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Back-flow electric current: dc current as a quadratic response to an ac Beld
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We study the interaction of a running longitudinal wave with a metal. It is shown within a
quadratic response that a single wave creates a dc electric current even if the creation of electron-
hole pairs is prohibited. As a consequence, a macroscopic electric current depends on an instant
distribution of bosons, e.g. , plasmons. Beside a formal theory, two practical formulas are provided:
the random phase approximation formula for a general electron band structure and a general formula
for a single parabolic band.

I. INTRODUCTION

In this paper we study the interaction of a metal with
a single wave having a small but finite amplitude. The
wave we assume has a simple sinusoidal shape and propa-
gates along the x direction. We describe it by a potential
P(x, t) = $&2sin(q2: —uqt), where Pz is an amplitude, q
is a wave vector, and uq is a frequency. Note that this
wave does not change its shape, but runs with a phase
velocity c = w~/q. We will call it a running wave to dis-
tinguish it &om a standing wave sin(qz) sin(u~t). This
distinction is essential in our paper.

The "metal and wave" system is not symmetric with
respect to an inversion of coordinates x ++ —z; therefore
one expects that there is a dc electric current in the x di-
rection. If the wave creates electron-hole pairs, a current
undoubtedly exists; this current is usually named accord-
ing to the origin of the wave, e.g. , the acoustoelectric
current, 3 the phonon drag, or the photon drag. s' All
these effects are described by Boltzmann-like balance
equations with currents evaluated &om a disturbed dis-
tribution of electrons.

According to the balance equation treatment, no cur-
rent appears if the electron-hole pair creation is excluded.
Note that in this case a dielectric function s(&u~, q) is real
and the wave is not absorbed by the metal unless it is
in resonance with some collective mode. The following
question arises: Does the absence of absorption exclude
an induced dc current'? We prove in this paper that the
answer is no. A nonzero dc electric current is also induced
by the wave in the absence of absorption. Of course, a
theory of this efFect has to go beyond the balance equa-
tion.

In the theory of plasma, the current in question has
been noticed by Fainberg and Shapiro. The theory of
this current has been developed by Klima2 within clas-
sical mechanics and the quasilinear approach. Although
most of the properties of metals are given by their cool
electron plasma, a similar current has not been reported
in the theory of metals. To handle this current in met-

als one should take into account the quantum mechanics
and the Pauli principle and, if possible, a nonparabolic
band structure, electron-electron correlations beyond the
mean field, and a quantization of the driving waves.

Within the theory of plasma, the effect in question
is called "the trapping of particles in a monochromatic
wave. "2 This name is tightly connected with the classi-
cal mechanics and a dialect used to describe the Landau
damping. We prefer to use a dialect related to the the-
ory of metals. Within the dialect of Fermi liquid theory,
currents beyond the Boltzmann-like equation are called
back Bows. Accordingly, we will call this current a wave
back Bow.

While the wave back Bow is not included in the bal-
ance equation obtained as a quasiclassical limit of a quan-
tum mechanical description, it can be derived within a
classical picture, e.g. , from the Vlasov equation. From
the classical picture one can see why the wave back Bow
is missing in the balance equation. Within the Vlasov
equation, relative velocities of electrons and the wave are
increased in valleys and reduced on tops of the potential;
see Ref. 7, Chap. 7.5. Since each electron spends more
time in the region of its lower velocity, the averaged rel-
ative velocity of the electrons and the wave is reduced.
In other words, the electrons drift with the wave and the
sum of these drifts constitutes the current in question.

We note that a velocity v of an electron contribut-
ing to the wave back Bow is not close to the velocity
c of the wave. An electron with a velocity close to c
contributes to a wave absorption via Landau damping,
which corresponds to the drag effect. Indeed, a con-
dition of close velocities c —v is a classical 1imit of
energy conservation for an electron-hole pair creation

vq —h (e „+s —e „) (where eg = h /2m).
The drag and back Bow coexist, if the former is possi-

ble. One can see that the wave back Bow is not included
in the balance equation because the entire interaction of
electrons with the wave has been reduced to electron-hole
pair creation rates leaving the motion of electrons with
u g c aside. Here we want to focus on the wave back
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Bow; thus we restrict our attention to a case when the
electron-hole pair creation is excluded, i.e. , v g c for all
electrons.

Until now we have discussed the metal and wave sys-
tem, where the wave was longitudinal, driven by an ex-
ternal source, and strong enough to be described as clas-
sical. Another possibility is to study a "metal and weak
wave" system, where one has to take into account that
a square of the wave amplitude is quantized. In other
words, one can study a dc electric current in a metal
with excited bosons. These bosons are plasmons or lon-
gitudinal phonons which couple to plasmons via density
Huctuations of the electrons. Similarly to the previous
case, we are not interested in well-known drag effects,
but in wave back Bows; therefore we assume only stable
bosons which do not decay into electron-hole pairs. Our
aim will be to Bnd an electric current as a functional of
a boson occupation.

We have organized this paper as follows. In Sec. II we
extend the above discussion of the wave back Bow within
the classical picture and derive the classical value of the
wave back Bow. This section provides a simpliBed, clas-
sical, quasilinear treatment and it can be read without
reference to the many-body Green's functions. A quan-
tum statistical treatment in the case of the classical wave
is included in Sec. III. A more complicated general case
of collective modes is discussed in Appendix A. Besides
a formal treatment on a level of identities, this section
also provides two practical forxnulas obtained within the
random phase approximation. An identity that is use-
ful for a parabolic electron band is in Appendix B. The
wave back Bow of bosons is discussed in Sec. IV Rom a
weak quantization principle. An exact derivation of the
back Bow of boson within the quadratic response is in
Appendix C.

II. CLASSICAL WAVE BACK FLOW

As mentioned in the Introduction, the wave back Bow
can be described using classical mechanics. While the
quantum statistic theory is our aim, we start &om a clas-
sical picture which provides better intuitive insight. Ac-
cordingly, in this section we do not put emphasis on the
possible generality of our treatment but on its simplic-
ity. From this point of view, this section extends the
Introduction.

In the spirit of a Vlasov equation we assume that elec-
trons do not interact mutually, but only with an internal
electric Beld. The wave P(x, t) is a scalar representa-
tion of this internal Beld. To evaluate an induced current
we have to derive trajectories of individual electrons and
sum their contributions.

