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Brownian motion and magnetism
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We present an interesting connection between Brownian motion and magnetism. We use this to determine

the distribution of areas enclosed by the path of a particle diffusing on a sphere. In addition, we find a bound

on the free energy of an arbitrary system of spinless bosons in a magnetic field. The work presented here is

expected to shed light on polymer entanglement, depolarized light scattering, and magnetic behavior of spin-

less bosons.

Consider a particle diffusing on a sphere. If the diffusing
particle returns to its starting point at time P its path sub-
tends a solid angle A at the center of the sphere. We ask:
what is the probability distribution of II? This problem
comes up if one considers a spin--,' system in a random mag-
netic field. As is well known, the state (up to a phase) of a
spin--,' system can be represented as a point on the Poincare
sphere. Under the influence of a random Hamiltonian, the
state of the system diffuses on the Poincare sphere. From the
work of Berry' and others, it is known that the system picks
up a geometric phase y equal to half the solid angle swept
out on the Poincare sphere. To compute the distribution of
geometric phases one is led to the question posed above. A
closely related problem has already been studied in the con-
text of polymer entanglement: given that a Brownian path
on the plane is closed at time P, what is the probability that
it encloses a given area A?

In this paper we present a general method of solving these
problems by using a connection between Brownian motion
and magnetism. The qualitative idea is to use a magnetic
field as a "counter, " to measure the area enclosed in a
Brownian motion. We derive a relation between the distribu-
tion of areas in a Brownian motion and the partition function
of a magnetic system„which can be used to cast light on both
subjects. Despite its apparent simplicity, this relation does
not seem to have been noticed or exploited so far. Our main
purpose here is to illustrate its usefulness. We first discuss
the planar problem solved earlier . We then go on to solve the
(as yet unsolved) problem of diffusion on the sphere. We also
exploit the relation to learn about the magnetic properties of
bosonic systems. Here we recover previously known results
and arrive at some others. We conclude the paper with a few
remarks.

Let a diffusing particle start from a point on a plane at
time r=0. Given that the path is closed at time P (not nec-
essarily for the first time), what is the conditional probability
that it encloses a given area A? By "area" we mean the
algebraic area, including sign. The area enclosed to the left
of the diffusing particle counts as positive and the area to the
right as negative. This problem has been posed and solved
by polymer physicists, since it provides an idealized model
for the entanglement of polymers. We present a method of
solving this simple problem.

Let (x(r),0~ r~P, x(0) =x(P)) be any realization of a
closed Brownian path on the plane. As is well known,
Brownian paths are distributed according to the Wiener
measure: if f[x(r)] is any functional on paths, the expecta-
tion value of f is given by
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which is simply the Fourier transform of P(A). For future
convenience we write the Fourier transform variable as eB.
The distribution P(A) can be recovered from its generating
function by an inverse Fourier transform. From Eqs. (2) and

(3) above we find

P(B) (eieB 'e)

Notice that BM can be expressed as

fP dxBA= A(x) —dr,
Jp d7.

(4)

where A(x) is any vector potential whose curl is a homoge-
neous magnetic field B. Equations (1), (4), and (5) yield

In Eq. (1) the functional integrals are over all closed
paths (the starting point is also integrated over). (We set the
diffusion constant equal to half throughout this paper. ) Let
M[x(r)] be the algebraic area enclosed by the path x(r).
Clearly, the normalized probability distribution of areas
P(A) is given by

P(A) =—(8'(M[x(r)] —A)) rr . (2)

The expectation value P of any function P(A) of the area is
given by fP(A) tfp(A)dA. As is usual in probability theory
we focus on the generating function P(B) of the distribution

P(A):
f

P(B)= e'~BA P(A )e'~BAdA
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By inspection of Eq.(6) we arrive at

P(B)= Z(B)/Z(0), (7)

eB, eB/4m
Z(B) = g exp[ —(n+ 2)PeB]=

From (7) we find P(B)=(PeB/2)[sinh(PeB/2)] '. Taking
the Fourier transform of P(B) by contour integration we get
the result P(A) =(m/2p)[cosh(mA/p)] derived in Ref. 2.
This provides a check on Eq. (7) and illustrates its use.

