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We study a simple model of conducting polymers, such as polyacetylene, which consists of a quasi-
one-dimensional coupled electron-phonon system with short-range electron-electron repulsions. The
problem is solved in the Hartree-Fock approximation. A variety of experimentally measurable proper-
ties of the system, especially the infrared absorption spectrum, are computed. (i) As a function of dop-
ing, the interchain coupling causes the system to undergo a phase transition from a correlated soliton-
lattice state to a metallic state, described by a weakly interacting but highly anisotropic three-
dimensional Fermi liquid. The result is consistent with a previous renormalization-group treatment. (ii)
When interactions with counterions are included, the nonmetal-metal transition is very sensitive to the
arrangement of counterions relative to the polymer chain: a minor change in the arrangement will either
stabilize or destabilize the soliton state allowing the coexistence of the metallic and the soliton states.
(iii) For realistic three-dimensional band structures, a semimetallic phase intervenes the nonmetallic
(Peierls) and metallic (Fermi-liquid) phases.

I. INTRODUCTION

During the last decade, remarkable progress has been
made in understanding the properties of conducting poly-
mers. ' Due to their quasi-one-d. imensional nature, many
of these materials in their pristine state have a Peierls or
charge-density-wave ground state. Calculations based on
a simple tight-binding Hamiltonian, proposed by Su,
Schrieffer, and Heeger (the SSH model), have been ex-
ceptionally successful in explaining the experimental re-
sults for several such polymers. For example, adopting
their model for conducting polymers, one is naturally
lead to a concept of novel quasiparticles, solitons, which
have reversed charge-spin relations: the charged solitons
have charge +e but they have no spin and vice versa.
The practical signi6cance of these quasiparticles is that
upon doping an added electron or hole appears as a
charged soliton. Consequently, there exist states of the
lightly doped polymer which can carry charge current
(albeit poorly) without showing any spin susceptibility, as
has been observed experimentally. Moreover, a distinc-
tive infrared spectrum provides additional strong evi-
dence for the validity of the theory; the solitons —as de-
fects breaking the translational symmetry of the ground
state —induce characteristic localized infrared-active
phonon modes around them.

In spite of the successes of the theory, several impor-
tant open questions still remain, of which the most press-
ing is the proper identi6cation of the "metallic*' state
which appears in doped polymers when the doping densi-
ty is increased above a critical value y, (in polyacetylene,
y, -5—7%%uo). This state is metallic in the sense that it has
a high conductivity (signifying charged quasiparticles
with a long mean free path), a temperature-independent
(Pauli) spin susceptibility (quasiparticles have spin), and

a linear speci6c heat. The magnitudes of the spin suscep-
tibility and the specific heat are consistent with what
would be expected from the density of states at the Fermi
energy for a simple noninteracting metal. These are clas-
sic signatures of a normal Fermi liquid. Yet, in the me-
tallic regime, the system continues to exhibit distinctive
infrared-active modes which have been attributed to the
presence of solitons and thus suggest that the state still
has a nonzero Peierls gap.

To resolve this apparent paradox, it has been proposed
that disorder forces the system to undergo a crossover
transition from an incommensurate charge-density-wave
state to a gapless Peierls state. The basic problem with
this model is that it is diScult to reconcile the long ob-
served mean free paths with the large amount of disorder
needed to completely destroy the Peierls gap. On the
other hand, Conwell and Jeyadev argue that the metallic
state can be reasonably well described by a model in
which the added electrons or holes are in soliton states
and the Coulomb potential of the counterions and the
solitons in other chains cause a redistribution of the ener-

gy of the states in the Peierls gap. Their calculation is,
however, not self-consistent since they assume a fixed sol-
iton con5guration. %e feel it likely that a self-consistent
solution will make the soliton lattice indistinguishable
from a disordered, incommensurate Peierls state.

Furthermore, the applicability of the SSH model itself
has been questioned. The criticism relies on the argu-
ment that the electron-electron interaction determines
the basic properties of the system and hence it is more
important than the electron-phonon coupling. %'hile this
viewpoint certainly has merit if one is dealing with the
true microscopic interactions, it is not clear what it
means in terms of the low-energy, long-wavelength
behavior of the system. Calculations which treat the in-
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teractions from an ab initio viewpoint are necessarily
confined to small systems (less than 20 sites) and so can-
not possibly explore precisely those low-energy properties
of the polymers of most interest to physicists. They also
cannot easily include the efFects of interchain screening.

Ne choose the point of view that typical conducting
polymers, of which we consider trans-polyacetylene as an
example, are in the scaling limit where the low-energy
physics is described by a Hamiltonian with a few relevant
interactions; the parameters entering into the model are
thus renormalized ones. Indeed, the renormalization-
group theory shows that the system scales towards a
strong-coupling fixed point where the electron-phonon
coupling is the dominant coupling regardless of the rela-
tive strength of the microscopic interactions. (Since we
will be dealing with renormalized parameters it is impor-
tant to bear in mind that the efFective interactions can be
complicated functions of the bare interactions, and can
even depend on doping density. } Strictly speaking the
scaling equations are valid only close to the noninteract-
ing fixed point, so while this approach permits us to treat
arbitrary relative strengths of the difFerent interactions,
we are forced to assume that all interactions are
moderately weak. The interactions in polyacetylene and
related polymers are at least moderately weak, as evi-
denced by the small gap-to-bandwidth ratio in the un-

doped material, so the scaling theory should be at least
qualitatively correct.

In this spirit, it seems reasonable to study a quasi-one-
dimensional coupled electron-phonon system, supple-
mented by short-range electron-electron repulsion, as a
model for trans-polyacetylene. It is the purpose of this
paper to demonstrate that at the mean-field level the
model exhibits a phase transition from the Peierls state to
a metallic state which is characterized by a weakly in-
teracting but highly anisotropic Fermi liquid. The transi-
tion happens when the gap becomes comparable to the
interchain bandwidth in which case the true three-
dimensional nature of the system becomes the dominant
feature in the problem. Moreover, the inclusion of im-
purities (i.e., counterions) strongly affects the critical
value of the doping density. A minor change in the ar-
rangement of impurities relative to the polymer chain
will either stabilize or destabilize the soliton state allow-
ing the coexistence of the metallic state and the soliton
state within the same sample. This result provides a pos-
sible explanation of why in the metallic regime the system
can have both the high Pauli susceptibility and still ex-
hibit the infrared-active modes characteristic of the soli-
ton state.

