) for E p(s): Results obtained by
a straightforward summation of the power series in 1/s for
P p (s = 1) are shown as empty hexagons connected by dashed
lines. Results obtained by summing the transformed power
series in 1/m for E p[s(ui = 1)] are shown as solid squares.
Results obtained by applying the Pade method to the original
series (2.33) are shown as asterisks connected by solid lines.

C. The convergence problem 0 ) 0 (2.39)

Use of the series (2.33) for calculating E p(1) is hin-
dered by the fact that 8 = 1 is often outside the radius
of convergence. Roughly speaking, this is due to the fact
that the denominator in the expression (2.25) for I'zz
only depends on the symmetric part of o.q, and, therefore,
decreases as H 2 for strong fields, whereas the numerator
depends on all parts of bar, including the antisymmetric
part (when g g g') which only decreases as H . There-
fore, the matrix elements I'sz, g g g' increase as H for
large H, and consequently the radius of convergence of
(2.33) is expected to decrease as H

We employed two diHerent stratagems in order to try
and sum the series when it was in fact divergent: (a)
reexpansion of the function I" p(s) around a finite value
so instead of around s = oo, (b) Pade analysis based on
the divegent series (2.33). Results obtained using both of
these approaches are shown in Fig. 3, along with results

1 Res I Rew

1/'w = (s —s)/(s „—2)

FIG. 4. Schematic dravring of the &actional linear transfor-
mation &om s to tu [see (2.38)]. The singularities that were
located inside a rectangular strip in the 8 plane are trans-
formed so as to lie inside the unit circle in the m plane.
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in (2.33). The new series for F p[s(m)] in powers of I/w
was then tested for convergence at m = 1 and summed
there. In practice, the result of this procedure depends
upon so, even though F p(1) should not. The value used
for 80 was, therefore, chosen to lie in a range where the
dependence upon it is Hat (see Figs. 5 and 6). The exis-
tence of such a plateau was one of the main criteria for

0.3

y(Fade)
zz

ZZ

200
B C

150— 22

I
]

I T ! 0— y(Pa de)
XX

p'(pade)
XV

'i '(
I,

-

xx

100— -0 2"
0

So

J 1 I J

8 10

50—
F„„;m

F„„;m=19

F ("«)=—0.023xy

F( ')=-0 045XX

I I ] I I I I I I I I I I I [ I I I

1 ——
(n 0.98

50
6 8

FIG. 5. Upper part: Results for F [s(m = 1)] and
F „[s(m= 1)] of a simple cubic array of insulating spheres
with volume fraction p~ ——0.5, embedded in a uniform,
free-electron host with resistivity tensor given by (3.1) and
H = 6. A truncated 1 matrix was used that included rows
and columns corresponding to all g vectors with integer com-
ponents running from —N to +N in all directions, with
X = 10. This resulted in a I' matrix of size n x n with
n = (2N + 1) —1 = 9260. The results were obtained by
computing the series expansion of F p(s) [see (2.33)], then
using the transformation (2.38) to reexpand F p(s) in powers
of 1/m and summing m terms in the resultant series. The re-
sults are plotted vs the reexpansion parameter so for m = 19
and m = 22. For so & 1 the transformed series diverges at
m = 1 (see the branch AB in the figure). For 1 & so & 4,
the sum does not converge with increasing m up to m = 22

[compare the dashed (m = 19) and solid (m = 22) lines], but
in the lower part of that range, when 1 & so ( 2, the sum
of a given number of terms m is independent of so (see BC).
For 4 & so & 5, the sum converges with increasing m but to
a value which depends strongly on so (see the high so part
of the branch CD), and hence can have no physical meaning.
Only when so ) 5 do we find both good convergence with in-
creasing m and a Sat plateau as function of so. In that region
we also find excellent agreement with the results of the Pade
method. At even larger values of so, not shown in this figure,
the results from summing the new series for F s[s(m = 1)]
become unreliable when the above quoted values are used for
m, . Using higher values for m, i.e., summing more terms of the
series, we can get good results even then. Lower part: The
value of s(w = 1) as calculated by summing m = 22 terms in
the series (2.39), plotted vs so. For so ) 7, this value begins
to deviate from 1, though the deviation is less than 1/o up to
so ——10.

FIG. 6. The solid lines show results for F [s(w = 1)],
F „[s(m= 1)], and F„[s(m= 1)] as functions of the reex-
pansion parameter so, calculated for the same sample and
using the same parameters and the same method as in Fig.
5, but using an expanded scale for the ordinate axis. The Sat
plateau (see DE) begins when so H and agrees with the
values obtained using the Pade method, which are also shown
in this Ggure as horizontal dashed lines.

