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Dynamically assisted interlayer hopping in YBa2Cn306+

1 NOVEMBER 1994-II

P. Nyhus, M. A. Karlow, and S. L. Cooper
Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Ch-ampaign,

Urbana, Illinois 61801

B.W. Veal and A. P. Paulikas
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 18 May 1994)

We report evidence from c-axis-polarized Raman scattering and optical-refiectivity measurements that

doping-induced and phonon-mediated changes in the O(4)-Cu(1)-O(4) structure influence c-axis charge dy-

namics in YBa2Cu306+ . With increased doping, we observe a rapid increase in the interbilayer hopping rate

which we suggest may be caused by the systematic decrease in the Cu(2)-O(4) bond length. Also, c-axis-
polarized Raman scattering measurements provide evidence that dynamical modulation of the

O(4)-Cu(2) bond length by c-axis phonons contributes to "assisted" interbilayer hopping.

In spite of increased experimental and theoretical study,
there are many unresolved issues concerning c-axis charge
transport in the layered high-T, cuprates. For example, the
measured resistivity anisotropies of the cuprates are substan-
tially larger [p, /p, b-10 —10 (Ref. 1)] than band-structure
estimates [p, /p, b-10 (Ref 2)], s.uggesting that one must go
beyond the Bloch-Boltzmann model to understand the
mechanism constraining the interlayer hopping rate in these
materials. Additionally, band-structure calculations predict
that the cuprates should exhibit metallic c-axis resistivities

(dp, /dT&0), yet the c-axis resistivities in most of the lay-
ered cuprates have a semiconductorlike temperature depen-
dence (i.e., dp, /dT(0) at low temperatures. Finally, both
YBazCu&O&+, and Laz, Sr„Cu04have a do~ing-dependent
anisotropy that is not yet well understood. ' A number of
models have been proposed to address one or more of these
unusual transport features, including anisotropic
localization, ' interlayer tunneling between certain non-
Fermi liquids, ' and "assisted" interlayer scattering from
impurities or bosons. Unfortunately, there is as yet no de-
finitive evidence in favor of any of these models.

In this paper, we report Raman scattering and optical re-
flectivity studies of the mechanisms contributing to c-axis
charge transport in YBa2Cu306+ . Our results suggest that
the O(4)-Cu(1)-O(4) structure between the CuO bilayers
plays an important role in governing the doping and tempera-
ture dependence of the interbilayer hopping rate in YBa2
Cu306+ . For example, we find evidence that the interbi-
layer coupling integral varies roughly exponentially with
doping, which we attribute to doping-induced changes in the
Cu(2)-O(4) bond length. Moreover, our Raman results sug-
gest that the 500 cm c-axis O(4) phonon, and possibly
other c-axis phonons, contribute to phonon-assisted interlay-
ing hopping in YBa2Cu306+ . This is direct evidence of a
specific incoherent contribution to c-axis transport in the cu-
prates.

Raman and optical reflectivity spectra were obtained
on a series of thick (0.2—0.75 mm in the c direction)
YBa2Cu306+ samples with oxygen concentrations X-0.93
(T,-90 K), x-0.85 (T,-93 K), x-0.75 (T,-80 K),

x-0.65 (T,-60 K), x-0.50 (T,-50 K), x-0.41 (T,-30
K), x-0.37 (T,-15 K), and x-0.30, 0.25, 0.10 (T,-O K).
The Raman spectra were taken in a pseudobackscattering
geometry with 5145 or 4579 A. laser light polarized along the
c-axis direction. All Raman spectra were corrected for the
frequency-dependent response of the system and for the op-
tical responses of the materials. Optical reflectivity measure-
ments with light polarized along the c-axis direction were
obtained between 125 and 16000 cm ' using a rapid-
scanning Fourier transform interferometer in a near-normal
incidence geometry.

Figure 1 shows the c-axis-polarized [(E;,E,)=(z,z)]
high-frequency Raman spectrum as a function of doping.
The c-axis polarized spectra exhibit a strong electronic con-
tinuum with a 1/to frequency dependence at high
frequencies, as well as the two-phonon overtone of the 500
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FIG. 1. Room-temperature c-axis-polarized [(E,,E,)=(z,z)]
Raman continuum above 500 cm ' for several doping levels of
YBa&Cu306+„(topto bottom) x= 0.85, 0.75, 0.50, 0.37, 0.25, 0.10.
The inset shows the amplitude of continuum scattering, A, as a
function of doping, x. The error bar reflects the uncertainty in es-
tablishing the zero of continuum scattering intensity.
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cm c-axis O(4) mode. As shown in the inset of Fig. 1, the

continuum scattering amplitude scales with the in-plane car-
rier density, decreasing roughly linearly with decreased dop-
ing and disappearing below the in-plane metal-insulator tran-
sition (inset, Fig. 1). By contrast, all depolarized (z,x)
spectra are featureless, indicating that the c-axis electronic
continuum is strongly (z,z) polarized.