There is another process which can account for a part
of the total oscillator strength of the infrared-active
modes in metals: the Holstein process in which the in-
cident photon is absorbed in a process involving creation
of both a phonon and an electron-hole pair. ' This is a
purely nonadiabatic efFect. In contrast, the infrared
properties of the incommensurate Peierls state are typi-
cally calculated within the adiabatic approximation,
which is only valid when the optical-phonon energy is
much smaller than the energy gap in the electronic spec-
trum.

The outline of this paper is as follows. In Sec. II, we
introduce the effective Hamiltonian, discuss the strategy
for solving it in the mean-field approximation, and exhib-
it our method for correcting for finite-size effects. Next,
the best Hartree-Pock ground state is computed in the
presence of counterions (Sec. III). We find that, in a
highly doped system, counterions have a drastic influence
on the ground-state properties. In Sec. IV, the absorp-
tion in the Peierls state is calculated in the adiabatic lim-
it. At low doping, the charge is pinned, which leads to a
suppression of the infrared oscillator strength. Thus,
there can be regions of superlinear dependence of the in-
frared oscillator strength on doping density. The pinning
is lost when the doping density is increased above 3—6%,
depending on the preparation of the sample. %e also
study nonadiabatic corrections (Holstein processes)
which can produce strong absorption peaks in metals due
to the dynamic electron-phonon interaction. Section V is
devoted to three-dimensional efFects, especially to the
effect of a finite three-dimensional bandwidth. Finally, in
Sec. VI, we discuss our results in the context of polyace-
tylene and the Appendixes contain the details of the cal-
culations.

II. GENERAL FORMALISM

A. EfFective Hamiltonian

1+ gV — 'p p'+VI

+—Kg(u„—u„+,) + gp„,1 2 1

2 „"" 2M
(2.1)

where c„and c„arethe creation and annihilation

Given a microscopic Hamiltonian —a faithful descrip-
tion of trans-polyacetylene —how can we determine the
ground-state properties of the system, at least within a
reasonable approximation? It is hardly possible to solve
the full microscopic problem in a controlled fashion, but
a simple efFective model can be constructed, whose prop-
erties are easily understood if only low-energy phenome-
na are to be studied. " The renormalization-group theory
demonstrates that there exists an effective Hamiltonian
with a few renormalized interactions (of which the
electron-phonon coupling is the dominant one), if certain
conditions are fulfilled: notably, if the electron-phonon
interaction is sufficiently retarded (the phonon energies
are small compared to all other energies) and if the ratio
of the largest energy gap to the bandwidth is small
enough. In undoped polymers, where the ratio of the gap
to the bandwidth is about —

„

these conditions are margin-
ally well satisfied; in highly doped polymers, where the
gap collapses, these conditions are extremely well
satisfied.

In this framework, consider a one-dimensional electron
gas interacting with a deformable chain, described by the
Hamiltonian

H = —g [to+a(u„—u„+,)](ct+, c„+H.c. )
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operators of an electron of spin o. on site n,
p„=g c„c„is the electron number density operator
on site n, and u„ is the displacement of the nth CH
group. Here to is the electron hopping matrix element
for the undistorted chain, a is the electron-phonon cou-
pling constant, K is the spring constant, M is the mass of
the CH group, V„ is the electron-electron interaction,
and Vz is the potential due to the counterions. If
V„=U5„pand Vi=0, this is the SSH-Hubbard model.
The electron-phonon interaction is characterized by the
dimensionless coupling constant

2'
(2.2)

mKto

The renormalized parameters appearing in the Hamil-
tonian can be expressed as complicated functions of the
bare parameters. However, it is simpler to determine
them empirically by comparing the efFective theory with
experiments. Finally, the number of electrons is given by
the doping density y, which measures the number of add-
ed holes (p-type) or electrons (n-type) relative to the
half-filled (one electron per site) system. In the subse-
quent calculations, p-type doping is always assumed for
simplicity.

In the absence of the electron-electron interactions and
the counterion potential, the properties of the Hamiltoni-
an (2.1) are well known. ' Upon doping, the system gen-
erates a periodic incommensurate Peierls distortion. At
low doping levels, the distortion is highly anharmonic
and can be best thought of as an array of well-defined sol-
itons. When the doping density, y, is high enough, the
solitons lose their identity and a new collective state,
better described as a harmonic incommensurate charge-
density wave, emerges. The crossover occurs when the
separation between the solitons becomes comparable to
their width, 2$. The characteristic doping density at
which this crossover occurs is y, =a/2$. For polyace-
tylene, the SSH set of parameters' give y, =7%.

Clearly three-dimensional effects have been ignored in
Hamiltonian (2.1). They are, however, important when
the transverse bandwidth becomes comparable to the en-
ergy gap. At this point, the behavior of the system
crosses over from one dimensional to three dimensional.
While we assume no interchain coupling for the moment,
we wi11 return to this question later in Sec. V.

+ y x„q„+—SC y (u„—u„+,),1 2

n n

(2.3)

where x„and the chain distortion, u„,are treated as vari-
ational parameters which specify the ground state lg&.
Here we consider only solutions of the Hartree-Fock
equations which preserve spin-rotational symmetry, be-
cause, in one dimension, quantum fluctuations are so
large that the ground state must have unbroken spin-
rotational symmetry. ' Other than this, no assumptions
are made concerning the symmetry of the ground state.
The best variational ground state is obtained by minimiz-
ing the total energy

(2.4)

with respect to x„andu„.

C. Remarks on finite-size scaling

While an analytic solution to the minimum-energy con-
dition can be found in a limited number of cases, general-
ly the minimization must be carried out numerically.
However, numerical calculations are restricted to finite
systems. Therefore one cannot immediately distinguish a
gapless state from a state whose energy gap is of same or-
der of magnitude or less than the level spacing, See, at
the Fermi energy where, in ring geometry,

4m
5E~ = tocosky Q (2.5)

ing, since all relevant experimenta1 temperatures are very
low compared to the characteristic scale of energy.
Quantum fluctuations are a more serious issue, but we
feel that their neglect can, ultimately, be justified in cer-
tain circumstances by a comparison between the mean-
field and renormalization-group results.

