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Structure of a vortex line in a d, 2 y2 superconductor
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The structure of a vortex line in a d„2 y2 superconductor is calculated self-consistently in the framework of
the Bogoliubov —de Gennes theory. The inner core of the vortex containing localized quasiparticle excitations

is found to be separated from the asymptotic pure d-wave state by a region where low-lying fermionic

excitations are absent. A domain structure of the relative phase of the s-wave and d-wave components is

identified. The results are interpreted in terms of a Ginzburg-Landau theory.

Several theoretical models predict d„2—y2 symmetry for
the energy gap in high-T, superconducting oxides. ' How-

ever, the experimental situation is still unclear. Although
there is strong evidence for the existence of a linear density
of states in optimally doped Y-Ba-Cu-O, there is evidence
both for and against a gap with d-wave symmetry. Never-
theless, in spite of the experimental uncertainty, it is timely
to consider the new physics which might arise in a supercon-
ductor with a d, 2 y2 order parameter. In particular, it is of
interest to consider the order parameter field in the core of a
vortex for such a superconductor. This problem was consid-
ered by Volovik who studied the modifications of the den-

sity of states due to the presence of a vortex line in a super-
conductor of d, 2 y2 symmetry. In this paper we report a
self-consistent solution for the vortex core in a superconduc-
tor with d„2—y2 symmetry, and we interpret our results in
terms of the appropriate Ginzburg-Landau free-energy func-
tional.

Symmetry allows the core of a d-wave vortex with the

asymptotic gap function A(k, r) = 54(cosk~ —costa)e'" to
contain an s-wave-like component with opposite winding of
the phase. This somewhat surprising result is due to the
interplay of the phase with the nontrivial momentum depen-
dence of the order parameter. The presence of a localized
s-wave component can radically alter the properties of the
vortex core. In particular, the total gap function is nodeless in
the region where s- and d-wave components coexist with
nonzero relative phase. ' This leads to a picture in which
different kinds of fermionic excitations are found in three
different regions of the vortex (see Fig. 1).At the center of
the vortex core, where both the s-wave and d-wave compo-
nents vanish, localized fermionic core excitations will exist.
These bound states can have a strong effect on the structure
of the vortex core at the low temperatures. ' We call this
the inner core of the vortex. It is surrounded by a region
where d- and s-wave pairing coexist, mainly with nonzero
relative phase, and hence the fermionic excitations in this
region are gapped. (However, the gap is suppressed along
directions where s- and d-wave components interfere de-
structively. ) We call this the outer core of a d-wave vortex.
Outside the outer core, the superconductor is in a pure
d-wave state.

In order to study the structure of a d-wave vortex in more
detail, we have carried out calculations within Bogoliubov-
de Gennes (BdG) theory. This approach was pioneered by
Caroli, de Gennes, and Matricon. However, the first self-
consistent solution of these equations for the case of a con-
ventional s-wave vortex was obtained only recently.

Here, we consider superconductivity on a square lattice
with interatomic spacing a. The pairing interactions are
modeled with an attractive interaction between electrons of
opposite spin at nearest-neighbor sites and an onsite repul-
sive term. "We consider only the case of spin singlet pairing.

FIG. 1. Three regions of the vortex. The complex s-wave order
parameter is represented with a black arrow and the d-wave one
with a white arrow. Both the s-wave and d-wave pairing are sup-
pressed in the inner core (labeled I). Localized core excitations are
found in this region. This is surrounded by an outer core (labeled II)
where d-wave and s-wave pairing coexist. In this region low-

energy fermionic excitations are absent (except possibly along those
directions for which the relative phase between the s- and d-wave
components vanishes). Outside the core (region III) the supercon-
ductor is in a pure d-wave state. As the opposite winding of the s-
and d-wave components (Ref. 6) is incompatible with the relative

phase ~ m/2 (Ref. 2), four domains are formed. The regions of
relative phase m/2 and —m/2 are separated by domain walls (indi-
cated by vertical and horizontal lines) where the relative phase var-

ies rapidly.
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A small, nonzero interlayer coupling is assumed to stabilize
the quasi-two-dimensional situation.