(2.40)

Ql. (0) = l. (2.41)

An example of the complete Pade table for values of o
'

is presented in Table I for H = 5 and pq ——0.5.
Results fmm using these approximants are also shown

in Figs. 3, 5, and 6. These figures show good agree-
ment between the two methods for summing the diver-
gent series whenever the reexpansion approach worked
well. Figure 3 also shows that the Pade approach contin-
ues to work well even for higher magnetic 6elds, where
the reexpansion method fails with the same number of
terms available in (2.33). With 20 such terms available,
we found that we could use the Pade method eH'ectively

up to quite large values of H. Such results are shown in
Fig. 7, where components of the bulk effective resistivity

the validity of this procedure. From Fig. 3 it is evident
that reexpansion allowed results to be obtained for values
of H for which the original series diverges. Nevertheless,
for H & 6 even this procedure failed to give reliable re-
sults when only 20 terms were available in (2.33).

Pade analysis (see Refs. 30 and 31) of the series (2.33)
turned out to give reliable results even beyond that point
(see Fig. 3), and was, therefore, used the most exten-
sively. Prom calculations of the complete Pale table for
some cases we reached the empirical conclusion that the
diagonal approximants [I/I] = P (Lz)/ Qg( )zconverged
best, where z = 1/s and PL, (z), Ql, (z) are degree I poly-
nomials which are constructed so as to satisfy
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TABLE I. Complete [L/M] Pade Table for o ', obtained from a 20 term series expansion, of a simple cubic array of insulatmg
s heres (oq ——0) with volume fraction pq ——0.5 embedded in a free-electron host with p = 1, pH = 5. The magnetic field was

along the s axis. The boxes serve to highlight the diagonal approximants [L/L], which exhibit the best convergence.

1

2

4

6
7
8
9
10

0.12833
0.09350
0.15801
0.06525
0.05315
0.09670
0.10598
-0.0?370
0.00185
0.00000

0.07295
0.07012
0.07850
0.08238
0.07860
0.07296
0.06762
0.06591
0.06647
0.06735

0.07038
0.07244
0.08643
0.08023
0.08648
0.05394
0.06526
0.06633
0.06491
0.06453

0.08358
0.13506
0.07704
0.07325
0.07077
0.06898
0.06763
0.06766
0.06452
0.06484

0.09614
0.08673
0.07421
0.06972
0.06620
0.06018
0.06766
0.06763
0.06561
0.06473

0.07093
0.25992
0.07219
0.06682
0.05626
0.06555
0.07067
0.06921
0.06926
0.06966

0.05232
0.05348
0.07071
0.06287
0.06609
0.06920
0.06884
0.06925
0.06920
0.06603

0.05361
0.05224
0.06955
0.06828
0.07500
0.06885
0.06906
0.07083
0.07068
0.07033

0.12279
-0.00818
0.06897
0.06917
0.06998
0.06932
0.07139
0.07068
0.07091
0.07034

0.07033
0.23894
0.06929
0.06877
0.06964
0.06956
0.07070
0.06939
0.07033
0.07059

tensor p, = 0, for the same sample are plotted for H
in the range 0—32.

The convergence properties of (2.33) are of course gov-
erned by the mathematical singularities of F p(s). A
discussion of those singularities and their effect on the
convergence properties is given in Appendix A.

I
]

I I I I
[

I

0.2
Q Q O

p(e)(p H)
o

s,", (p H)

0.4 H

0

G4

2

R"(p,H)=p" (p, H)/H

0
0 10 20 30

FIG. 7. Components p ~(pq, H), p~„(pq,H), p~, (pq, H) o(e) (e) (e) of
the bulk effective resistivity tensor p, = 1/n, and the Hall co-
eKcient RH' (pq, H) = p '„(py,H)/H, plotted vs the magnetic
field H. The sample is the same as in Fig. 5, and likewise for
all the parameters with the exception of H and N (N defines
the range of g vectors used see caption of Fig. 5). The as-
terisks denote results obtained using the Pade method and
N = 10, while the hexagons denote results obtained by ex-
trapolating &om N = 9, 10 to N = oo. The inset shows a
magnified view of the plot of p (H) and p„(H)near H = 0,(e) (e)

showing that both curves are parabolic.

III. TECHNICAL DETAILS AND RESULTS
FOR VARIOUS MICROSTRUCTURES

p2 =

1
CT2 = —

„

p2

I' I -I
H

( 0 0

1
i+H~

1+H~

0)
0

0
l

1
1+H~

0 I)

(3.1)

(3.2)

This is tantamount to assuming that the Ohmic resis-
tivity of the host medium is one, its Hall resistivity is
H, and the magnetic field is directed along the positive
z axis. The different unit cell microgeometries that we

considered are shown in Figs. 1 and 8, and they include
a case where neighboring spherical inclusions overlap.