The Hartree-Fock variational state can most simply be
constructed' by finding the ground state of the trial
Hamiltonian

Hp= g [tp+a(u„—u„+,)](c„+,c„+H.c. )+ Vi

B. Mean-field approximation

Even the effective Hamiltonian given above cannot be
solved exactly, and therefore approximate methods must
be used. A standard technique to tackle the problem is
mean-field theory, i.e., the Hartree-Pock approximation.
It relies on two key assumptions: (i) the ionic coordinates
can be treated classically and (ii) the ground state can be
approximated by a product of one-electron states. In this
manner, the problem becomes completely solvable.

However, by doing this we have ignored all effects of
quantum and thermal fluctuations which are known to be
important in one dimension. Thermal fluctuations will

typically be unimportant for the systems we are consider-

X is the number of lattice sites, kF is the wave vector at
the Fermi energy, and a is the lattice constant. For in-
stance, if we were to study polyacetylene in conditions
where the physical gap is known to be 0.2 eV, then the
length of the ring must be longer than 160 sites to
guarantee that finite-size effects do not afFect the con-
clusions. Because we are primarily interested in cases
where the energy gap (the minimum energy to create an
electron-hole pair) is very small or zero, we must employ
finite-size scaling arguments to obtain results that are val-
id in the thermodynamic limit.

There is a qualitative difference between rings contain-
ing an even number of sites depending whether X is 4n or
4n+2. ' This difference arises from the band structure



50 TWO-PHASE COEXISTENCE AND SEMIMETALLIC STATES IN. . . 13 965

hN =E„+—+8
Q2

(2.6)

of the undistorted finite-size ring (Ho with u„=x„=O)in
which other than the states at the top and the bottom of
the band, all one-electron states are two-fold degenerate
(Kramers degeneracy). For fixed density of electrons on a
ring, the Fermi energy wi11 either lie in a finite-size gap
(the "nondegenerate case") or will be equal to the energy
of a partially occupied one-electron state (the "degenerate
case"). In the degenerate case it is always energetically
favorable for the system to generate a Jahn-Teller distor-
tion which lifts the degeneracy and produces a gap. By
contrast, in the nondegenerate case, there exists a critical
length of the ring such that if the length is less than the
critical value it will remain undistorted. The smaller the
Peierls gap in the thermodynamic limit, the larger the
critical length. If the Peierls gap is very small then —due
to the computational limitations on X—we cannot get
enough data to observe the Peierls effect in nondegen-
erate rings. In contrast, the finite-size behavior in the de-
generate case is not hampered by the same deficiency. Of
course, in the limit N ~ 00, it cannot matter how the lim-
it is approached. For degenerate finite-size rings, we find
that so long as the gap, 2hz, is smaller than the level
spacing, 5', the energy gap decreases linearly with de-
creasing 1/X:

2
1

u, (n)=
R Q(na —Rl ) +(yR~)

(3.3)

Here R labels the position of the counterions, l ( ~~) refers
to the direction perpendicular (parallel) to the chain axis,
and y =+el/ej e.

l
and e~ are the anisotropic dielectric

constants of the material. ' The term vo is a sum over all
counterions interacting with the electrons at the nearest
one or two carbon atoms of each counterion.

The three-dimensional crystal structure of counterions
in moderately doped polyacetylene is such that the im-
purity ions are displaced from the chains by a distance
b =2.3 A in the direction perpendicular to the chain axis
and there is one column of counterions for several po-
lyacetylene chains; for instance, in Na-doped polyace-
tylene there are three polymers per counterion chain. '

Thus, we will consider a periodic arrangement of coun-
terions with lattice constant I in the inchain direction,
I =a/(3y). It is important to note that this period is
smaller than the lattice constant of the expected soliton
lattice, a /y.

While the screened Coulomb potential can be fairly
strong in the lightly doped system, it is entirely negligible
at metallic densities: only the short-range unscreened
part of v plays any role in the physics. We show this by
using the Poisson summation formula to rewrite Eq. (3.3)
as

where h„and c are constants. When the energy gap be-
comes comparable to the level spacing, it levels off and
approaches its N~ 00 limit 2h„which is approximately
equal to 2h„.

4evc(n)= g cos(2qrnqa/I) g Ko(2qryq ~r~/I)
eel q=l r

+const, (3.4)

III. COUNTERION El &ACTS

The doping process itself introduces charged impuri-
ties, counterions (usually one per added hole or electron).
At low doping density, one can study how a single coun-
terion changes the properties of conducting polymers.
However, at higher doping densities, the counterions
must be considered collectively, and the system shows
striking behavior which is due to the topological nature
of the Peierls state. Moreover, above the crossover densi-

ty y„the energy gap begins to collapse and the Peierls
state is no longer robust against small perturbations.

A. Counterion potential

The counterions are described by the term

Vr = g u(n)p„, (3.1)

where v can be expressed as a sum of a long-range part,
v&, which is given by a dielectrically screened Coulomb
interaction, and a short-range term, vo, due to the incom-
plete screening at short distances. Thus,

where n labels a particular carbon atom along a given
chain and the sum over r is over the perpendicular dis-
placement of the columns of counterions. Eo is the
modified Bessel function of the second kind. Its most im-
portant property needed here is that Kv(z) =e '&qr/2z,
for z && 1. Hence,

vc(n) = cos(2qrna/l)VI/yb e r ~'+const,28

e,l
(3.5)

when 2qryb/! ))1. Already in 6%-doped polyacetylene,
2n.yb/1=3. 8, so vc is negligibly small. (This argument is
similar to the argument of Kivelson and Heeger' for the
insensitivity of the transport properties to disorder in the
arrangement of the counterions. ) The peak-to-trough
value u~, defined as u~ =max„vc(x)—min„vc(x) and
shown in Fig. 1, drops sharply at the doping density
given as -a/(6qryb) For polyace. tylene, this doping
density is approximately 1.6%.

The lesson of all this is that, while the energy gap col-
lapses at the crossover density, y„the dielectrically
screened Coulomb potential drops much faster and is al-
ways negligible at metallic densities. Therefore, one is
left only with the short-range Coulomb interactions. In
the following, we assume that these have the simple form

v (n) =uc(n)+ uo(n), (3.2)
vo(n)=vi g 5g

„

R
(3.6)

where v& is where vr is the strength of the potential and R runs over
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FIG. 1. The peak-to-trough value U~ of the dielectrically
screened impurity potential, Eq. (3.3), on a polyacetylene chain
as a function of doping, y, when the separation between coun-
terions is l =a /(3y) ( ) and l =a/y ( ———}.

the lattice sites closest to the counterions and we take the
counterions to be, more or less, regularly arranged with a
mean separation I =a /(3y).