The strong, high-frequency c-axis Raman continuum in

YBazCu306+„cannot result from isotropic (L =0) charge-
density fluctuations, as these are screened by the long-range
Coulomb interaction, and have a weak Raman scattering re-
sponse with a low characteristic energy, qU+, where q is the
wave vector of the light and UF is the Fermi velocity. How-
ever, in anisotropic systems such as the layered cuprates,
density fluctuations associated with different parts of the
Fermi surface (L 4 0) are not screened, and can give stron
Raman scattering intensities and large Raman shifts when, '
(i) there is a large effective mass difference between the ini-
tial and final states in the scattering process, and (ii) there is
impurity or phonon scattering to conserve crystal momentum
in the scattering process. For example, strong electronic Ra-
man scattering has been observed for "intervalley" elec-
tronic scattering between longitudinal and transverse por-
tions of the multivalley Fermi surface in n-type Si, with

impurity scattering providing crystal momentum
conservation. " Notably, conditions (i) and (ii) imply that
impurity- or boson-assisted hopping contributions to inter-

layer transport should have strong Raman scattering intensi-
ties in anisotropic systems such as the cuprates.

Combined with estimates of the c-axis plasma frequency,
the extremely large scattering rate (I'-1000 cm ' in

YBazCu307) associated with the c-axis continuum in

YBa2Cu306+, is consistent with interlayer scattering in a
very "dirty" metal, with scattering occurring nearly every
unit cell. While static impurities are a possible source of this
scattering, Raman scattering in a dirty metal is characterized
by a collision-dominated response function, ' ImR(cu)
= AtuI'/(tu +I' ), which clearly does not fit the low-
temperature Raman spectrum in Fig. 2 (dotted line). Rather,
Fig. 2 suggests that the c-axis continuum in YBa2Cu306+, is
more appropriately associated with interlayer scattering via
emission of c-axis optical phonons. For example, the doping
dependence of the (zz) Raman spectrum (inset of Fig. 2)
shows that the c-axis continuum turns on abruptly above the
500 cm ' O(4) phonon frequency, suggesting that the 500
cm optical phonon, which is a c-axis vibration of the api-
cal O(4) atom between the Cu(1) chain and Cu(2) plane sites,
is emitted in the c-axis continuum scattering process. By
contrast, scattering from impurities or acoustic phonons
would be characterized by an electronic continuum extend-
ing to arbitrarily low energies. Itai has shown that Raman
scattering from electron-hole pairs with the emission of an
Einstein phonon has the signature of a collision-dominated
response function that is shifted by the energy of the Einstein
phonon. Such a response is seen in Fig. 2, which illustrates
that the 5 K c-axis Raman spectrum of
YBa2Cu306+„can be nicely fit with a collision-dominated
response function (I'-1000 cm ') that is shifted by the 500
cm phonon frequency too (dashed line). These results pro-
vide strong evidence that the c-axis continuum involves
phonon-assisted interlayer scattering, with the 500 cm

6$

~ ~
CO

Q)

T-5K
I I

1000 2000 3000
Energy Shift (cm ')

4000

FIG. 2. c-axis-polarized [(E;,E,) = (z,z)] Ramau continuum for
X=0.93 at 5 K. The dashed line is a fit of the continuum to a
collision-dominated response function, ImR(co) =Atoi'/(co + I' ),
which has been shifted by an optical phonou frequency, coo-500
cm, as described in a model by Itai described in the text (Ref.
13). The dotted line compares the best fit using an uushifted

collision-dominated response function. The inset shows the doping
dependence of the low-frequency (z,z) Raman response, illustrat-

ing the abrupt onset of c-axis continuum scattering above the
coo=500 cm ' O(4) phouon energy.

c-axis O(4) phonon supplying the momentum transfer nec-
essary to scatter carriers from their initial in-plane momen-
turn states to adjacent bilayers, ' and with the large effective
mass differences between in-plane and out-of-plane initial
and final states' contributing to the strong Raman scattering
intensity.