In order to proceed with the calculation we need the
values of 8, which depend on the geometric form of thegl

~ ~

inclusions and on their relative positions. Exphcl. t ex-

We made detailed calculations of the bulk effective
magnetoconductivity tensor cr„and subsequently of its
inverse p, = 1/0', for a variety of composites with a sim-

ple cubic periodic microstructure. Even if all the com-
ponents were &ee-electron-like in that they exhibited a
Hall resistivity but had an Ohmic resistivity which was
a scalar and independent of H, we invariably found that
the composite did have field dependent Ohmic compo-
nents of the resistivity tensor. At strong fields, i.e., when
H = p~/p ) 1, this magnetoresistance exhibited a spec-
tacular dependence on the direction of the magnetic field
vector H—this was already reported and discussed in de-
tail in Ref. 2. Here we will confine our discussion to the
case where H points along the (001) direction, also called
the z axis, and to components of p, and Fr, which also
lie along the principal cubic axes. We will consider insu-
lating inclusions of various shapes, always arranged in a
simple cubic array and embedded in a &ee-electron-like
conducting host medium with resistivity and conductiv-
ity tensors given by
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)( h=R-a/2

ee I

)0 X

a

FIG. 8. The different cubic unit cells, of edge a, which were
used in our calculations: (a) single sphere of radius R which
is less than a/2 (nonoverlapping), (b) single sphere of radius
R which is larger than a/2 but less than a/v 2 (overlapping),
(c) single ellipsoid with semi-axes b, c, d, all less than a/2
(nonoverlapping), (d) single rectangular prism of dimensions
l x l„xl„allless than a/2 (nonoverlapping), (e) single cylin-
der of radius R & a/2 (nonoverlapping) and length l & a, (f)
single parabolic lens p + z = l (nonoverlapping). The for-
mulas for 8 corresponding to all of these unit cells are given
in Table II.

pressions for 8 are given in Table II and derived in Ap-
pendix B. We must distinguish between the case where
the inclusions overlap and the case where they do not. In
the case of a cubic array of spherical inclusions, neighbor-
ing spheres will just touch each other when the radius R
satisfies R = a/2, where a is the lattice constant, which

occurs at a volume fraction pq ——vr/6 0.524. At higher
values of pq the spheres overlap and a diferent expres-
sion must be used for Hs (see Table II). The host medium
continues to percolate up to the value pq

——0.965, and
that is, therefore, the conductivity threshold for such a
system if the spheres are insulating. However, if the in-
clusions were conducting while the host material was a
perfect insulator, then the conductivity threshold would
be at pz ——0.524. Our theory is applicable to both cases,
but the latter case will be discussed elsewhere. 2 We
note only that the scheme presented here is not invari-
ant under the interchange oq ++ o2. We cannot allow
o2 ——0 in our theory because o2 appears in the denom-
inator of certain expressions [see (2.33), (2.34)]. More-
over, for very small values of o2 the series (2.33) diverges
even for 0 = 0, and the correct value of o.~'~ is obtained
only by using a Pade procedure. It is better, therefore,
to assign the roles of host and inclusions in such a way
that the resistivity of the host medium is less than that of
the inclusions. Thus, if the conductivity of the spherical
inclusions is higher than the conductivity of the matrix
material, we should switch the roles of the inclusions and
the host material. When we do this, eg must be replaced
by the Fourier transform of the characteristic function of
the other component, which is equal to bgo —l9~.

A. Simple cubic array of nonoverlapping spheres

This model is perhaps the simplest kind of periodic
composite. The Fourier coefficients of Hq(r) are easily
calculable in closed form

Hg =,[sin(lsl&) —Isl& cos(lslR)]Sa s

g(sphere)
S

Figure

No noverlapping
sphere, see Fig. 8(a)
Overlapping sphere

see Fig. 8(b)

Ellipsoid
(x/b) + (y/c) + (z/d) = 1

see Fig. 8(c)
Rectangular prism

see Fig. 8(d)
Cylinder

see Fig. 8(e)
Parabolic lens

with pro6le
p +az=l
see Fig. 8(f)

Hs = [4~/(a'g~)]R J~(Rg~) [»n(lg-Ii/2)/lg-I]
where Jq(x) is a Bessel function and g& = gg + g&

Hs
—[2s /(a'g,')]Us(2l'g /a, lg~),

where Uz(z, y) is a Lommel function of two variables
(see Ref. 34)

TABLE II. Expressions for 8 for different types of unit cell in a simple cubic lattice.

Hs
--~ f Hg(r)e 's'dV

Hs =
I ~/(Igl ) ] [sin(lglR) —lglRc»(lgl )]

~{sphere3

Hs ——Hs~'~""'~ —H(R —a/2) [Z(g~~*"~,g„R,a) + X(g~~'*~, g„,R, a) + T(g~~"*',g, R, o)],
where

&(gi, g*, R, a) = [4~/(a'g~)] f „dzv'R' —z'Ji(giV'Rz —zz) cos(lg Iz);
~(O g»a) = (4~/a'lg. l')([»n(lg*lR) —lg. lR c»(lg. lR)]

—Lain(lg*l-;) —lg*l-; cos(lg*l-;)] —'-, (R' —(-;) )»n(lg. l-;))
X(O, O, R, u) = 2vrh (3R —h)/(3a ), g~" = ggz + g2; h = R —a/2.