8.Numerical results

An ordered array of counterions does not change the
basic nature of the mean-field phase diagram, but the
short-range counterion potential can have a large effect
on the location of the phase boundaries. Depending on
the local arrangement of the counterions relative to the
polymer chain, we find that the critical doping density for
the nonmetal-metal transition, y„canbe either substan-
tially enhanced or substantially reduced from its value in
the absence of the counterion potential.

One can qualitatively understand this effect simply by
thinking about the electronic structure of a soliton lat-
tice: the soliton is a topological defect, and this is re-
sponsible for a number of its remarkable properties. In
the context of the SSH model, it is found that the charge
density is zero on odd numbered sites and nonzero only
on even numbered sites, regardless of the position of the
soliton center, and conversely for the antisoliton there
are two length scales, g and a, associated with the size
and the internal structure of the soliton. Although
electron-electron interactions modify this result, it
remains true that the soliton charge density is predom-
inantly on even sites and the antisoliton is predominantly
on odd sites. ' In the soliton 1attice, it is topologically
necessary that the sohtons and antisolitons alternate. If
the short-range part of the eounterion potential, vo, is
such that in the neighborhood of the solitons it is attrac-
tive on odd numbered sites, then the soliton lattice is
greatly stabilized. On the other hand, if the opposite is
true, the soliton lattice is destabilized. In the former
case, the topological constraint allows the solitons and
antisolitons to adjust their position relative to the coun-
terions so that there is a large electron density in regions
where the potential energy due to the counterions is most
attractive. This is not possible in the latter case where

only the solitons or the antisolitons can locate in regions
of low potential energy.

As the Peierls state starts to lose its robustness at y„
phasing between the soliton and the impurity chains be-
comes a significant new element in the theory. To illus-
trate these ideas, we have done numerical calculations in
some typical cases which should be applicable to trans-
polyacetylene. These results are summarized in Figs. 2
and 3, based on the variational calculation of Sec. II for a
fixed periodic array of counterions with period l.

The method of finite-size scaling study of Fig. 2 is
shown for representative values of the parameters: dop-
ing density y= 6.67%, U = to, and vl = to. In these calcu-
lations, X is 30n and the number of holes is 2n, where
n = 1, . . . , 5. We study the effect of the counterion spac-
ing I by considering the cases I =4a, I =Sa [t =a/(3y) j,
and t' =6a. AB continuous curves in Fig. 2 are straight
lines' which reflect the linear scaling behavior, Eq. (2.6),
for small X so long as 25& & 5ez.

In all cases, the gap 2hz decreases linearly with de-

creasing 1/X until it becomes comparable to the level

spacing, 5ez, at which point it saturates. This value is in-

terpreted as a true gap of the infinite system. For the
sake of comparison, we compute the scaling trajectory in
the nondegenerate case with 1=5a. Here, for small X,
the trajectory follows the level spacing 5ez until it be-

comes comparable to the gap of the infinite system at
which point it also saturates. Moreover, the difference
between the degenerate and nondegenerate case disap-
pears as X~~.

It is clear that the arrangement of the counterions also
affects the energy gap: if the counterions are located al-
ternately next to the odd and even sites, the gap is
enhanced; if the counterions are always located next to

0.20

0.15

CQ 0.10
G4
cd

o
~W

0.05

0.00
0.00 0.01 0.02 0.04

FIG. 2. Determination of the energy gap, 26„,by finite-size
scaling. The parameters are y=6.67&o, U = to, and UI = to. The
inhuence of the counterions on the energy gap is illustrated by
using three diferent values for the separation 1 between the
counterions: l=4a (~ ), l =5a (}, and 1 =6a (+). Also, for
l =5a, a comparison between the degenerate (~) and the nonde-

generate (0 ) cases is shown. (All solid symbols refer to the de-

generate cases. ) The counterion-free case is marked by ((8) ).
The finite-size level spacing 5e&, defined in Eq. (2.5), is denoted

by the dashed hne.
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the even (or odd) sites, the gap is suppressed. This fol-
lows from the topological constraint to the positions of
solitons and antisolitons, as already explained above.
Thus, even if the average impurity density is homogene-
ous in a given sample, the metallic and Peierls states can
coexist due to subtle microscopic differences in the ar-
rangement of the counterions in different regions of the
material and due to the interchain coupling. As it will be
shown in Sec. V, the metallic state is stabilized, if the
one-dimensional energy gap is less than a critical value,
determined by the three-dimensional band structure of
the system.

We have also calculated the energy gap, 2b„and the
average amplitude of the bond-length modulation, 5u, as
a function of doping density, y (Fig. 3}. The average am-
plitude is defined as

0.3

5u =—g /u„+,—u„f .1

n

(3.7)

For each y, the counterion lattice constant, I, has been
chosen so that the relation I =a/(3y) is approximately
satisfied; see Table I. The cases 1/a=odd and 1/a=even
are separated since their behavior is intrinsically
different. For a weak counterion potential and y not too
large, the results do not deviate much from the
counterion-free case, but when the counterion potential is
strong, a considerable deviation is found. Even a small
change in I can produce a large effect which is illustrated
by using two slightly different sets of even values for I/a,
listed in Table I and indicated by the shadowed region in
Fig. 3. In this figure, the upper boundary is the result for
a counterion separation which is 2a units larger than the
separation used in calculating the lower boundary (see
Table I).

In these calculations, the size of the system, N, is either
120 or 122. Since for the systems of this size, the level
spacing is smaller than the interchain bandwidth, we
have not performed finite-size scaling (see Sec. V}.

IV. INFRARED ABSORPTION

0.1

0.0
0.0 2.0 4.0 6.0

Doping y (%)

8.0 10.0

One of the greatest successes of the soliton concept is
that it beautifully explains the enormous increase in the
infrared activity induced by doping. Indeed, the infrared
activity is considered to be an indisputable signature of a
localized phonon mode which couples to the nonuniform
charge density around a soliton. Our primary interest is
to study whether counterions can cause an observable
change in this infrared activity, and what becomes of it at
higher doping levels.