A. Trajectory of a single electron
in the presence of a wave

An electron trajectory is given by the Newton equation

d2x BP
dt2 02:

A time dependence of the potential can be reduced by a

choice of a running coordinate system given by a substi-
tution x = R + ct.

We also need an initial condition. To this end we as-
sume that the potential is slowly switched on with a slow
exponential increase given by an envelope function e"',
rI -+ 0; thus P(x, t) = Pqeq 2 sin(qx —mqt). As an initial
condition we use an electron trajectory in the absence of
the wave,

xo ——r + vt or Re ——r + (v —c)t.

We want to solve the Newton equation up to second
order in the field amplitude Pq. Thus we write the elec-
tron coordinate as R = Ro+Rq+R2, where the subscript
denotes the order, and expand (1):

d2Rg Bg
m = — = —pq2qe"' cos[qr + q(v —c)t], (3)

m = —Rq = Rzgq2q e" sin[qr + q(v —c)t].
dt2

Rp

From (3) the linear term results

Rq —— l~'
&,

e"'~ cos[qr+ q(v —c)t]

(„" )
sin[qr+ q(v —c)t] ~,

where we have neglected higher orders in g. Within the
linear approximation the second term in the large paren-
theses vanishes in the limit g ~ 0, but it brings a nontriv-
ial contribution to the quadratic approxixnation. Indeed,
this second term is proportional to sin[qr + (v —c)t] as
the second derivative of the potential on the right-hand
side of (4). Therefore, on the right-hand side of (4) a
nonoscillating term appears:

d'R2 44q'

dt2 m(v —c)s (6)

According to (7) the velocity of the electron with re-
spect to the wave is reduced within the quadratic ap-
proxixnation. Thus all electrons drift with the running
wave, although none of them is trapped. Below [Eq.
(15)] we derive a net current by summing over individual
electrons. First, we want to discuss the obtained single-
electron trajectory in more details.

where the ellipsis stands for oscillating terms. From
(6) one can see that besides oscillations, the electron is
steadily decelerated; therefore its average velocity vg, is
different &om the initial velocity v —c. At t 0, the
average velocity obtained from (6) reads

24 2

vgc =v c
fA V —C
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B. Integrals of motion

The above straightforward solution of the Newton
equation does not provide desirable intuitive insight into
a microscopic mechanism of the electron drift. In partic-
ular, one might be skeptical about contributions resulting
as a reappearance of infinitesimal terms or have an incor-
rect impression that the shape of the envelope function
(e"' above) is crucial for the resulting drift. We find it
profitable to recover the electron drift &om the integrals
of motion. From now on we will not treat electron trajec-
tories, but evaluate the electron velocity V(R, t) = dR/dt
as a function of time and its actual position.

To check that the electron drift does not depend on
the envelope function, we take a general function K(t)
instead of e"~; thus P(z, t) = QqK(t) 2 sin(qx —tuqt) This.
function has the following properties: K = 1 for t & 0,
K ~ 0 for t ~ —oo, and K is smooth, i.e., dK/dt &&

q]v —c]K.
From (1), the leading linear term of the electron veloc-

ity reads

Vg(R, t) = q K(t) sin(qR).
2(I) q

m v —c

—V (R, t) +4)(R, t) = —(v —c)

8$(R, t)

R(c)

(9)

The left-hand side is a usual sum of actual kinetic and
potential energies; the right-hand side includes an ini-
tial kinetic energy and a net energy gain AE (the last
term). The net energy gain is explicitly proportional to
P; thus up to the quadratic order it is sufficient to inte-
grate along the electron trajectory within the linear ap-
proximation Rp(t)+Rq(t) = r+(v —c)t+2gqq m (v-
c) ~K(t) cos[qr + q(v —c)t],

One can see that the electron is slower on the tops of the
potential and faster in the valleys, therefore the electron
spends more time on the tops than in the valleys. As the
potential increases, the electron gains a potential energy
on the tops and loses it in the valleys; a gain, however,
exceeds a loss due to dMerent velocities. A net electron
energy is obtained from an integral of motion [multiply-
ing both sides of (1) by dR/dt and integrating over the
time along the electron trajectory]

8$(R, t) dK
pq2 sin [qRp(t) + qRg(t)]

R0(t)+R& (c)

dK
pq2sin [qr + q(v —c)t]+ 2cos [qr + q(v —c)t].

dK'(t)
dt dt mv —c2 (10)

In the integral over time the Grst term gives a negligi-
ble contribution of the order of dK/dt(q]v —c]) ~. This
term corresponds to compensated energy gains and losses
along the unperturbed trajectory. The second term re-
Bects the slower velocity of the electron at the potential
tops. It has a nonoscillating part due to the cosine square
and one finds that the net energy gain is

b,E= dt =K'(t)
Bt m(v —c)~

'

Note that for t & 0 the energy gain does not depend on
time (K = 1) and its value does not depend on the shape
of the envelope function.

Once the potential is switched on, a dynamics of the
electron is easy to imagine. The energy of the electron
remains constant and the potential is static in the run-
ning coordinate system. Now we can conveniently use
the energy conservation (9) to find the velocity of the
electron as a function of its actual coordinate:

( )
4)q2 sin(qR)
mv —c

$22 sin (qR)
ml v —c3 m2v —c3 (13)

vac

dR
2s () V(R)

2P,'+
v —c m2(v —c)s

' (14)

The last term results &om AE; the penultimate term
results from $2 in an expansion of the square root in
(12). In spite of their different origins, the nonoscillating
components of the two terms exactly cancel. Accordingly,
the perturbation of the velocity as a function of the actual
position R has only oscillating components.

The dc component of the electric current depends only
on an average velocity vp, . To evaluate this average ve-
locity one has to integrate along the electron trajectory.
Alternatively, one can obtain the average velocity &om
the time the electron needs to run over a single period of
the potential

2
V(R) = —

]r
(v —v)v + —[EE—p(B)].

Up to second order in 4) the velocity reads

(12) Within the quadratic approximation, the velocity vp, ob-
tained from (14) is identical to (7).

Note that the quadratic term of (13) does not con-
tribute to the average velocity in (14). The only contri-
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bution results &om a square of the linear term; there-
fore one would obtain the electron drift (7) using simply
the linear approximation of the velocity in (14). On the
other hand, to keep all quadratic terms under control,
the above treatment is necessary. For instance, if one
neglects the energy gain AE, the nonoscillating compo-
nents of V(R) do not cancel and one ends up with the
wrong factor 3 instead of 2 in (14).