Hs
——4mbcd[sin(g) —g cos(g)]/(ga)

where

g = /b2gz + c2gz + dzgz

Hs ——(2/a)' [sin(g l /2)/g ] [sin(g„l„/2)/g„][sin(g l /2)/g, ]
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where B is the radius of the spheres, a is the linear size
of the unit cell, and g = —(n, n„,n, ) with n~, n„,n, as

arbitrary integers is a reciprocal lattice vector. In order
to truncate the infinite set of I vectors, we allowed the
integers n, n„,and n, to range &om —N to +N. The
A "& matrices of (2.34) were calculated for r & 20 using
values of N as high as 10, and were then extrapolated to
N = oo &om the two highest values of N by assuming
that the N dependence has the form

A "p (N) = A "p (oo) + B/N. (3.4)

The extrapolated values were used to calculate F p(1)
from the series expansion (2.33) with the help of Pade
tables. The values obtained using the extrapolation of
(3.4) are shown in Fig. 7 by hexagons, and the values
obtained for N = 10 are shown by asterisks connected
by a solid line. Evidently, using 21 reciprocal lattice vec-
tors in each direction (i.e., N = 10) is good enough for
calculating p (pq, H), p „(pq,H), and the Hall coeffi-
cient RJr(pq, H) accurately. The same cannot be said
of p„(pq,H), where there are significant difFerences be-
tween the N = 10 results and the N = oo extrapola-
tions. To get more accurate results one should increase
the value of N, with a corresponding price in increased
computation time.

The efFective resistivity components p
'

(pq, H),
p~'„(pq,H), p,', (pq, H), and the efFective Hall coefficient

R~ (p&, H) = p~'„(pq,H)/H are shown in Fig. 7 as func-
tions of the dimensionless magnetic field H. Clearly,
there is a strong dependence on H at low and intermedi-
ate values of H but saturation occurs when H & 10. The
scaling behavior becomes evident if we plot these func-
tions of H in log-log graphs (see Figs. 9 and 10). For low

C4

o

Q.
-2

x

Q

o -3
bQ
D

slope =0.OS4
v uULAkL

r
/

/ I
/

nP(p H)

c,".(p, H)

I I I s s i l I

logic(H)

FIG. 9. Log-log plot of the ohmic components p(' (pq, H)
and p„(pz,H) of the bulk eSective resist'ivity tensor vs H.
The sample, as well as all parameters except H, are the same
as in Fig. 5. The values of the dimensionless magnetic Seld
range from H = 0.1 up to H = 32.
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fields, the diagonal components of p, (pq, H) —j,(pq, 0)
are all proportional to Hs (see Fig. 9) and the same
is true for the difFerence in efFective Hall coefficients

R& (pq, 0) —R& (pq, H) (see Fig. 10). This low-field
behavior is similar to what was found in calculations on
disordered composites. The character of the satura-
tion at high fields is also similar to what was found in
calculations on disordered composites. 2 '

B. Other types of nonoverlapping inclusions
and other microstructures

Since it might be dificult to fabricate periodic compos-
ite materials where the inclusions have a precisely spher-
ical shape, we considered other shapes too: nonoverlap-
ping spheroids, cylinders, rectangular prisms, etc. (see
Fig. 8). All of these shapes have in common that, when
there is no overlap between diferent inclusions, the 8+
function can be calculated in analytical closed form in
terms of elementary functions. The expressions for that
function in the above mentioned cases appear in Table II,
where we also present our result for the case of a simple
cubic array of spheres where nearest neighbors do over-
lap. Results for the relative change of the Hall coefBcient
with H are shown as a log-log plot in Fig. 10 for four dif-
ferent shapes of nonoverlapping inclusions, all arranged

FIG. 10. Log-log plot of the effective Hall coeKcient
R~ (pz, H) = p~'„(pg,H)/H calculated for a simple cubic
array of insulating inclusions with different shapes, but all
with the same volume fraction p~

——0.5 and unit cell edge
a = 1. The linear sizes of the different inclusions are: sphere
radius R = 0.492; cylinder radius R = 0.43, cylinder height
l, = 2R = 0.86; spheroidal semiaxes 5 = 0.477, c = d = 0.5
(oblate spheroid); cube edges l = l„=l, = 0.5' = 0.794.
The values of the dimensionless magnetic Beld range from
H = 2 = 0.03125 up to H = 2 = 32. All the other param-
eters are the same as in Fig. 5.
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as a simple cubic array with the same volume &action
pq

——0.5. We do not include the case of a parabolic lens
shape in this figure, because inclusions of that shape over-
lap when pq ——0.5. From Fig. 10 it is clear that the low-
field behavior, as well as the saturation at high magnetic
fields, do not depend strongly on the detailed shapes of
the inclusions. This behavior suggests that perhaps B~
of a disordered composite with a similar composition will
also behave in much the same way as function of H.