1.0

o 0.8

0.6

0.2—

0.0

I

(b)-

A. Adiabatic limit

Suppose that the electronic spectrum has an energy
gap of magnitude much larger than any phonon energy in
the system. In this limit, one is naturally led to the
Born-Oppenheimer approximation in which the electron-
ic ground state, ~g), is determined by the instantaneous
lattice configuration and the electronic energy acts as an
effective potential for the lattice dynamics. By expanding
the interaction between the system and the electromag-
netic field in powers of the phonon field, the infrared ab-
sorption is easily computed; see Appendix A. Our
analysis is restricted strictly to one-dimensional lattices

0.0 2.0 4.0 6.0
Doping y (%)

8.0 10.0

FIG. 3. (a) The energy gap 2h. and (b} the average amplitude
of the Peierls distortion, 5u, as a function of doping density, y,
for U =to and vi =to. The symbols are as follows: the dashed
line denotes the counterion-free case, I/a =odd (0), and
I/a=even (~), where I is the separation between counterions.
Computations are based on those values of I which are summa-
rized in Table I and approximately satisfy the relation
I=a/(3Y}. The shadowed regions emphasize the effect of
changing I only by 2a. Here u0=0.082 A is the magnitude of
the lattice distortion for the half-fi11ed band.

y (%)

1.6
3.3
4.9
6.7
8.2

10.0

I/a odd

21
11
7
5
5
3

20
10
6
4
4
2

I/a even

22
12
8
6
6

TABLE I. The doping densities y and the corresponding
counterion lattice constants I, as used in the numerical calcula-
tions and chosen so that the relation I =a/(3y) is approximate-
ly obeyed.
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whereas a real polymer has additional vibrational degrees
of freedom. For instance, trans-polyacetylene has three
degrees of freedom which couple strongly to the charge
distribution. However, to understand the qualitative
physics, it should be sufficient to study systems with one
vibrational mode.

The numerical results are summarized in Fig. 4.
Again, the parameters are chosen to represent polyace-
tylene' and the values for the separation between the
counterions, I, are taken from Table I. In the absence of
counterions, the integrated absorption increases linearly
with the doping density for small y, while above y -6%
there is a small deviation from the linear behavior which
is caused by the decrease of the energy gap, 25. The
linear part is most naturally given by the formula

m Xy e*
~ m'c' (4.1)

6.0

4.0—

0
2.0

0

o o .~R~
0.0 2.0 4.0 6.0

Doping y (%)

8.0 10.0

FIG. 4. The integrated absorption A,d for adiabatic process-
es as a function of doping density, y, for U = tp, and UI = tp. The
symbols are as follows: the dashed line denotes the counterion-
free case, I/a=odd (0) and I/a=even (). Computations are
based on those values of the separation between counterions, I,
which are summarized in Table I and approximately satisfy the
relation I =a/(3y). The shadowed regions emphasize the effect
of a change of 2a in /. Ao is the total oscillator strength, Eq.
(A 10}.

which describes quasiparticles with effective charge e*,
efFective mass m', and density Ny /V; c is the velocity of
light. Here the quasiparticles clearly are solitons. Since
the charge of a soliton is e'=e, Eq. (4.1) gives an esti-
mate for the efFective mass: m ' =3.7m„which is compa-
rable to the kinematic mass of the soliton. '

This result arises naturally once Eq. (4.1) is interpreted
as a low-energy sum rule which includes those processes
whose energy scale is determined by the typical phonon
energy, %coo. The existence of two distinct energy scales
(eicos and 2b, ) makes the above separation possible. When
this separation ceases to exist (for y )y

' ), the quasiparti-
cle concept and the adiabatic approximation both break
down.

Next, we add the interaction with the counterions, Eq.
(3.6), so that the mean separation between the coun-
terions, I, is approximately a/(3y). For small values of y,

the solitons are pinned to the counterions and A,d is

suppressed. When 1/ci is an odd integer, the pinning is
optimal since then it is topologically possible for each sol-
itons to have its maximum charge density next to a coun-
terion. Moreover, the pinning force increases with the in-
creasing counterion potential vI. Above y -6%, the pin-

ning weakens and A,d increases considerably. However,
the quasiparticle parameters are spurious since the
effective charge e' has changed too; only the ratio
e ' /m ' can be determined precisely with the given infor-
mation.

For I/a equal to an even integer, the pinning seems to
disappear already at y -3%%uo. Moreover, the impurity po-
tential distorts the Peierls state strongly so that a large
increase in A,d is observed. Again, for a large coun-
terion potential, UI fo a sizable change in the absorp-
tion is found (the shadowed region in Fig. 4) even if I is
altered by a small amount (shown in Table I). In con-
trast, for UJ=to/2 (not shown), a large etfect is evident
only when y & 8%, which is due to the collapse of the en-

ergy gap and a large relative change in 1'. Above y —8%,
these states are not we11-defined Peierls states, and it is
not guaranteed that they will survive the limit N~ ~.
In fact, they should be strongly modified by interchain
coupling.

B. Nonadiabatic limit

Although conventional wisdom in polymer science al-
ways associates infrared-active modes with localized de-
fects, such as solitons, normal metals, especially those
with low conductivity, also show substantial infrared ac-
tivity. Their ability to absorb radiation is partially due to
the scattering from phonons and impurities. These
phonon-assisted absorption processes, studied by Hol-
stein, ' have been seen in a number of materials.

We shall see below that, for simple one-dimensional
metals, the absorption coefficient is proportional to the
electron-phonon coupling constant A. whereas in insula-
tors, the Holstein contribution is shifted in energy by 25,
and it is suppressed by an extra factor of %coo/2b, . Here
%coo is a typical optical-phonon energy and 26 is the ener-

gy gap. For undoped polyacetylene, this factor is of the
order of —,', . However, near the insulator-metal transi-

tion, where the energy gap collapses, the Holstein process
is effectively turned on and can partially account for the
observed infrared oscillator strength. To illustrate this
phenomenon, we compute the absorption coefficient for
both a one-dimensional metal and an insulator.

l. One-dimensional metal

2cop
crH(co) =RA, o (co —coo)8(co —coo) . (4.2)

In this limit, the integrated absorption due to the Hol-

We assume that the system is described by the stan-
dard model of an electron gas interacting with the pho-
nons, i.e., the Hamiltonian in Eq. (2.1) with V„—=0 and
VI =0. In the lowest order of A, , it can be shown (see Ap-
pendix 8) that the absorption coeKcient is
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stein process is equal to AH =LAO, which is similar, e.g.,
to Allen's calculation. The absorption coeScient, Eq.
(4.2), is characterized by a peak which is located at the
frequency co =3coo/2.