C. %'ave back How: Net induced current

So far we have discussed a single-electron response.
Now we sum over an initial distribution f (v) of electrons
to obtain a net dc current

8v v c+vd

2e 2 dvf(v) 2eN 2 2eNqs
m' ' (c —v)' m'c' ' m'(u'

(16)

where X = f dv f(v) is a density of electrons.
Formula (16) can be given a more general form. A

polarization operator of an electron gas in the high fre-

quency limit reads [see Ref. 7, Chap. 7.4, or Ref. 8, Eq.
(22.14)]

q2 dvf(v) q2 N
II(q, ~) =—

m ((u —qv)2 m (u2
' (17)

thus formula (16) can be rearranged as

eq OII(q, u))
2 =

m Rd

For simplicity, we assume that the wave velocity c is much
larger than a characteristic electron velocity (whether it
be a thermal or Fermi velocity). Then the integral sim-

plifies as

It is easy to check that this interpretation of the wave

back flow holds for plasmons in three-dimensional (3D)
metals. A longitudinal electric field of plasmons does not
carry any momentum, therefore the electronic share Q, i

represents a total density of momentum in this particu-
lar case. The total momentum density can be evaluated
directly from the energy density W = q P /(27re ) (see
Ref. 7) because Q, i = qW/u~. Using a dipersion relation

of 3D plasmons, ~o = ~J = /4mNe2/m, from (19) one
recovers (16).

Let us briefly summarize this section. Although not
trapped, electrons of the metal drift with the running
wave because their velocities with respect to the wave are
reduced within the quadratic approximation. Velocity
changes of individual electrons are rather small, but, on
the other hand, all electrons take part in this motion.
This electric current can also be interpreted in terms of
the momentum share carried by the electrons. This is a
physical reason why the current can be easily expressed in
terms of the polarization operator and why formula (18)
will turn out to be general. We note that the relation
between the momentum density and the current follows

from a parabolic band structure, which is inevitable for
Newtonian physics, but not for quantum mechanics.

EII. WAVE BACK PLOVER:
QUANTUM STATISTICS

In this section we derive the wave back flow (i.e. , the dc
electric current driven by an ac field) within the quantum
statistics. As we have shown in the preceding section, the
wave back flow is a quadratic effect; therefore we start our
treatment from formal quadratic response theory. For
simplicity we assume that the system was in the ground
state ~G) at t m —oo.

In Sec. II, we studied a motion of electrons driven by
the internal field P. Formal response theory, however, has
to start from some external field p. The internal field P
will result as a part of the system response.

This formula was first derived by Klima; see the second
term of formula (3.6) in Ref. 2. It is very easy to apply
and in fact it is very general. We will recover (18) within
the quantum statistics and specify its range of validity in
Sec. III.

A. Quadratic response

The time evolution of a system is described by a U

matrix defined by an. expansion in an interaction repre-
sentation [see Ref. 9, above Eq. (8-6)]

D. Relation of the wave back Bow to wave
momentum

The general validity of formula (18) follows from the
relation between the density of momentum of the wave

and the electric current. The current relates to a velocity
as j —ev and the momentum relates as Q mv; thus
the current is proportional to an electronic share of a
momentum density

ej = ——Q.i.m

tp

U(to) = 1 —i dt's, (t)

tp t
dtjI (t) dt'(pl (t'), (20)

j(to) = (+IU (to)31(to)U'(to)l+)

and its quadratic component is

where we have left orders beyond quadratic. An elec-
tric current is given by a mean value of a homogeneous
current density operator jI(to),
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Cp Cp

j(t.) = ««'(GIB(t') jr(tp)A(t) IG)

Cp t
dt dt'(GIpr(t')(pr(t) jr(to) IG)

Cp t
«'(Glair(to)A(t)A(t') IG). (22)

The three-time functions in the integrands have to be
evaluated perturbatively. This is quite a demanding task
because an electron-electron interaction (so far hidden in
an unperturbed Hamiltonian) makes a time dependence
of the Geld operators yl nontrivia1. To handle this task
we employ the Green's function machinery.

B. Imposed undamped vrave

In this subsection we show that under the condition
that the wave vector q and frequency uq are such that
the external Geld y does not create any excitation in the
metal, it is possible to evaluate formula (22) with the help
of zero-temperature causal Green's functions. Of course,
this condition is too restrictive for practical applications
because large amplitudes of waves can be achieved only
if uq and q belong to some collective excitation of the
metal. Moreover, a wave back Bow of bosons is excluded
by this condition. In practice, this restriction is not so
bad. In the classical picture we have found that elec-
tric current is given by the derivative of the polarization
operator, which is a smooth function of q and u in the
vicinity of collective modes. It is the singular relation of
the internal field 4) and the external field &p that requires
us to distinguish the collective modes. If we approach the
collective mode keeping a constant amplitude of P (not
of rp), the collective mode does not represent any special
point. Therefore, the formula we derive here applies also
to collective modes. More details are in Appendix A,
which should be read after this section.

Our derivation of the system response is based on the
Buctuation-dissipation theorem. While the use of the
Buctuation-dissipation theorem is complicated for a gen-
eral quadratic response because of a rich analytic struc-
ture, in the case of the homogeneous current there is a
simplification which follows from the fact that the ground
state is an eigenstate of the homogeneous current density
operator with zero as an eigenvalue

j,(t, )IG) = O.

Accordingly, only the first term of (22) contributes and
there is only a single important analytic piece. This sim-
plification corresponds to what we have seen already in
the classical picture, that the wave back How can be ob-
tained from the linear perturbation of the electron tra-
jectory.

As mentioned, we want to use a zero-temperature
causal Green's function to evaluate the first term of (22).
Apparently, the order of the operators does not corre-
spond to a time ordering on a real time axis because
gr(t') stands on the left-hand side of jr(to) and t' ( to

We introduce the causal Green's function into (22) by
extending the t' integration to infinity and subtracting
the proper part

Cp OO

j(to) = dt dt (GI(pr(t )jr(tp)yr(t)IG)

fp OO

dt dt'(GIrPr(t )jr(to)A(t) IG) ~

—Oo tp
(24)

The second term has the causal ordering on the real time
axis; we will show that the first term vanishes if the field
does not create any excitation of the metal.