Let us now address the problem posed at the beginning of
this paper: what is the distribution P(A) of solid angles
enclosed by a diffusing particle on a unit spheres Unlike the
planar case, P(Q) is a periodic function with period 4m.
The generating function Pg of the distribution of solid angles
is given by

t4m gO
dAP(Q)e' 2Pg=

Jo

where Z(B) is the partition function (Z(B)
= Tr{exp[ —pH(B)])) for a quantum particle of charge e in a
homogeneous magnetic field B at an inverse temperature

p. This is the central result of this paper and it relates
Brownian motion and magnetism. As the reader can easily
verify, the relation (7) holds even if there is an arbitrary
biasing potential. The plane can also be replaced by a sphere
or (R ), the configuration space of N particles in (R ). In
the last case, the area of interest is the sum of the weighted
areas of the projections of the closed Brownian paths onto
the x-y plane. Now we demonstrate the utility of Eq. (7) by
computing the distribution of areas for diffusion on a plane.
The partition function Z(B) for a particle of unit mass in a
constant magnetic field, is easily computed from the energies
F-„=(n+ ,')eB and degen—eracy (or the number of states per
unit area) (eB/2m) of Landau levels (throughout this paper
we set tl=c=1):

E,= [j(j +1) g—]/2,
where j, the total angular momentum quantum number
ranges from ~g~ to infinity, and the jth level is (2j+ 1)-fold
degenerate. The partition function is consequently given by

P(J(J+1)—g )
Z = g (2j+ 1)e

J= Igl

Combining (9),(10), and (11) and rearranging the summa-
tions we arrive at

1 1+(
P(Q) = Re g (21+1)

1=0

2E -p
+ 2 l(l+1)

(1—C)' (12)

where ((I,p, 0)= exp[ —I/2{p(2l+ 1)+iAj]. The function
(12) is plotted numerically for various values of p in Fig. 1.
The qualitative nature of these plots is easily understood. For
small values of P the particle tends to make small excursions
and its path encloses solid angles close to 0 or 4m and con-
sequently the plots are peaked around these two values. As
the available time p increases, other values of 0 are also
probable and the peaks tend to spread and the curves to flat-
ten out. Finally in the limit of p~~ the particle has enough
time to enclose all possible solid angles with equal probabil-
ity. These plots give the answer to the question that was
raised in the beginning of the paper.

Now we turn to the magnetic properties of spinless
bosons. An N particle system in three dimensions placed in a
homogeneous external magnetic field which is along the z
direction has the Hamiltonian

with g an integer. P(A) is expressed in terms of Pg by a
Fourier series

gQ
P(A)= g e ' 2Pg

g = —00

(9)

rather than an integral (3). Relation (7) now takes the form

Pg =Zg/Zo, (10)

where Zg is the partition function for a particle of charge e
on a sphere subject to a magnetic field created by a mono-
pole of quantized strength G =g/e (Ref. 7) at the center of
the sphere. The energy levels of this system are easily
computed:

FIG. 1. The probability distribution P(A) of solid angles for
closed random walks lasting a time P. P(Q) is plotted above for
four values of P: 0.5, 2, 5, and 10.
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p, —e (x')

a=1 ma

where A(x') is the vector potential of the external magnetic
field. V(x') includes an arbitrary interaction between the
particles as well as an external potential, m, and e, are the
masses and charges of the particles. (x',a = 1,2, . . . ,N jt are
the position vectors of the N particles. The configuration

space of the system is given by Q = (R ) /-, where—
means that we identify points in (R ) which differ by an

exchange of identical particles. For simplicity we give the

argument for N identical particles with unit mass and charge

e, =e. The argument is easily adapted to several species of
particles of arbitrary charge and mass.

Now consider a diffusion on Q biased by the potential
V(x'). The Wiener measure is now appropriately modified:

(f[ ( )]) '( )=

"P 1 dx, dx, )
~x(r)]f[x(r)]exp —

~
— g + V(x') ~ dr

Jp
(

dr dr)

dx, dx, ~I

~x( r)]exp — — g + V(x') ~ d r
Jp 2I, dr dr)

6" —=DetD" ~0 for all n. (13)

This imposes restrictions on the free energy
F(B)=—(1/p)ln Z(B) of the system in the presence of a
magnetic field B.