As an illustration, consider polyacetylene which has
A, =0.2. The integrated absorption due to nonadiabatic
processes in the metallic state can be much higher than
the absorption due to adiabatic processes in the Peierls
state, despite the small value of A, . Two factors are re-
sponsible for this difi'erence, as can be seen from the for-
mula A,o=y (m/m')Ao: (i) the soliton density (y &y, )

is necessarily much smaller than the full electron density
( —1) and (ii) the soliton mass is larger than the electron
band mass.

2. One-dimensional insulator

Cilp
ad(co}=2k. Aol(co)8(co —

coo
—2b ) (4.3)

to first order of A, . The profile factor I is defined as

I (co)= 1

(y+ rj )

Due to the Peierls distortion, undoped polyacetylene
has an energy gap of a few eV. The energy gap is large
enough that the adiabatic approximation is applicable for
calculating infrared properties of the system. Also, it is
large enough to suppress the Holstein processes
e8'ectively.

Given that the chain has a dimerized ground state with
an energy gap of 2h, one can diagonalize that part of the
Hamiltonian which contains the kinetic energy of the
electrons plus the interactions between the electrons and
the macroscopically occupied phonon modes with

q =km/a. The rest of the Hamiltonian is then treated as
a small perturbation; i.e., the residual part of the
electron-phonon interactions. Due to the unitary trans-
formation which diagonalizes the mean-field Hamiltoni-
an, the electron-phonon and also the electron-photon in-
teractions are changed. Again, no electron-electron nor
counterion interactions are considered.

Without going into details, we quote the result which is

to the absorption is mingled with the electronic transi-
tions: it does not appear in the energy gap.

V. THREE-DIMENSIONAL EFk ACTS

There is growing evidence —both experimental ' and
theoretical ' —that the interchain coupling is ultimately
responsible for genuine metallic behavior of the highly
doped polymers. The renorrnalization-group theory
shows that the Peierls instability generates an energy gap
in a one-dimensional system so long as the largest phonon
energy, Scop, is small compared to the single-particle gap
energy, M„and the intrachain bandwidth, Wl =4to, is
much larger than 2h. Even the mean-field theory which
ignores strong-fluctuation sects in one dimension is in
qualitative agreement. But when 25 becomes compara-
ble to the interchain bandwidth, Wi, the system crosses
over to a truly three-dimensional system. Moreover, de-

pending on microscopic details, the Peierls instability is
either partially or completely inhibited when 2h is com-
parable to or smaller than 8'j.

In the following, we assume that the Coulomb interac-
tion between electrons has already been accounted for in
the renormalized values of the relevant physical parame-
ters and that the remaining residual interactions are
small enough to be ignored. Also, from now on, we
neglect the counterion efFects and consider only cases
where ficoo & Wi « Wi.

A. Ferromagnetic ordering of the Peierls state

(5.1)

and

To begin with, we assume ferromagnetic ordering of
the Peierls state on adjacent chains, i.e., we assume that
the charge-density waves on adjacent chains are in phase
with each other. It is straightforward to demonstrate (see
Appendix C) that, as a function of 6 and for a given Wi,
the total energy Er(b, ; Wi) per electron has at least two
local minima at (i} 6%0, Wi=O and (ii} 5=0, Wi/0.
At these points, the total energy is

+2
Er(50,0)=Er(0;0}—

II

ip x
+(y —x) —1 Er(0' Wi )=Ez (0;0)

W~

m %II
(5.2)

+ x +(y —x) —1 +1
2+x —1

(4.4}

where y =(co —coo) /b, and r)=coo /6, . In the limit
cop&&A, the integrated absorption can be expressed in a
simple form: , f dec p,(e} .

L

Note that g must lie in the range

(5.3)

Here 2hp denotes the order parameter, equal to the ener-

gy gap, of the one-dimensional system, whereas 2h is the
order parameter of the corresponding three-dimensional
system; both Ap and 6 depend on doping density y. The
factor g is the second moment of pi in dimensionless form

As promised, AH is suppressed by a factor of coo/2h
from its zero-gap value. For polyacetylene, this factor is
about

~p
It is important to realize that this contribution

0(g( & (5.4)

The interesting result is that, depending on the value of
g, there is either a first- or second-order transition to a
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metallic state. To relate this to experiment, we use our
previous renormalization-group results for a one-chain
model according to which the effective electron-phonon
coupling constant, and hence the one-dimensional single-
particle energy gap 260, are decreasing functions of the
doping density y. (i) If g& —,

' and 2ho& Wiv 4(, the me-

tallic state has lower energy than the Peierls state. Thus,
the system undergoes a first-order transition from the
nonmetallic Peierls state to the metallic state at
2b,0=Wiv 4$. (ii) if g& —,', the order parameter 2b, de-

creases continuously to zero and the transition is second
order. In this region and for 250& W~, the system has a
finite density of states at the Fermi energy, but the Fermi
surface is incomplete. As 50 decreases below a critical
value 50, determined by Wi, the Peierls state is complete-
ly suppressed and the system becomes fully metallic,
b =0. [Remember that hc signi6es the value of b, in the
limit Wi —+0 and that ko=ko(y). j A naive comparison
of Eqs. (5.1) and (5.2) shows that 60 & Wiv'g. Converse-

ly, for a given 60, there exists a critical value W~ such
that, for W~ ~ 8"~, the metallic state is stabilized.

As an example in which the transition is continuous,
let pi(e) be a constant, implying g= —,'. Now, suppose
that the doping density is high enough so that the midgap
band is fully developed. Then it is adequate to take

p~~( )=,&( —& ) (5.5)
Wii

Let 2ho«W~ and expand the total energy in a Taylor
series at the point 6=0. The total energy has a
minimum at b, AO, for 60 & b,z, where

26,=— —W, ,
C— (5.6)

e

and at b, =O, for b,0& ho. Note that bc/Wiv'(=0. 9. In
summary, for 2/e & 260!Wi & 1, the system is a semimet-
al: both the density of states at the Fermi energy and the
order parameter dL are nonzero.