To prove that the first term of (24) vanishes, we insert
a unity operator 1 = IG) (GI+ P& IE) (EI between gr(t')
and jr(tp) Her. e IE) is an excited eigenstate with the
excitation energy E Acc.ording to (23), the ground state
does not contribute; thus we can focus on excited states.
The time integral over the whole time axis results into a
b function

«'(GI jr(t')IE) - »~(~, —E), (25)

where T, is Dyson time-ordering operator on a real time
axis. From now on, all time integrals run from —oo to
OO.

To make the structure of the response formula more ex-
plicit, we express the external field operator yl in terms
of a local density operator nl

tip(t) = J dxn, (xt)p(z, t),
so that formula for the current reads

j(tp) = —— dxdtdx dt p(x', t')p(2:, t)
2

x (GIT,nr (&,t )jr(to)nr(x, t) IG). (29)

which is nonzero only if the transition to the state IE) is
possible. According to the assumption that the field does
not create any excitation, no such state exists; therefore
the left-hand side of (25) is zero and the first term in (24)
vanishes.

Formula (24) with the first term eliminated provides
the current in terms of an element of a causal Green's
function. A convenient use of causal Green's functions,
however, requires all limits of time integrals to be fully
determined by the time ordering. To this end we use a
symmetry with respect to t and t',

tp OO

j(to) = —— ««'( GIp r(t') jr( to)pr(t) IG)
—OO tp

OO tp

dt'(GI&pr(t) jr(to)&pr(t') IG), (26)
tp —OO

and Eq. (23) to add integrals where both field operators
stand at the same side of the current operator. Finally
one finds that the current reads

1 /j(to) = —— dt dt'(GIT, jr(t )jr(to) j'r(t) IG),
—Oo —Oo
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S=T exp —i dtH t, (30)

Prom now on we can make use of the machinery of the
Green's functions. %'e introduce an 8 matrix defined by
(H is the full Hamiltonian of the system except for the
external field)

The integral over all time arguments of the current
operator allows for a remarkable siInplification. If we
include an infinitesimal, homogeneous, stationary vector
potential A into the Hamiltonian of the S matrix, Dot
into the ground state lo), the current operator can be
expressed as [H ey, ~, see Ref. 8, Eq. (19.2), and
above]

and express (29) in Heisenberg representation with help
of the Green's function as

1 BH(T)
0 OA

(36)

j(t,) = —— dzdtdx'Ct'i (x', t') i (z, t)
2

(0]T,n(x', t') j(ts)n(x, t) Slo)
(31) T, dTj(T)S =—i OS

(37)

Accordingly, the time integral of the current operator can
be generated &om the S matrix,

Here lo) is the ground state of the noninteracting system.
This formula can already be treated by Green's-function
techniques.

C. Translation invariance and stationarity

Formula (31) is still not suited for practical applica-
tions because of the three-time operator, which is usually
difficult to evaluate. Here we use stationarity and trans-
lational invariance to express the three-time operator in
terms of a two-time operator, a density-density response.

Due to translational invariance, the
function (G]T,n(z', t') j(to)n(z, t) lG) is a function of the
coordinate diHerence r = x —x'. The integration over
the "center of mass" coordinate R = (x + z')/2 can be
performed separately on the potential square

(r; t', t) = — dRy(R + r/2, t) rp(R —r/2, t'), (32)0
where 0 is a sample volume.

For the potential of the single running wave p(x, t) =
yq2 sin(qz —~qt), a homogeneous component of the field
squared is

(p~ i(r, 7-) = (p 2cos(qr —(aqua-),

where ~ = t —t' From (33) .one can see that y~ ~ also
does not depend on the center of mass time T = (t+t') /2,
i.e., y~2l is stationary. Equation (31) thus simplifies to

j(t,) = —— Crd~dT~~ ~(r, ~)
0 2

2

(0]T,n(0, T —q /2) j(te)n(r, T + ~/2) Sl0)
«IS]0)

The function (0]T n(O, T —q /2) j(to)n(r, T + q /2)Slo)
does not depend on the choice of the initial time; there-
fore the center of mass can be moved into the time argu-
ment of the current operator

dTOTn0, 0 j Tnr~ SO . 35

This allows us to express the current with the help of the
partial derivative of a two-time function

1
~z~

8 (0]T,n(0, 0)n(r, ~) Slo)
BA i(0]slo)

The Green's function in the integral is a common
density-density repsonse function

(OlT, n(0, 0)n(r, r) S]0)

In contrast to the quadratic response, the theory of the
density-density response is already well established and
we will make use of it. Before we do so we use the ex-
plicit form of &p~2l to turn formula (38) into the energy-
momentum representation

2 0
[K(q, urq) + K(—q, urq)]. —

The density-density response function obeys a boson
symmetry K(—q, —~) = K(q, u), which follows from its
definition, independent of the presence of a symmetry-
breaking vector potential A. Therefore we have obtained

2 OK(q, (uq)= V'q
OA

(41)

This formula is already suitable for applications. %ith
respect to collective modes, however, it is better to rear-
range (41) in terms of the polarization operator.

D. Quadratic response in terms of the polarization

K(q, td) = II(q, (d) + II(q, ld)Do(q, td)K(q, (d), (42)

where Do is a bare boson Green's function, whether it
is a Coulomb interaction or a phonon Green's function
with interaction vertices included (we assume only the
local interaction), or both combined.

From (42) the derivative of K gives

~K(q, ~) ~II(q ~) -2
BA BA

where c is a dielectric function

A perturbative expansion of the density-density re-
sponse can be reduced to a perturbative expansion of
a polarization operator
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e(q, (u) = 1 —Dp(q, ~)II(q, (u). (44)

Now we substitute (43) into (41) and obtain the final
formula

2 BII(q, (uq)

B.4 (45)

where we have substituted the external Geld by the in-
ternal one via the relation Pz ——pz js(q, uz).

Formula (45) is our final result. With respect to its
application, the only required input is the derivative
of the polarization operator. The polarization opera-
tor II(q, or~) is real because of excluded electron-hole pair
creation, thus one can use any formula for the polar-
ization operator at hand [Rell, (ar, q) = Rell~(u, q) =
Re II~(ur, q); see Ref. 8, Eq. (7.25)). This formula is the
desired quantum statistical generalization of the classical
formula (18).

E. Wave back flou in the random phase
approximation

So far we have not made any approximation except
for the zero temperature limit and quadratic order of the
response. Here we demonstrate the use of (45) for the
simplest case, the random phase approximation (RPA).