The evidence for phonon-assisted interlayer scattering in

YBa2Cu306+ given above is the first identification of a spe-
cific incoherent contribution to c-axis transport in the cu-
prates. The importance of incoherent contributions to c-axis
transport in the cuprates has been discussed by several
groups, all of whom suggest a phenomenological expression
for the c-axis resistivity: ' '

p, (T) -A T+B/T,

where the first term represents a metallic (coherent) contri-
bution, and the second term reflects various incoherent con-
tributions. Rojo and Levin in particular have suggested that
c-axis phonons may provide an important incoherent hop-
ping mechanism in the cuprates. Littlewood and Varma' ar-

gue that c-axis transport in the cuprates is intrinsically me-
tallic [i.e., B= 0 in Eq. (I)], but that an incoherent
contribution to c-axis transport is possible due to the break-
ing of momentum conservation by impurities in the spacer
layer between CuO cells (i.e., bilayer, trilayers, etc.). Signifi-
cantly, our results suggest that vibrational modes associated
with the spacer layer, such as the 500 cm O(4) mode, can
provide an intrinsic source of incoherent interlayer hopping
in YBazCu306+~.

A limitation of Eq. (1) as a phenomenological description
of the c-axis resistivity in YBa2Cu306+ is that it does not
naturally describe the doping-dependence of either p, (T) or
the effective c-axis plasma frequency co~, . For example,
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FIG. 3. Temperature- and doping-dependent c-axis resistivity for

YBa2Cu306+„,illustrating the roughly exponential doping depen-

dence, and the semiconductorlike low-temperature upturn for
oxygen-deficient samples. Doping levels, x, are listed above the

resistivity curves.
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FIG. 4. Reflectance for light polarized along c axis for several

doping levels. Inset shows the doping dependence of N;z(0.2 eV)
obtained from the c-axis reflectivities of YBa2Cu306+

Fig. 3 presents the temperature and doping dependence of
p, for our YBa2Cu306+, samples, illustrating that in addi-
tion to a semiconductorlike low-temperature resistivity
in all but the most highly doped sample, p, (T) exhibits a
roughly exponential doping dependence throughout the tem-
perature range. Also, Fig. 4 shows the c-axis reflectivity of
YBa2Cu306+„as a function of doping, from which we
have determined o.,(co) and the electronic contribution
to the integrated c-axis spectral weight, Neff(co )

=(2mV/me )Jo o.,' (to)dred, where m, e, and V are the
bare electron mass, electronic charge, and unit cell volume,
respectively, and where tT,'I(to) is obtained by subtracting
the phonons from the c-axis conductivity, a, (co). The inset of
Fig. 4 plots the doping dependence of N,'rr(ru'=0. 2 eV).
N,'~(0.2 eV) provides a reasonable estimate of the spectral
weight associated with the low-frequency electronic contri-
bution to o;(cu), and is related to a squared equivalent c-axis
plasma frequency by ro, (eV )=8N,'rr. In materials with an

open Fermi surface such as the cuprates, the c-axis plasma

frequency provides an estimate of the interbilayer coupling
integral '

re~, /re~, b -(c/a)(t, /E'), where co~, and re~, b

are the c-axis and in-plane plasma frequencies, respectively,
c and a are the c-axis and in-plane lattice parameters, re-

spectively, E is related to the in-plane Fermi velocity, and

t, is the interlayer coupling integral. The inset of Fig. 4 il-

lustrates that N', tr(0.2 eV) in YBa2Cu306+„ is small at low

doping, but increases rapidly with x. Indeed, the p, and

N', & data in Figs. 3 and 4 suggest that the doping dependence

of the interbilayer coupling integral in YBa2Cu306+„can be
approximately described by t, -exp[ —ad(x)], where n is a
constant and d(x) is an effective barrier width that varies

roughly linearly with doping.
The nature of the barrier in YBa2Cu306+, and the pos-

sible origin of the strong doping dependencies of p, and

N', z, are suggested by evidence that intercell coupling in

YBa2Cu306+„and La2 Sr,Cu04 is sensitive to the hybrid-

ization between apical 0p, states and in-plane Cu states. For
example, x-ray absorption measurements of La2 Sr„Cu04
by Chen et al. ' suggest that increased interlayer coupling
with doping arises from a systematic increase in the contri-
bution of the apical 0 p, orbital to the doped holes. In

YBa2Cu306+, , resonance Raman scattering experiments
also show evidence for increased admixing of O(4) p, and
in-plane states as doping is increased. ' Finally, neutron-
diffraction measurements of YBa2Cu306+„by Jorgensen et
al. show that there is a quasilinear decrease in the
O(4)-Cu(2) bond length with increased doping, suggesting a
mechanism by which a systematic increase in O(4)
p, /Cu(2) d3,z t hybridization, and a concomitant increase in
interbilayer coupling, can occur with doping.