Conducting polymers can hardly be described as highly
oriented crystals: their morphology is very irregular and
it can vary from sample to sample. Therefore, we expect
that, whatever the intrinsic nature of the transition is, it
will be affected by disorder. Moreover, because the dop-
ing process is discrete, it could be very difficult to distin-
guish a second-order transition from a first-order transi-
tion.

B. Antiferromagnetic ordering
of the Peierls state

In the ferromagnetic case, the Peierls instability is
readily suppressed by the interchain coupling, since it
destroys the nesting of the Fermi surface. However, the
system can often compensate the effect of the bending of
the Fermi surface by properly choosing the three-
dimensional ordering of the Peierls state. For instance, if
the array of chains forms a square lattice, with nearest-
neighbor coupling, antiferromagnetic ordering of the
phase of the charge-density wave on neighboring chains
produces perfect nesting at half-filling for arbitrary 8'~.

In contrast, any frustration in the system destroys this
miraculous nesting. Such frustration arises if the poly-
mer chains form a triangular lattice, if the effect of disor-
der is considered, or if further neighbor hopping is im-

portant. (In Na-doped polyacetylene, the polymer chains
form a triangular lattice. )

To illustrate the effect of the interchain coupling, we

consider the case where the chains form a triangular lat-

tice which is tripartite and on which the Peierls state is
frustrated. %'e further assume that the order parameter
of the charge-density waves has a uniform amplitude 5
but phases 0, 2n./3, and 4n. /3 on the three sublattices.
For a given nearest-neighbor interchain hopping t~, the
interchain bandwidth is W~=9t~ and the system is me-

tallic, if 260& Wi/2+8( Wj /W~~ ). As a specific exam-

ple, we consider a situation where the Peierls gap of the
one-dimensional chain is such that 2b,o/ W~~ && 1.
Defining an effective interchain bandwidth as

Wi = Wi/2, our main numerical result is that the system

has a second-order transition to a metallic state as a func-
tion of b,o or W~. (i) For 2b,o/W, & 1, the system is in the
nonmetallic Peierls state whose order parameter is 50.
(ii) For 2/e -26O/Wi &1, it is a semimetal with an in-

complete Fermi surface and with a diminished order pa-
rameter 6, less than 6o. Note that 6 vanishes rapidly
with decreasing 60 and, thus, with increasing doping den-

sity y. (iii) For 2bo/Wi 2/e, the system is an ordinary
metal with no Peierls order (b, =0).

Although the transition from the nonmetallic state to
the metal is continuous, it is rapid and occurs over a nar-
row range of parameters. It may therefore easily appear
as a first-order transition in real matenals, since the dop-
ing process is discrete. It is intriguing to note that a
pseudogap of magnitude 0.2 eV has been observed in

highly doped polyacetylene, for which W~~
=10 eV and

8'~ «0.6 eV. If we take these numbers at face value,

they imply that the system might be in the semimetallic
phase.

C. Remarks

While an exact microscopic theory of the
nonmetal —metal transition is a complicated problem be-
cause of local inhornogeneities and structural phase tran-
sitions, induced by counterions, we assume that the poly-
mer chains form an ordered two-dimensional lattice
which can be described by a mean-field-type Hamiltonian
with effective interchain hopping matrix elements. Based
on this approach, we argue that the metallic behavior ob-

served in highly doped polyacetylene is a bona fide result
of the interchain coupling.

We find that, if the three-dimensional Peierls order is
frustrated, the system undergoes a transition to the me-

tallic state once the Peierls gap of the corresponding
one-dimensional system becomes small enough. A simi-

lar transition occurs on a square lattice near the half-

filling when, for example, next-nearest-neighbor inter-
chain hopping matrix elements are postulated —such
terms might be important because the counterions modi-

fy the interchain couplings. However, even if the
nearest- and next-nearest-neighbor hopping matrix ele-
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ments are equal, the square lattice is less frustrated than
the triangular lattice in the sense that the transition to
the metallic state occurs at higher doping density.

In this respect, a systematic study to determine wheth-
er the nonmetal —metal transition is sensitive to the ar-
rangement of the counterions and thus to the lattice
structure would be interesting and desirable. Unfor-
tunately, such a comparison might be diScult to perform
because doped polyacetylene has a complicated set of
structural phase transitions as a function of doping and
because the real samples are rather disordered.

VI. CONCLUSIONS

In this study, we focused on various aspects of con-
ducting polymers; in particular, we modeled them as
quasi-one-dimensional crystals and used mean-field
theory to compute their properties. Combining the ex-
perimental and the theoretical results, a coherent picture
emerges of highly doped polymers as simple, albeit ex-
tremely anisotropic Fermi liquids.

At first sight, some experimental findings seem para-
doxical within the Fermi-liquid picture, since the system
exhibiting the basic metallic behavior still has features in
common with the incommensurate Peierls state. %e ar-
gue that the solution is to attribute different experimental
probes to different features of real samples which, after
all, have a very complex structure: The high conductivi-
ty, the spin susceptibility, and the linear specific heat, all
of which are definite qualities of metals, arise from the
three-dimensional nature of oriented metallic regions of
polymer chains. Specifically, they are a manifestation of
the presence of weakly interacting, charged quasiparticles
with spin. On the other hand, we emphasize the well-
known fact that the existence of the Peierls states is not
requisite for having strong infrared activity: even in a
metal, phonons can produce absorption peaks. More-
over, in dirty metals, which have poor conductivity, it is
common to find a rich absorption spectrum.

%e find three possible explanations for the presence of
infrared-active modes in highly doped polymers:

(i} Counterions have a strong influence on the nature of
the ground state: they can either enhance or completely
destroy the Peierls state. Even if the average impurity
density is homogeneous in a given sample, the metallic
and Peierls states can coexist due to subtle microscopic
differences in the arrangement of the counterions in
different regions of the material. The infrared activity
could then be due to nonmetallic regions of an otherwise
metallic sample. It is also plausible that the more highly
conducting samples are those with larger metallic frac-
tions. These features could be tested experimentally by
measuring the Pauli susceptibility and the Drude com-
ponent of the optical absorption. If this explanation
holds, the Drude component of the conductivity and the
Pauli susceptibility should be increasing functions of the
sample conductivity, while the oscillator strength associ-
ated with charged phonons (soliton-pinning modes)
should be a decreasing function. Indeed, preliminary re-
sults on Tsukamoto polyacetylene reveal a Pauli sus-
ceptibility which is roughly three times larger than that

of (considerably less conducting) Shirakawa polyace-
tylene at comparable doping densities.