With a gauge A the kinetic energy of the electron is
The vector potential A does affect the ground

state ~0). Accordingly, the occupation numbers of indi-
vidual single-electron states are independent of A and the
RPA polarization operator reads

dk fi, —f&+q
(2z') ~q + ei —~x —ea —ex+a

Taking the derivative at A = 0 one finds

Bek+q )
Bk )

BII(q, ~~) dk (Bei,
BA (2z)" ( Bk

fi —fa+q
(~&+ &i, —&s+&)

(46)

(47)

Except for special cases this formula has to be treated
numerically. For the numerical integration it might be
advantageous to rearrange (47) into an equivalent form,
using integration by parts. Then the back-Bow current
results:

ei, = k j2m, the velocity difFerence in (47) is indepen-
dent of the electron moment»m

Dk Ok m
(40)

The square in the denominator of (47) can be expressed
as the derivative with respect to the &equency

1 8 1

( +s — i+) B +a — i+
(50)

therefore one Gnds that

IV. WAVE BACK FLOW OF BOSONS

Let us assume a stable boson which cannot decay into
an electron-hole pair. The wave back Bow has a straight-
forward consequence: this boson is accompanied by an
electric current. Here we evaluate its value.

In principle, the wave back fiow of bosons can be
treated within the quadratic response theory. An exter-
nal Geld tuned to a selected collective mode creates cor-
responding bosons. ARer the external field is switched
o6', these bosons persist, causing the wave back Bow in
question. Apparently, the process has two stages: the
creation of an excess occupation AN of boson modes
and the observation of the current j [b,N ], a functional
of the occupation. Here we are interested only in the
second part of the problem, the functional j [b,N ]. The
boson distribution LN is an input of our treatment.

A. Weak quantisation approach

BII(q, (u~) eq BII(q, ~)
BA m B(u

47q

Substituting (51) into (45) one recovers (18).
Formula (51) is a direct consequence of momentum

conservation; therefore it applies for any approximation
of the polarization operator. A general proof of (51) is
given in Appendix B. The form (18) might be particu-
larly useful for low-dimensional metals prepared on semi-
conductor surfaces, where the electron concentration is
too low to guarantee the validity of the RPA, while a
parabolic approximation of the band is usually sufBcient.

dk 1 0»(~. f",) (48)-
21l') (dq + 6g —eg+q Bk

Formula (48) shows that the only contributing electronic
states are in a q vicinity of the Fermi surface.

F. Wave back flow for the parabolic electron band

For metals with a parabolic electron band, one can
make use of inomentum conservation to simplify the
back-fiow current (45) to formula (18). Here we confirm
formula (18) within the RPA. For the parabolic band

A straightforward approach to evaluate the dc electric
current is the following: associate a potential wave P to a
single boson; apply the quadratic response formula (45)
and sum over all bosons.

The internal potential P of a single boson is not well
deGned. A phase of this wave is arbitrary and its am-
plitude P is inversely proportional to the square root
of a sample volume 0; thus P +0 in the ther-mody-
namic limit 0 ~ oo. According to (45), however, the
quadratic response depends only on the averaged poten-
tial square where the unknown phase is irrelevant and an
inconvenience of the thermodynamic limit can be avoided
normalizing P to a nmtary volume similarly as a boson
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distribution.
To identify P, we use the weak quantization principle

and take the potential P as an operator in the second
quantization. The average potential square 4 then be-
comes a potential-potential correlator, i.e., a part of a
screened boson Green's fug.ction D.

B. Potential-potential correlator

We call Z a norm of the mode.
Now we 6nd AD. For &ee bosons the occupation num-

bers enter the Green's function as factors of correspond-
ing poles; therefore a dominant contribution to AD reads

~D(., ~)= -iy~'l(. , ~)

dg ~ ~ Q(Z~
~

QN~e~&" ~~q ~

(2~)da

+alga iqr+i~ v.
—q

where d is a system dimension and the equivalence de6nes
the function P&2l.

The form (54) with mixed q and —q terms is suitable
for the momentum representation; alternatively one can
substitute q ~ —q in the second term, which yields /~2'

as a sum over running waves:

Pi ~(r, 7) = ) dZ AN 2cos (qr —~ 7) . (55)2n. d
a

The factor Z AN~ correspondes to a square of the po-
tential [see (33)]; therefore

Z bN~. (56)

C. Wave back flow

Now we are ready to use formula (45). Substituting
from (56) we find'that the current is

Now we specify D[AN] as a functional of an excess
occupation. For simplicity, AD is a deviation of the
Green's function and D is an equilibrium (zero tempera-
ture) value.

We describe the equilibrium part 6rst. Boson disper-
sion relations ~, where n denotes branches, are given
by [for modes with an infinite lifetime D(q, u) is real]

D '(q, u) ) = 0. (52)

Each mode is thus represented by a pole of the Green's
function; this pole has a weight Z given by

BD '(q, ~)
Za BV

This formula is the desirable functional j [EN].
The above derivation has a few shortcomings. First,

because of the presence of nonequilibrium bosons, one
can be skeptical about the use of the zero temperature
Green's function. Second, the potential-potential cor-
relator has a much richer structure and it is not clear
how to deal with its oH'-pole parts. Third, quadratic re-
sponses to quantum and classical screened fields are not
exactly identical because of mutual correlations in the
quantum case. All these points are 6xed using nonequi-
librium Green's functions and formula (57) is recovered
as an exact result. Because of its rather technical nature„
this proof is given in Appendix C.

D. Wave back flow and the density
of momentum in jellium

c dg c
2 qANq ————Q.

m (27l)d ' m
(58)

This simple relation is not accidental but follows directly
from de6nitions of the current and momentum density
operators:

dk

),k Pg4'k ) kgb @g. (59)

Here Q& is the creation operator of the bare electron with
momentum A;. According to (59) the homogeneous elec-
tric current j and the homogeneous density of momentum

Q are identical, except for the factor —e/m.
In terms of single-particle excitations, the total mo-

mentum density depends on both a quasielectron distri-
bution fg and the plasmon distribution Nq,

From (57) one can see that plasmons carry a dc elec-
tric current. This conclusion met a lot of complains based
on a common prejudice that the only motion of electrons
induced by plasmons is an oscillation with the plasma &e-
quency. This prejudice contradicts the momentum con-
servation law, which requires the existence of a term like
(57). We demonstrate this relation of the wave back flow
and the momentum conservation on the simplest system,
the jellium model without phonons.