The Bogoliubov —de Gennes equations' for this model
Hamiltonian are

where

5~ /u„(r)~ ) u„(r)~

&) ( v.(r)) ( v.(r))

(u„(r)= —tg u„(r+8) —pu„(r)

and

4v„(r)=g As(r)v„(r+8)+ho(r)v„(r) (3)

Here 8' denotes a nearest-neighbor vector. The normal-state
bandwidth is 8t, and p is the chemical potential. We have
ignored the coupling to the vector potential in Eq. (2) and are
thus assuming the limit of an extreme type-II superconduc-
tor.

The gap equation for the nearest-neighbor pairing is

As(r) = 2g [u„(r+8)v„*(r)+u„(r)v„*(r+8)]

&& tanh(E„/2T)

and for onsite pairing

(4)

b n(r) =gag u„(r)v „*(r)tanh(E„/2T). (5)

Positive values for the coupling constants g and go corre-
spond to attraction and negative values to repulsion. Note
that the components of the gap operator have the symmetry

b, s(r) = 5 s(r+ 8), (6)

and therefore it is convenient to consider it to be a property
of the nearest-neighbor bonds.

It is known that there are two spatially homogeneous spin
singlet solutions to Eqs. (1)—(5) with gn =0. Namely,
A(k) = 2d(cosk~ cosk a) and —h(k) = 2s(cosk~+ coskYa)
(called d-wave state and extended s-wave state from now
on)." It is also known that the presence of onsite repulsion
go&0 favors the d-wave state over the extended s-state
pairing.

We have solved Eqs. (1)—(5) via exact diagonalization of
the BdG Hamiltonian [Eq. (1)]and iteration of the gap equa-
tions [Eqs. (4) and (5)]. Given a gap function we obtain the
eigenvalues E„and the Bogoliubov amplitudes u„and U„
from Eq. (1). These were then used to calculate a new gap
function. These steps were repeated until the desired accu-
racy was obtained.

In order to be able to compare with earlier work and to
test the accuracy and feasibility of the numerical method, we
studied the problem of a conventional s-wave vortex first.
Both smooth boundary conditions and modified periodic
boundary conditions, where we compensated for the effect of

FIG. 2. The first quadrant of the core of a d-wave vortex. The
arrows on the nearest-neighbor bonds indicate the magnitude and

the phase of the order parameter. The black dot denotes the center
of the vortex. Far away from the vortex core the horizontal and

vertical bonds have m phase dif'ference indicating a pure d-wave
state. The parameters used in the numerical solution of Eqs. (1)—(5)
were T=O.OSt, p, = —2t, g=3.19St, go= —3t. Only the central
8X8 region of the full 16&16 quadrant which was studied is
shown.

phase winding, were tried. The structure of the vortex core
did not depend on the choice of the boundary condition. The
results agreed qualitatively with the results obtained in Ref.
9. However, for the large values of the coupling constant
which we employed (typically go=3.2) there were only a
few bound states at the vortex core.

Because of the considerable computational complexity of
the problem, we studied only a limited part of the four-
dimensional parameter space in the case of the d-wave vor-
tex. We used modified periodic boundary conditions, because
they were simpler, and studied bonds in a 16' 16 quadrant.
Boundary effects where localized within 2 —3 lattice spaces
of the boundary. Typical values of the parameters were
T=0.05t, p, = —2t, g=3.195, go= —3. This choice of pa-
rameters corresponds to d=0.2t. Temperature was varied in
the neighborhood of this point. However, we have not yet
studied the temperature dependence in any detail. There were
no qualitative changes in the nature of the solution. The same
is true for small variations in the chemical potential. All the
calculations are in the limit where the coherence length g is
of the order of a few interatomic spacings a.

In Fig. 2 the first quadrant of the core region of a d-wave
vortex is displayed. One sees that close to the center of the
vortex, denoted by a black dot, the pairing amplitude of the
horizontal and vertical bonds is suppressed. The further sup-
pression along the x and y axis is caused by the destructive
interference of the extended s wave
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This can be understood to be due to an increase of the cost in

energy of the extended s-wave component as the repulsion is
increased.