(ii) For realistic three-dimensional band structures, the
semimetallic phase intervenes between the nonmetallic
(Peierls) and metallic (Fermi-liquid) phases. Because this
seems to happen in the experimentally relevant range of
parameters, the semimetallic state could explain both the
metallic behavior and distinctive infrared-active modes.

(iii) We have shown that, in the metallic state, the Hol-
stein process can easily produce infrared absorption of
the observed intensity, although calculations in a more
complex model including all the phonon modes would be
necessary to determine whether it could produce the ob-
served spectrum.
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APPENDIX A

In the Born-Oppenheimer approximation, the total
ground state, ~%'0), is assumed to have the factorized
form

(A2)

where p„is the momentum conjugate to u„and E is the
static energy, Eq. (2.3}. Considering only small devia-
tions from the equilibrium configuration I u„j,the energy
E( [u„j) can be expanded in a Taylor series about this
point. In the harmonic approximation, we retain only
the terms up to quadratic order. Defining the dynamic
matrix as

(A3)

the Hamiltonian becomes

gp„+—QD„u„u1 2 1

n nm

(A4)

apart from a constant term. There exists a complete set
of normal-mode solutions,

~ pk ), of Eq. (A4), that is,

(A5)

Each mode,
~ yk ), describes a phonon with energy fuuk.

In an absorption experiment, an external electromag-
netic field couples to the current operator through the
Hamiltonian

H'= —e g p„P„, (A6)

(Al)

where ~f) is the electronic ground state which depends
parametrically on the lattice configuration I u„jand ~yo)
is the ground state of the lattice. The lattice dynamics is
then given by the Hamiltonian'
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h(n)= g P —(p„)g„&(p )0»n (AS)

V is the volume per polymer ring, Co is the amplitude of
the positive frequency part of the electric field with the
wave vector q, and c is the velocity of light. The absorp-
tion is straightforwardly evaluated numerically once the
equilibrium configuration is known.

The integrated infrared absorption can be written as

A,d= fdtua, d(q, co)=Au g ~h(n)~
MX

(A9)

The total oscillator strength for a one-dimensional con-
ductor is

where P„is the electric potential: O'„=—VP„.Based on
Fermi's golden rule, the absorption coefficient due to the
one-phonon processes can be cast into the form of

2

a, d( q, to)= g g h (n)yk(n) 5(to —tuk ),
2M Vc

tion is the same as that of Allen's, up to de'erences due
to the dimensionality. The sums can be calculated once
we notice that the most dominant contribution comes
from the region around ~q~-2kF. This implies that only
those processes where optical phonons are exchanged and
electrons scattered across the Fermi surface are impor-
tant. Within this region, it is reasonable to assume that
Mk is approximately constant: ~Mk ~

—SAa /NMtoo.
Also, near the Brillouin-zone boundary the phonon-
dispersion relation is almost flat which means that the
relevant optical phonons have about the same frequency,
namely ~0. In particular, this approach is essentia11y the
same as the Einstein model in which all phonons have the
same frequency. These approximations, finally, lead to
Eq. (4.2).

APPENDIX C

Below, we derive Eqs. (5.1) and (5.2).
Assuming ferromagnetic ordering of the Peierls state

on adjacent chains, the one-electron energy levels can be
written approximately as

mme
2 Vmc' (A10) e(k) =ell(k(l, b )+ei(ki), (Cl)

and the band mass is given by m =M /4tua For p. o-
lyacetylene, m = 1.5m„where m, is the mass of the elec-
tron.

Finally, the external field 8 has to be specified. Since
an infrared absorption experiment probes the system in
the long-wavelength limit, we calculate the response as
the wave vector of the field goes to zero. In a ring
geometry, the field itself has to be periodic. For our pur-
pose, it is then adequate to use the form 8„=hoe'q"' with

q =2qrl¹, which is the smallest possible wave vector
one can use.

where
~~

(j.) refers to the direction parallel (perpendicular)
to the chain axis. The crucial consequence is that the to-
tal density of states (per site), p(e), factorizes into an in-
chain, p~~, and an interchain, pj, part:

(C2)

where the factor of 2 arising from the spin degeneracy is
included in p~~. This is readily seen by Fourier transform-
ing the total density of states.

Without loss of generality, we can define the energy
scale so that

APPENDIX 8 f d epei( )e=0 . (C3)

We apply the standard model of an electron gas in-
teracting with the phonons, i.e., the Hamiltonian in Eq.
(2.1) with V„=—0 and Vt =0. Perturbation theory gen-
erates an expansion in series of powers of the coupling
constant A, for the absorption coefficient. One can show
that the leading order term behaves as

aH(t0) = g IMk
~ (uk+ —

uk )
2qre 1 2 2

VC & Ikl ~kF &Ik+ql

X5(ek+ ek+ficoq ——%co) .

(Bl)

where the matrix element is given by the formula

Mkq =4a"(/ A/2NMtoqcos(ko +qtt /2)sin~qua/2 .

0
Er(h; W~)= deep(e)+the elastic energy . (C4)

Clearly ET is independent of 8'~ so long as 2A& 8'~:
ET(b, ; Wj )=ET(h;0). Moreover, it has a local minimum

+2
ET(b0, 0)=ET(0;0)—

m 8')(
(CS)

where 260 is the optimum value of the gap of the purely
one-dimensional system.

The other minimum at 6=0 and fixed 8'j&0 can be
seen as follows. Write

Under these quite general conditions some precise predic-
tions can be made. Specifically, consider the total energy
per electron,

We have de5ned the band energy ek 2tpcoska, the
band velocity uk =(1/A)(Bek/Bk), and the phonon fre-
quency coq =tuosin~q~a/2. The expression for the absorp-

ET(0; Wi ) =ET(0;0)

+ f de p~(e) f de'(e+e')pll(e'), (C6)
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where we have used the property (C3). Since p~(E) is
nonzero only in a narrow region around the point @=0,
we can use the value p1(0) =4/mW1 for p1(e) in this re-
gion. Therefore,

8'q
ET(0; Wt) =Ez.(0;0)—g

lT
)j

where g is defined in Eq. (5.3).

(C7)
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