The possibility that interbilayer coupling in

YBa2Cu306+„ is sensitive to hybridization between O(4)
p, and Cu(2) d3,2, states is particularly interesting given
our evidence that the 500 cm ' apical O(4) phonon contrib-
utes to phonon-assisted interbilayer hopping, as it is known
that this mode strongly modulates the overlap integral asso-
ciated with both the O(4)-Cu(2) and O(4)-Cu(1) bonds. '
This suggests that the 500 cm ' apical O(4) mode, as well as
other c-axis phonons, may influence c-axis transport in

YBa2Cu306+, by dynamically modulating the interlayer
hopping rate. Renormalization of interlayer hopping by slow
boson degrees of freedom is possible in anisotropic materials
such as YBa2Cu306+, and La2,Sr,Cu04 because the weak
intercell hopping rates are on the order of phonon energies.
Kumar and Jayannavar suggested that c-axis phonons might
renormalize the interlayer hopping rate in the cuprates, and
thereby cause semiconductorlike resistivities at low tempera-
tures, motivated by analogies with adiabatic renormalization
of the tunneling matrix element by bosons in two-level
systems. Notably, evidence that the c-axis O(4) mode con-
tributes to assisted interlayer hopping suggests that c-axis
acoustic phonons should also effectively modulate the inter-
bilayer hopping rate. Raman scattering from electron-hole
pairs with acoustic phonon emission would be evident as an
electronic continuum that extends to zero energy,

' and Mi-
hailovic, McCarty, and Ginley have indeed observed a flat,
low-frequency c-axis continuum in YBa2Cu307 that has a
temperature dependence consistent with a two-particle emis-
sion process.
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A simple description of interlayer transport in which the
interlayer hopping rate is modulated by phonons or other
bosons provides a possible description of the temperature
and doping dependence of p, in YBa2Cu306+„(seeFig. 3).
Taking the interbilayer coupling integral to be

= t pexp( —ad), where t,p is the static coupling integral,
n is a constant, d=dp(1+ 8) is the instantaneous barrier
width, dp is the equilibrium width, and b(T) is the fractional
change in the barrier width due to c-axis phonons, then for
small b(T), the interbilayer coupling integral is given
roughly as t,(T)-t,pexp( —crdp)(1 —ndp6(T)), where the first
term represents direct (coherent) hopping, and the second
term represents the dynamical modulation of t, by bosons.
This simple picture qualitatively describes several important
aspects of the c-axis reflectivity (Fig. 4) and resistivity (Fig.
3) of YBa2Cu&06+„.First, the doping dependence of t, is
dominated by rapid changes in the static coupling integral,

t,pexp( —udp), which we have argued result from the
systematic decrease of the O(4)-Cu(2) bond length with

doping observed by Jorgensen et al. ' The second term
associated with boson-modulation of the interbilayer cou-
pling integral contributes a semiconductinglike temperature

dependence to p, (T), due to the decreasing population of
phonons or other bosons at low temperatures. Finally, this
picture suggests that the decreasing size of the semiconduc-
torlike upturn in p, (T) with increased doping (Fig. 3) may
arise because there is a decreased relative contribution of
assisted hopping to the total c-axis conductivity as interbi-
layer coupling increases.

To summarize, our results suggest that interlayer hopping
in YBa2Cu306+ is influenced both by doping-induced
structural changes in the Cu(2)-O(4) bond length, and by
phonon-assisted hopping. An important issue which has not
been addressed concerns the small size of the hopping rate in
the cuprates relative to band-structure predictions. Future
studies are necessary to investigate mechanisms by which
the interlayer hopping rate might be renormalized in the lay-
ered cuprates, including mechanisms involving interlayer
tunneling ' dynamically detuned hopping, and the renor-
malization of hopping by impurity scattering.
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