0.8 [

~ 0.6x
Q)

04

I ~r 1 i
r

H=O

non-overlap. ig
]

overlap.

l

l

C. Overlapping spheres

6

g gy —ig r g(sphere) Q gg 3 e i,g~6 y i=1
(3.5)

where 6jg'
"' is the Fourier integral over the entire

sphere of radius R ) a/2 [i.e. , the expression which is
given by (3.3)], while 8, + are the integrals over the six
sections of that sphere which protrude outside the cu-
bic unit cell [see Fig. 8(b)]. These six terms are similar,
and involve an integral with a high degree of symmetry.
Once we have calculated one of the terms, say 0~ g, for
all possible wave vectors g = (g, g„,g, ), then all the
other terms i = 2...6 can be found by applying appro-
priate rotation transformations to the vector g. It is
convenient to denote the sum of integrals from two dia-

metrically opposed protrusions by Z(g& "),g„R,a), etc. ,

where g&" = g2 + g2. We can then write

For this case, calculation of the Fourier coefBcients of
Oq(r) is more complicated than in the nonoverlapping
case [see (3.3)]. In Ref. 29 the coefBcients Hs for a simple
cubic array of overlapping spheres were calculated using
three-dimensional (3D) numerical integration. However,
it is possible to perform a considerable portion of the
calculation analytically as long as R ( a/v 2, when only
nearest neighbor spheres overlap. To show this, we first
note that the volume integral can be divided into several
parts

H=10
W T I0

0 0.2 0.4 JI 0.6
0.524

0.8
0.965

evaluated in terms of elementary functions (see Appendix
B and Table II). For arbitrary nonzero values of g~, the
situation is more complicated. However, we can calculate
the integral I(g~, g„R,a) numerically using either some
standard, 1D numerical integration algorithm, which is
much more eKcient and accurate than 3D numerical inte-
gration, or else an appropriate (double) series expansion

Flc. 11. The bulk effective magnetoconductivity tensor
component a ', (pz, H) of a simple cubic array of insulating
spheres embedded in a free-electron host with unit Ohmic
resistivity plotted as function of the volume fraction of the
spheres p~ for various values of the dimensionless magnetic
6eld H. Neighboring spheres overlap whenever pq ) 0.524
and the system is an insulator for p» 0.965 = 1 —p, where

p, = 0.035 is the percolation or connectivity threshold of the
host component. All the other parameters are the same as in
Fig. 5. The dashed lines represent results obtained from the
effective medium approximation of Refs. 22 and 23.

g g(sphere) [y( (&p) R )

+X(g~~', g„,R, a) + X(g~"'),g, R, a) ]

= I(g~~*"),g„R,a) + I( ~~'g* g)p, R, a)

(3.6)

x
4

verlap.

where

aj2
I(gg, g„R,a)—: dz /Rz —z2 Jg

a g~

x(g~/R2 —z2) cos(g z). (3.7)
I I 1

0 0.2
I f I I I I l I I I l I I r J

o.4 )\ o.s o.s
0.5P.4 0.965

The expression for Z(g~, g„R,a) is the same as (3.7),
except that the limits of integration are &om a/2 to R.
Jq(2:) is the usual Bessel function of order one. For the
particular case g~ ——0, the integral (3.7) can easily be

FIG. 12. Plot of the bulk efFective magnetoresistivity ten-
sor component p (pq, H) vs Jrq for the same set of samples(e)

and parameters as in Fig. 11.
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(see Appendix B).
Using this approach, we calculated the xx components

of the conductivity (Fig. 11) and resistivity (Fig. 12) as
functions of the insulator volume &action for cubic arrays
of insulating spheres over the entire range of volume frac-
tions up to pi ——0.965 and for various values of the mag-
netic field H. The spheres begin to overlap as soon as the
volume fraction increases above pq

——0.523 (correspond-
ing to R = a/2). When pq rises above the conductivity
threshold pq

——0.965 (corresponding to R = a/~2), the
conductivity vanishes.

ful also for calculating other physical properties of such
composite systems.
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IV. DISCUSSION AND SUMMARY

We presented a xnethod for calculating the bulk effec-
tive Ohmic and Hall resistivities of periodic composites
at arbitrary values and directions of the magnetic field H.
In this article we applied the method to a restricted set
of systems: simple cubic arrays of perfectly insulating in-
clusions embedded in a free-electron-like conducting host
with H along a principal cubic axis. The method is how-
ever applicable to any kind of periodic, xnulticomponent
composite medium, with the magnetic field pointing in
any direction, and all components of the resistivity tensor
are calculable.