We can understand the qualitative features of Figs. 1—3 in

terms of the Ginzburg-Landau free-energy functional which
is appropriate for coexisting s- and d-wave order parameters.
For simplicity we ignore other possible order parameters.
This is motivated by the fact that Eqs. (1)—(5) with nearest-

neighbor attraction and on-site repulsion have only solutions
with s- and d-wave symmetry. The free-energy density is
sum of the bulk- and gradient-energy terms:
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FIG. 3. Same as Fig. 2 but presented in terms of the amplitudes
of s- and d-wave pairing denoted with s and d, respectively. The
center of vortex is situated at the point (0.5,0.5). The relative phase
(not presented here) was found to have the domain structure as
indicated in Fig. 1. In particular, the domain walls were found to be
oriented along the x and y axes.

where x and y denote the nearest-neighbor vectors along the
x and y axes, and d-wave-like components

d(r) = (b,;+b, - —b,yy
—5 y)/4 (8)

with the opposite winding of the phase. It is also interesting
to note that a relative phase close to m./2, between extended
s-wave-like and d-wave-like components, is preferred in a
large part of the soft core. This is in agreement with Ref. 2
where it was argued that, if both s-wave and d-wave pairing
are present simultaneously, then the relative phase 7r/2 is
favored.

Since the requirement of maintaining a constant relative
phase everywhere is incompatible with the opposite winding
of the phase of the d-wave and extended s-wave com-
ponents, regions of rapid variation of the relative phase arise.
The general behavior of the solutions was such that the
d-wave-like solution winds uniformly. The s-wave-like so-
lution adjusts to a relative phase close to vr/2 everywhere
but in the domain wall regions along the x and y axis (see
Fig. 1).

The effect of on-site repulsion on the structure of the
vortex core was also studied. For the values considered,
T=0.05t, p, = —2t, g=3.195, go/t= —2.5, —2.75, —3.0,
—3.25, the extended s-wave component is suppressed as the
magnitude of the on-site repulsion is increased. For concrete-
ness, the maximum of the extended s-wave-like component
(see Fig. 3) decreases from 0.05t to 0 045t as the on. -site
repulsion was increased from the go= —2.5 to go= —3.25.

where nd~0 and [u, —(P3 —2lP4l)ad/(2P2)]&0 in order
for the pure d-wave state to be stable at infinity. Our results

correspond to P4)0 which leads to a relative phase of
~ m./2 between s and d in most of the outer core. We inter-

pret the mixed gradient term, in our lattice model, as arising
from the different interaction between nearest-neighboring
parallel bonds in the same and different rows or columns,
i.e., the difference between the terms Agr)Agr+x) and

Agr)bgr+y) in the free-energy expansion when expressed
in terms of bond variables [see Eqs. (7) and (8)].This term is
responsible for the angular anisotropy of the magnitude of
the s-wave order parameter shown in Fig. 3(b). The coeffi-
cients y, and P4 determine the orientation and shape of the

domain walls for the relative phase of s and d.
The mixed gradient term would be expected to give rise to

a number of other observable features. For example the
vortex-vortex interaction will have an angular-dependent
term that could modify the structure of the vortex lattice, the

temperature dependence of the upper critical fields, H, , will2'

be affected and finite s- and d-wave components will exist in
the interface between normal and superconducting regions.
Unfortunately, space does not allow us to address these ques-
tions further here.

In conclusion we have solved, for the first time, the
Bogoliubov —de Gennes equations for the core structure of a

2
y

2 wave vortex. Three regions of the vortex were iden-
tified. In the classical limit this leads to a clear division of the
vortex core into three regions with different kinds of fermi-
onic excitations. The inner core region supports localized
fermionic excitations resembling those found in the core of a
conventional s-wave vortex. This region is surrounded by an
outer core where fermionic excitations are gapped because of
the coexistence of both d- and s-wave pairing. Interesting
domain structure in the relative phase of the d-wave state
and extended s-wave state was identified. The size of the
outer core was found to decrease as the magnitude of on-site
repulsion was increased. Outside the outer core, the super-
conductor is in a pure d-wave state. The structure and shape
of the domains of the vortex core were interpreted in terms
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of the relevant Ginzburg-Landau free energy. If this kind of
structure were observed in a scanning-tunneling-microscopy
experiment similar to one performed by Hess et al. ' it
would be indicative of d-wave superconductivity.
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