For the jellium model, formula (57) can be remark-
ably simpli6ed. Since the electron band is parabolic, the
derivative of the polarization operator with respect to
the vector potential simpli6es to the energy derivative;
see (51). In the absence of phonons, there is a single
boson branch, the plasmons, thus we suppress the super-
script o.. The norm Zq follows &om the inverse dressed
Green's function D ~(q, ~) = V ~ —II(q, u), where V~

is a Coulomb potential. The Coulomb interaction is in-
stant (Vz is independent of u); therefore the denomina-
tor in (53) depends only on the polarization operator and
Z ~ = —BII/Ou. The product Z&BII/BA thus does not
depend on the polarization operator and from (57) one
6nds that the wave back How is proportional to the den-
sity of momentum Q,

dq BII(q, ~ )

(2') d ~ BAa
(57) dk dq

(2-) ""' (2-)""' (60)
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Thus the current is

e dk e dq2= &fa —— qNq.
m (2vr)" m (27r)"

The first term is a common current term used in the Lan-
dau theory of Fermi liquids. The bare electron mass m in
the factor —e/m is known to result from compensations
of a group velocity renorxnalization and a quasiparticle
back Bow. In our case the quasiparticle distribution re-
mains in equilibrium and this term is zero. The second
terxn is the wave back flow derived above.

It is our feeling that the wave back flow of plasmons is
a natural part of Fermi liquid theory because it reflects
the momentum conservation law in a way similar to the
quasiparticle back Bow. In standard metals typical en-
ergies of plasmons are 1 eV; therefore plasmons are
not excited either thermally or by fields slowly varying
in time and space. Accordingly, former theories of xnet-
als left nonequilibrium plasmons aside. In more recently
studied 2D metals, the plasmons dispersion relation has
square root behavior for small momenta; therefore 2D
plasmons are never &ozen out.

V. CONCLUSIONS

We have shown that a running wave in metals creates
a dc current of a back-Bow nature; we call this current
a wave back Bow. The amplitude of this current is pro-
portional to the square of the Beld strength and the di-
rection is identical to the wave vector, unless the metal
is anisotropic.

An important feature of our theory is that it is forxnu-
lated in terms of a polarization operator which provides
the convenient final formula (45). A particularly simple
formula (18) holds for a single parabolic electron band.

For the sake of simplicity we. have derived the wave
back Bow at the zero temperature. The classical case,
however, shows that at finite temperatures the wave back
fiow also appears. We expect that the only modification
of the quantum statistical formula (45) will be covered by
the temperature dependence of the polarization operator
II(q, (G).

An interesting question is under which conditions the
wave back Bow could be observed. With reservations that
we are not fully faxniliar with recent experimental capa-
bilities, it is our feeling that two-dimensional systems are
xnore promising than the normal three-dimensional met-
als. This is because the two-dimensional xnetal can be
easily penetrated by a driving field &om the orthogonal
direction, and the driving field can be modulated by a
gx'ld 12

It is also advisable to use a field with a wave vector and
a &equency from a plasma dispersion relation. Indeed,
the inverse dielectric function c& (q, (tjv) diverges at the
plasma mode; thus the internal field reaches its maximum
value, while the polarization operator in a high &equency
range is a smooth function.

We have also shown that plasmons (or longitudinal
bosons coupled to them) contribute to the dc electric
current even if they do not create electron-hole pairs.

Accordingly, the current density as a functional of distri-
butions of elementary excitations includes a term which
is odd (linear in this paper) in the boson distribution
and even in the quasielectron distribution. For the jel-
liuxn model, this terxn was shown to be consistent with
the relation between the total density of moxnentum and
the density of current.

Similarly to the back Bow of a classical wave, 2D metals
are promising to have a demonstrable wave back Bow of
plasmons. We note that unlike the classical wave which
has to be driven by a laser light, the plasmons can be
created by an incoherent light or other sources.

In principle, there are also contributions of the wave
back Bow of bosons to the thermoelectric and acousto-
electric effects. We are not in a position, however, to
provide reliable estimates of their magnitudes.
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APPENDIX A: WAVE BACK FLOW IN
COLLECTIVE MODES

In Sec. III we derived the wave back flow assuming that
the wave is not in resonance with any internal collective
mode. Here we extend this derivation to collective modes.

The explicit time integration limits of (22) are incon-
venient for formal manipulations. To make the time in-
tegration limits implicit, we follow KadanoK and Baym
and introduce a closed tixne path &om —oo to to and
back to —oo. The order of operators in all terms on the
right-hand side of (22) is identical to the time order on
this close path; therefore (22) can be expressed as

j (to) =
dt ddt

(G~Tjt(to)ttt(t) jtt(t'){G). (Al)
2

Here T is the time ordering operator on the closed path,
the factor 1/2 compensates both time integrals running
twice along the real tixne axis, and the signs of individual
analytical elements are given by the direction of the time
integration.

To be fully consistent with Kadanoff and Baym one
can extend the tixne integration into complex times.
These two formulations are identical in the zero tem-
perature limit because the statistical operator p
e j ~/Tr(e j ~) goes to ~G)(G~ as the inverse temper-
ature increases P -+ oo.

1. Functional derivatives

Now we express (Al) in terms of functional derivatives.
First, we introduce a generating functional
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FI.=i GTexp —i d~H~ v. + j ~ G, A2
ator; see Ref. 8 Eq. (19.2), and above. This can be seen
&om a perturbation of H by a small vector potential

where all operators are in the Schrodinger representa-
tion. The electron kinetic energy includes a homogeneous
but time-dependent vector gauge A(t), H), (t) = e),
One can also use I = i(TS) from Eq. (5-1) in Ref. 9.

A functional derivative with respect to the vector po-
tential generates the homogeneous current density oper-

b d7-Hg v. = —e &bA ~ . (A3)

A sum of e8—e), /Ok over all momenta I(: provides the
homogeneous current density multiplied by the volume
0 of the sample, thus 0 ib $ H/bA(t) = j(t). From a
derivative of the generating functional one finds

hI, i bfd~'~(~')
Obit 0 G T exp

~

—i drH(r) + P(r)
~ G)

GTexp —i AH 7 +pe j t G
)

(A4)

The external Beld can be also expressed in terms of the
functional derivatives. Prom the explicit expression for
the operator of the external Beld

dri)(r) = ]dr f (dxdr) x( ,p)x—=rx(i)p(1), (A5)

where n is a operator of the local density, one Bnds
b $()()/br@(l) = A(1). The last part of (A5) introduces
a reduced notation: the number is a cumulative variable
1—:zq, tq and the integration denoted by the overbar
includes the time integral on the closed path.