We presented detailed results of calculations for the
transverse Ohmic resistivity component p

' and trans-
verse Ohmic conductivity component cr

' as functions
of the volume fraction pq of the inclusions for the case
of a simple cubic array of insulating spheres, when the
magnetic field is along the z axis. We also presented
detailed results for the differences p '~(H) —p

'
(0),

pi;l(H) —p~',~(0) as functions of the dimensionless mag-
netic field strength H for the same model, and for the dif-

ference R~ (0)—R~ (H) = [p '„(0)—p '„(H)]/Has func-
tion of H for various shapes of inclusions. For nonover-
lapping inclusions we found that for the same value of pq,
the dependance of R~ on H is insensitive to the precise
shape of the inclusions. At low and intermediate values of
H, all three of the above mentioned differences depend
strongly upon H, increasing as H2. When H is large
enough so that the Hall resistivity of the host becomes
comparable to its Ohmic resistivity, this rate of increase
begins to level off and eventually, when H—:p~/p ) 10,
saturation sets in.

Some other interesting phenomena in this system are
(a) strong oscillations of p~'~(H) and p,', (H) with chang-
ing direction of H—this was reported earlier, 2 (b) criti-
cal behavior of the xnagnetotransport near a conductivity
threshold in a periodic composite —this will be discussed
elsewhere. 32

In the Appendices we showed how to construct bounds
for the locations of the singularities of E p (a)—important
information to have when trying to calculate physical
quantities like u from a divergent power series. We also
presented details of an efBcient and accurate series ex-
pansion method for calculating the Fourier coefBcients 8+
for a system of overlapping spheres. This should be use-

APPENDIX A: ANALYTICAL PROPERTIES OF
5' p(s)

In order to analyze the analytic properties of E p(a),
we need to have some estimates for its singularities. From
(2.33) we see that those singularities are just the eigen-

values of I'. Denoting the eigenvalues and eigenvectors

of the I' xnatrix by s„,a", we have

(A1)

a„)(a~" ~' = ) ) ai" 'rss a ",

8+0 8+0 8'+0

= ).).Os-sbs' b& bs (A2)

where

~
~

0 for g = 0
(n)

otherwise.(g-~~. .a)'/'
(A3)

Defining b(r) as the vector function whose Fourier coef-
ficients are b+

b(r) =—) bse's',
8

(A4)

and taking the eigenvectors az to be normalized to one

) (
(n)(2

g+0
(A5)

we get

The xnatrix I'+ would be self-adjoint if the tensor bo
were symmetric. But in the presence of a magnetic field
Bo' is nonsymmetric, and consequently the eigenvalues s„
are in general complex. However, because the integro-
differential operator I' is real, the eigenvalues always ap-
pear in complex conjugate pairs. This follows &om the
observation that if P„(r)is an eigenfunction of I' with
the eigenvalue a„,then P„'(r)is also an eigenfunction of
I' with the eigenvalue s„*.

Using (Al) and (2.25) we can get the following expres-
sion for s„:
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s = — dVHq(r)b'(r) - bo'. b(r) = (Hqb* . 80 . b).
V

(A6)

By writing bo as a sum of symmetric and antisymmetric
matrices bo„bo

where we have represented the 3x 3 antisymmetric matrix
bar by an axial vector bA. From these results we can
easily derive bounds for Re(s„)and Im(s„).

For the case where component No. 1 is an insulator,
namely o.

q ——0, we get

bo- = bo-, + be, (A7) «Re(s„)= (H, b* O„b)( (b' o,. b) (A10)

we get a natural separation of 8„into its real and imag-
inary parts

=) (b,*.~, b, ) =) Io~")I'=1. (A11)
g g+0

Re(s„)= (Hgb' ho, b),
iIm(s„)= (8&b' ho b) = (8&b' (bl x b)),

= bA (Hg(b x b')),

(AS)

(A9)

These bounds are rigorous.
A similarly rigorous upper bound for IIm(s„)I

is ob-
tained as follows:

IIm(s„)l= IA2. (Hq(b x b'))I = A2 — dVHq(b x b') & IA&l
— dVlbl

V v.

IA I) Ib I
IA- I)-I s'I'Igl'

I 21 )-l,(-)I2

0 ~ ~2~ @ ~2'~~+ go &2,xnin
(A12)

where sr~; denotes the smallest eigenvalue of 02, and

Aq is the axial vector which represents the antisymmetric
part of 02. These estimates are in good agreement with
numerical calculations of the eigenvalues s„(seeFig. 13).

We are interested in the regime of strong magnetic
fields, where IHI ) 1. The radius of convergence r, of
(2.33) will be 1/ls I, where s

„

is the eigenvalue of I'
that is farthest away &om the origin. From (All) and

(A12) we would, therefore, estimate r, —1/IHI, which
would mean that the series expansion for F p(l) would
converge up to a field where IHI = l. In practice, that
series usually continues to converge up to a somewhat
stronger field. Thus, in the case of a simple cubic array of
insulating spherical inclusions (i.e., &q ——0) with a total
volume fraction of pq ——0.5 embedded in a uniform con-
ducting host medium, we found that the series for F p(1)
converges up to a field strength where H 2. This is

I

due to the conservative nature of the strict inequalities
in (A10) and (A12): we can probably expect the upper
bounds on both Re(s„)and IIm(s„)l to be smaller by
about a factor pq, which in this case would increase the
radius of convergence by a factor of 2. When trying to
calculate F p(l) for stronger fields, the series expansion
diverges.