With the help of functional derivatives given by (A4)
and (A5), Eq. (Al) can be rearranged as

(A7)

K(l, 2) = II(1,2) + II(1,3)D()(3,4)K(4, 2). (A8)

The functional derivative of K from (A8) results

hK(1, 2) bll(3, 4)
bA(t()) bA(t())

(A9)

which is a function typical of the linear response theory.
Similarly to Sec. III, the perturbative expansion of the

density-density response can be reduced to the perturba-
tive expansion of the polarization operator~

(A6)
where

This form of the quadratic response is a very convenient
starting point for a perturbative treatment.

s(l, 2) = b(1 —2) —D()(l, 3)II(3,2). (A1O)

2. Quadratic response in terms of polarisation

In general, the functional derivatives in (A6) can be
performed in any order and the same equation (Al) re-
sults. On the other hand, if one combines the functional
derivatives with a perturbative expansion, the order of
derivatives determines the character of the perturbative
treatment. For instance, if one takes first the derivative
with respect to the vector potential, the single-electron
Green's function results. This single-electron Green's
function can be expressed in terms of the transport equa-
tion and one arrives at a transport equation treatment.
If one starts Rom the functional derivatives with respect
to the fields and uses the perturbative expansion before
the derivative with respect to the vector potential, the
resulting formulation is quite diferent. Indeed, the sec-
ond derivative of the generating functional with respect
to the Belds is the density-density response function

Now we substitute (A9) into (A6) and obtain the final
formula

j(t()) = ' s (3, 1)(p(1)e (4, 2)()()(2). (All)
1 bll(3, 4)

3. Internal Selds

So far, the response has been expressed in terms of the
external Geld, while we need the internal field to make a
limit into the collective mode. The internal Beld is given
by the screening of the external field

&(1) = ~ '(1 2)~(2).

To make contact with a common retarded relation be-
tween the external and internal Gelds, we convert the
integral on the close time path to the integral on the re@,l
time axis; see Appendix A in Ref. 13,
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&(') = f «*~~'(&»)~(~). (A13)

According to (All) and (A12) the wave back fiow can be
expressed in terms of the internal fields

( )= ~&()&()~~,
'hll(1, 2)

(A14)

This formula can be evaluated for the fields which are
not tuned to any collective mode using the theory de-
veloped in Sec. III. Since the collective mode does not
represent any special point for the polarization operator,
one can see that formulas developed in Sec. III hold also
for collective modes.

where the multiple products relate only to functions hav-

ing the product index as an explicit arg»ment. Accord-
ing to general rules (see Ref. 8, Chap. II), the diagram
C has n —1 bare boson lines Do, 2n bare electron
lines Go, and 2n vertices. Each line brings a new pair
of variables (k, z) and each vertex brings a momentum
and energy conserving b function. Two external vertices
couple internal variables to the moment»~-energy argu-
ment (q, ~). One ends up with n+ independent internal
variables (p~, E~) and one external variable (q, u). The
arguments of the Green's functions are linear combina-
tions of the independent variables

(k- ) =(q )4+) (p, , E,)n.,

APPENDIX B:PARABOLIC BAND

1. Derivative of individual diagrams of II

Assume that the polarization operator is expressed as
the sum of diagrams

II(q, ur) = ) A@II (q, (u),
C

where g is a factor of the diagram C given by its order
n and its number of closed loops. The diagram C has
a form

n~

..". 2x (2x)"j=l en= 1

n —1

Dp(q, ~ )

~ h I ~

n=l
Gp(k„, z„), (B4)

In this appendix we prove that (51) holds exactly for
the parabolic electron band and instant (nonretarded)
electron-electron interaction Do. The following proof is
based on momentum conservation, thus it is a form of
Ward identity. We use the perturbative expansion; the
validity of the proof, however, is not restricted to any
finite order of diagrams. All Green's functions in this
appendix are the causal functions at zero temperature.

We assume that the polarization operator II is a func-
tional of the bare electron Green's functions Go and the
bare boson Green's function Do. This assumption allows
us to perform the derivative B/BA explicitly. At zero
temperature the bare electron Green's function is [see
Ref. 8, Eq. (7.7)]

1
Gp(k, z) =

z Ek—eA + &~k

where bs is an infinitesimal function positive above the
Fermi level and negative below. From (B1),one can check
the basic relation for the Ward identity

BGo(k, z) e BG()(k, z)
BA m Bz

which will help to prove (51) for a general diagram.

The right-hand side of (B6) has the advantage that a
single differential operator applies to all lines of a given
diagram. According to (B6)

n~
BII~(q, (u) e

OA m j=l
1'

B

C'

dE~ de
2x (2m)"

m, =l

')-" BEj=l

Dp(q, (u )

~ 4 ~

n=l
Gp(k„, z„).

(B7)

2. Instant potential approximation

All the derivatives apply only to bare electron lines.
We use the simple identity DBG = B(DG) —GBD to
rearrange (B7) as

Bi'? -"BE
j=l

n~
BII~(q, ur) e dE. dp, i B

BA m ". 27( (2x)~ Rrj=l
n —1 2n

x Ds(q, ~ ) Go(k„,z„)
~ 1 ~ 1

m=1 n=l
n~

QE dp

m ..-. 2x (2x)~j=l n=l

B B
x q + ) p, l Do(q, (u ).

j=1 ~ no=i

Go(k„,z„)

(B8)

The arguments of the bare boson lines (q, ur ) are given
by a similar linear combination. We will not need them,
however, in the explicit form.

According to (B5) the product kB/Bz from (B2) can
be rearranged as

B (B " B&k„Go(k„,z„) = q + ) p~ Go(k„,z„).
j=l

(B6)
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In the first term we use integration by parts to elimi-
nate all derivatives with respect to E~. The only nonzero
contribution of the Grst term is therefore proportional to
qO/o)ru; this operator can be interchanged with the inte-
grations and the integrand becomes identical to II in
(86). Thus

Bile(q, ur) e 0 c
BA m B~

= —q II q, u)

time ordering after to, although it has the same value.
We resume a diagrammatic expansion of G only along

boson lines. Thus we take the single-electron Green's
function as a functional G[Gp, D]. This choice of the
functional simplifies an expansion in the perturbation
AD; in particular we can write

AG(tp, tp; k) = AD(1, 2)
bG(t p~ tp+ i k)

bD 1, 2
n~

j=i

x q +

2n

Gp(k„, z„)
2x (2x)~ n=1

n —1
C'

Dp(q, ur ).
~ h ~ h

m=1

(89)

because the boson distribution does not aÃect the free-
electron Green's function Go.

The current j(tp) is a linear combination of elements
G(tp, tp ', k). This linear combination can be interchanged
with the functional derivative which emerges in (C2);
thus

j(t,) = AD(1, 2) e „.G(t„t+,k).
b dk c)ci,

The Grst term is the desirable energy derivative of the po-
larization operator. Indeed, summing over all diagrams,
one recovers formula (51). The second term in (89) is a
correction which is zero in two important cases: first, for
instant (i.e. , energy-independent) bare boson lines and
second, within the RPA of the polarization operator. We
are not in a position to give any estimation of this cor-
rection; however, we believe that formula (51) might be
a good approximation for a wide class of systems. In
the case of the retarded bare boson lines we want to call
formula (51) the instant potential approximation. 1 b bL'(") =

n (")bD(1, 2) b~(t. )
(C4)

In Eq. (C3) the AG(tp, tp+; k) is expressed in terms of the
functional derivative of the equilibrium single-electron
Green's function G(tp, tp+; k). We can use an equilibrium
generating functional L [see Eq. (A4)] to generate the
linear combination giving the current by the functional
derivative with respect to a vector potential A

APPENDIX C: BACK FLOW OF WAVES AND
BOSONS UNIFIED

1. Current in terms of functional derivatives

Within the KadanofF-Baym formalism, the homoge-
neous electric current reads

dk 06g .j(t,) = e ib, G(tp, tp+, k),2x ~ Bk
(Cl)

where eA, is the bare electron dispersion relation and
AG is the deviation of the nonequilibrium single-electron
Green s function from equilibrium. This function is de-
fined with the help of a time ordering on a closed time
path (see Ref. 9 or Appendix A), and tp stands in the

In this appendix we prove that the wave back How of
bosons can be evaluated as a quadratic response where
the fluctuations of the internal field equal to (t (2) are given
by (55). Although microscopic mechanisms of the wave
back Bow of bosons are identical to the quadratic re-
sponse, these two problems have quite diH'erent boundary
conditions. The response starts from the ground state
and the current appears as the system is driven out of
the ground state by the external Geld. In contrast, the
nonequilibrium distribution of bosons is a part of the
initial condition and the system is in a steady state. Ac-
cordingly, we need a diferent approach based on nonequi-
librium Green's functions.

2. Full potential-potential correlator LD

ED(1, 2) = iP (1,2) + b,D(5, 6-)
. ( ) bII(3, 4) bD(1, 2)

(C5)

where P( ) is defined by (55). The functional derivatives
in (C5) have the following meaning. From the dressing
of the boson Green's function D = Do —II, one finds
bD(1, 2)/bll(3, 4) = D(1, 3)D(4, 2). The polarization op-
erator II in the functional derivative is a functional of
the dressed boson and the bare electron Green's function
II[Gp, D]

We denote the formal solution of (C5) by

AD (1,2) = —iP( ) (3, 4)M (3, 4; 1,2), (C6)

where M is a four-argument function obtained by iter-

Now we find AD. For free bosons, the deviation of
the boson Green's function is given by (54), but in the
interacting system, formula (54) covers only a change of
the boson Green's function at singularities. There are
also changes of the regular part of the boson Green's
function D resulting from the eKect of the bosons on the
electron subsystem and via the polarization operator II
projected back in D. Within the linear approximation
in the boson distribution, the total change of the boson
Green's function is given by
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ation of (C5). Therefore, the current depends on P(2)

as

j(tp) = ——P&')(1, 2)M(1, 2;3,4), . (C7)
i,z) b bL

are identical, therefore

= s '(5, 1)s '(6, 2)M(5, 6;3,4).
bD(3, 4)
bDp 1,2

(c»)

3. Independent variational Selds

hDp(l, 2)
bD(3, 4) h

hDp(1, 2) bD(3, 4)
'

we obtain b/bD, needed in (C4) in terms of h/bDp.
Before we substitute b/bD from (C8) into (C4) it is

advantageous to rearrange bD/bDp. From D = Dp
II one finds

hD(3,4), , bll(5, 6) h'D(3, 4)
hD (1,2)

' ' bD (1,2) bII(5, 6)

(C9)

Writing the derivative of II as composed we find

bD(3, 4) bD(7, 8) hII(5, 6) hD(3, 4)
bDp(1, 2) bDp(1, 2) bD(7, 8) bll(5, 6)

The basic trick that allowed us to develop the
quadratic response theory of the wave back Bow in terms
of the linear response was to take the functional deriva-
tive with respect to the vector potential as the last one.
In contrast to the quadratic response, in (C4) the order of
the two derivatives cannot be interchanged because the
dressed boson Green's function D depends on a motion
of electrons, i.e., the two derivatives are not independent.

Fortunately, we can rearrange (C4) in terms of func-
tional derivatives with respect to an independent field
hDp, which is a trial double-time function added to the
true bare boson Green's function. Using a composed
derivative

4. Relation to the quadratic response

The functional derivative with respect to bDp is only a
tool which generates two pairs of the local density oper-
ators for prescribed arguments. Thus it can be replaced
by two functional derivatives with respect to an external
field b(p,

8 i b2

bDp(1, 2) 2 bp(2)bp(1)
(C13)

The factor 1/2 comes with two-particle potentials into
the Hamiltonian [see Ref. 8, Eq. (6.4)]. The complex
unit compensates an exceeding 1/i emerging with each
order of the functional derivative.

Now we are ready to express the wave back Bow of
bosons using formulas for the quadratic response. We
use (C12) and (C13) in (C7) to obtain

1 (2) — — — b2 hLj(")= f1& ('')'('')'( 2), (-), (-)b„( )

(C14)

This equation already belongs to the family of the
quadratic response theory treated in Appendix A. We
interchange the order of derivatives and use (A9)

According to (C11) the operator needed in (C7) can be
written as

M(1, 2; 3, 4) = s(3, 1)s(4,2) . (C12)
b b

(3, 1)c (4, 2). (C10)

(t ) = ~"'(»)
20 '

bA(t p)
(C15)

Comparing (C10) with (C5) one observes that "coeffi-
cients of the linear combination" on both left-hand sides

This formula is equivalent to (A14); therefore the boson
back fiow obtained from the quadratic response using P(z)
as the square of the internal field is an exact result.
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