The transformation s our [see -(2.3S)] moves the sin-
gularities of F p(s) to the interior of the unit circle in
the complex tc plane (see Fig. 4). Consequently, the ex-
pansion of F p[s(ut)] in powers of 1/tU will converge at
to = s = 1. However, each coefficient of this series de-
pends upon all coefficients of the series (2.33), and is,
therefore, itself calculated by a truncated infinite sum.
The accuracy with which the new coeKcients are deter-
mined when a fixed number of terms are available in

(2.33) may thus depend on the value of so. An argu-

jr' s

5'

Resj

Res
1.5

jm s

-5

-jgt

Resj.5

FIG. 13. Locations of the main eigenvalues
s (i.e., those that evoke the largest residues
when o, is expanded as a sum of simple poles)
of I' in the complex s plane calculated for a
simple cubic array of insulating spherical in-
clusions (op ——0) at pq = 0.5 for various mag-
netic Beld strengths (a) H = 0, (b) H = 3, (c)
H = 7, (d) H = 10. The eigenvalues were ob-
tained by numerically diagonalizing a Rnite,
truncated version of the in6nite F matrix,
obtained by including g vectors with integer
components ranging &om —N to +N along
each coordinate axis, with N = 2. This re-
sults in a truncated matrix of size n x n, where
n = (2K+ 1) —1 = 124. The theoretical
bounds 0 ( Re(s) ( 1, H( Im(s) ( +H—
are shown in the 6gures as dotted rectangles.
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ment for using a small value of 80 is that if we used a
value that was too large, then the transformation (2.38)
would compress most of the complex 8 plane, including
the singular points of F p(s), into a very small neigh-
borhood of m = l and that would adversely acct the
rate of convergence at m = l. On the other hand, 80
must be large enough so that 1/se is within the radius of
convergence of (2.33). In practice, we exploited the fact
that F p[s(iv = 1)] = F p(s = 1) should be independent
of 80. plotting the result of summing a fixed number of
terms m in the series for F p[s(iv = 1)] vs so we looked
for a broad plateau where the result is independent of 80
(see Figs. 5 and 6, where results are shown for a simple
cubic array of nonoverlapping spheres with pq ——0.5, em-
bedded in a uniform, free-electron conducting host with
H = 6 and the magnetic field pointing along a principal
symmetry axis, called the z axis). The best values of
80 found in this way turned out to be fairly close to H.
However, good results could only be obtained for H up
to about 6, when we used 20 terms in the power series
(2.33) and g vectors ranging from —10 to +10 in all di-
rections (see Fig. 3). We also found that by starting with
a larger number of terms in (2.33) we could get reliable
results with this approach even for higher values of H.

4m
Hg

—— dz p(z) Ji [g~p(z)] cos(g, z).
Ggg 0

(84)

We now discuss some specific shapes p(z).
(a) Nonoverlapping cylinders. For a cylinder of radius

R and height h [see Fig. 8(e)] we immediately obtain

4n. sin(]g, ] h/2) (85)

Os ——4vrbc [sin(g) —g cos(g)]/(ga) , (86)

where g = c g + c g + b g, and where we have used

the following relation:

f 2 cos 0! —xx'
/~2 ~2

(b) Nonovertapping spheroids. For a spheroid with
semi-axes b and c [see Fig. 8(c)] the result is similar to
that for a sphere

APPENDIX B:EVALUATIONS OF 8~

Here we present the evaluation of the Fourier coeffi-
cients 8 for some geometrical shapes of inclusions, many
of which have rotational symmetry around some axis (see
Fig. 8). Let OZ be such a symmetry axis, then we caa
write, using cylindrical coordinates in the integration,

eg = —
3 dz dpp

For b = c = R, (86) reduces to Eq. (3.3)—the result for
a sphere.

(c) Ellipsoid and other nonoverlapping shapes It is.
actually easier to obtain (86) by viewing the spheroid as
a particular type of ellipsoid. For an ellipsoid [see Fig.
8(c)] we perform the following coordinate rescaling trans-
formation: z ~ bx', y ~ cy', z ~ dz', which transforms
the ellipsoid to a sphere. Using spherical polar coordi-
nates to evaluate 8+ in the rescaled coordinate system,
we get

2'
igw p cos—P—ig„psin $—ig, s

0
(81) bd 2'

gs — dr r d8 cos(8) dPa3 0 0

dPe ' ' '~ = 2mJe(x)

dxxJp(x) = xJi(x)

(82)

(83)

(see, e.g. , Refs. 33 and 34). We restrict our discussion
to shapes that are symmetric also under reBection in the
x, y plane. In that case 8+ is real and, for a given value
of g, we can restrict the integration in (Bl) to positive
values of z, z 6 [O, zi]. The contribution from negative
values of z is obtained by substituting g, -+ —g . Eq.
(81) then takes the form

where p(z) describes the surface of an inclusion with the
above-mentioned symmetry. Using the transformation

g cosi ygesiop = greco(S —ir) jwhere gr = gg, + g„,
@ = arctan(g„/g )], aad taking into account that the
integral of a periodic function over an entire period is
unchanged when the limits of integration are shifted to-
gether, we can evaluate the 4 and p integrals in (Bl) as
follows:

x exp[ —ibg 2: —icg„y—idg, z]. (88)

After defining g = b2g + c g2+ d g„allthe evalua-

tions are similar to the spherical case. The final result is

showa in Table II. The expression for 8z~'
"'

[see (3.3)]
can be obtained from (88) by takiag b = c = d = R.

The case of parallelepiped-shaped inclusions could eas-
ily be handled by using affine coordinates for evaluating
es. In Table II [and also in Fig. 8(d)] we show results
only for a rectangular prism.

Another shape for which 8+ can be evaluated in closed
form is the parabolic lens, described by p(z) = y l2 —az.
Substituting this profile in the integral of (84), we obtain
a closed form analytical expression for Hs (see Table II).

(d) Overlapping spheres. This is the most difficult
case that we considered [see Fig. 8(b)]. We first evaluate
the Fourier integral over a sphere &om which two dia-
metrically opposed protrusions have been removed: that
is the integral which appears in (3.7). For the special
case g~ ——0, that integral takes the form
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for g, gO,
I(O, g„R,a) =

i2
—(—) for g, =O. (89)

t'R) (
1(g~,g„R,a) =2~l —

l l, l )ka) E g. ia) „;I'{1+k

This result holds for all g, of the form g, = —n,
where n, is an integer. To evaluate (3.7) for an arbi-
trary nonzero value of I, we need to use the series ex-
pansion of xJi(x), which includes only even powers of
x, and then substitute the finite binomial expansion of
x = [g&(R —z )] in powers of z2. In this way we

get a double series expansion for the integrand of (3.7),
but the remaining integrals are then elementary

(814)

g~R 5 . (—1)'(2l)~);I'(2+ k —l)«1+ l)

~ (;„)*"').~-~)-

, cos(lg. la/2)

2m 1 /' g~2R'lI(» g* R a) = —) .—I

—'
k!

+i
( 1)tR—2l+2 a/2

) -l!(k+ 1 —t)! o

x cos(lg, lz)dz. (810)

Again, the summation on I, can be extended to oo, and
we can, therefore, perform the k summation first to get

vr cos(lg, la/2) ).I'(3+ 2t)

,=. «2+~)

For simplicity we consider first the case g, = 0. In that
case the integral in (810) is easily evaluated and we get
the following double series result: X

1 (" 2

I'(2 + 2! —2m) I, lg. la )
(815)

/'R& . 1 f g~zR' t) «, +k) l

— ',
k=0

(-1)'(./2R)""
,

- (2l+ 1)I'{2+k —t)I'(1+ l)'

(811)

The remaining summations must be performed numeri-

cally. Although the sums over m converge very rapidly,
the summation over / has turned out to be problematic.
This is due to the appearance of a ratio of gamma func-
tions, equal to (2l + 2)!/(l + 1)!, which increases very
rapidly with I,. Consequently, we have found it prefer-
able to change the order of summation over I,, m and to
define a new function

I'{3+2l)
I'(2 + l )I'(2 + 2l —2m)

t/Rl /' 1 lI(g„O,R, a) =-2~l —
l l&a) &g«)

).J( i(g~R) /' g~RI
t!(2t + 1) ( 2

(816)

(812) so as to finally get

where 1'(k) is the complete gamma function. The sum
on t can be extended to oo since, for l ) k + 1, the
function I'(2+ k —l) in the denominator becomes infinite.
Therefore, we can perform the k summation first to get

2
where g = (z&) . For ( = 1 this series converges to (3.3).
In order to prove this we use the formula

(813)

/' 1
1(g~ g. »a) = -«os(lg. la/2)

l

oo
/ 2 ) 277K

x ) (—1) f(2m;(, g~) l

(817)

where H (x) is the Struve function (see Ref. 34). This
also proves that the series (812) converges for all ( ( 1,
i.e., for all R ) a/2.

'Awning to the general case, we perform the integration
in (810) to get

The function f (2m; (,g~) was first evaluated numerically
and its values were then used in (817). In spite of the
fact that the values of f (2m; f, g~) increase with m, when
they were used in (817) the sum always converged rapidly
to a finite value.
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