For the simplest nontrivial case n = 2, the inequality (13)
with B= u

&

—u2 leads to

Z(B)~Z(0) (14)

or equivalently, F(B)~F(0). Since the free energy of the
system increases in the presence of a magnetic field, the
material is diamagnetic. This universal diamagnetic behavior
of spinless bosons at all temperatures is known in the math-
ematical physics literature. "However, our approach may be
accessible to a wider community of physicists. Our approach
relating Brownian motion to magnetism enriches both fields
and provides each field with intuition derived from the

The area whose distribution we are interested in is defined as
follows: Let q(r) be a closed curve in Q. q(r) determines
trajectories of particles (x'(r), a=1,2, . . . ,N} in R . The
area functional of interest is M[q(r)]—=Z,JA(x') dx'. The
area functional has the following interpretation. If the final
positions of the N particles are the same as the initial ones
(direct processes), M[q(r)] is simply the sum of the areas
enclosed by the projection of the particle trajectories on the
(x-y) plane. If the final positions differ from the initial ones
by a permutation (exchange processes), the projections of the
particle trajectories still define closed curves on the (x-y)
plane. M[q(r)] is defined as the sum of areas enclosed by
these closed curves.

As before we find that P(B), which is the Fourier trans-
form of the distribution P(A)=—(8(M[x(r)]—

A))&~t& of ar-

eas, is given by Eq. (7). It is crucial for our argument that the
particles obey Bose statistics. Since P(A) is a probability
distribution, P(B)=Z(B)/Z(0) is the Fourier transform of a
positive function. This places strong restrictions on the par-
tition function Z(B). Let u;, i = 1, . . . ,n be n real numbers.
If one defines the n Xn matrix D~," =P(u; u;), t.he neces--

sary and sufficient condition for P(B) to be the Fourier
transform of a positive function is

other. For instance, the zero-field susceptibility
y= —8 F(B)/8B la pof the m—agnetic system is related to
the variance of the distribution of areas in the diffusion prob-
lem:

A'(B) ~ %(0). (16)

As can be seen by taking the limit B~0,
R(0)= —P (0)= —pg(0). We define a critical field

B,= m/[2p —pg(0)]. The inequality (16) implies a bound
on the partition function. Notice that P lies in a cone de-
fined by the lines of slope (rr/2B, ) g(1 —p2—) and

(7r/2B, ) g(1 —p2). It follows that

P(B)icos(»/2B. ) «i IBI~B,. (17)

The diamagnetic inequality due to Simon and Nelson" gives
an upper bound on the partition function Z(B) of a system of
spinless bosons. The new inequality stated in (17) gives us a
lower bound on Z(B) (see Fig. 2) (or equivalently, an upper
bound on the free energy).

As an explicit check on this new bound on the free energy
we considered a simple system —a charged particle in a mag-

1 e — e
g= —[lnP(B)] I~ p= ——(A —A) = ——VarA~O. (15)

p
B=p

p

It is curious that the zero-field susceptibility can be inter-
preted as the variance of the distribution of areas. Since the
variance cannot be negative, it follows that y, the zero-field
susceptibility cannot be positive and so these systems are
diamagnetic.

Next consider the case n=3. The 3X3 matrix D,, will
then be a function of u=ui —uz and u=u2 —us (u, —u3,
being expressible in terms of u and u). If we set u = 0 (i.e.,
set ui=u2=0, u3= —v), we find that b l(u, v)l„-p=0. It
then follows from the inequality (13) that b, t31(u, u) has a
minimum at u =0 for all U. This implies that
8 b, /Bu „p, 8~0. Defining the function

'@(B)=P [1 P] ', where —the prime means derivative
with respect to the magnetic field, we find
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FIG. 2. The region forbidden by the bounds [inequalities (14)
and (18)]on the partition function. These bounds are shown as solid
lines. The dotted curve is the partition function for a charged simple
harmonic oscillator in an external magnetic field. Notice that the

dotted curve lies outside the forbidden region.

netic field subject to a harmonic oscillator potential. The cal-
culated partition function of this system is close to, but above
the lower bound set by (17). Needless to say, our bound is
derived for an arbitrary interacting system of spinless
bosons. The new bound presented here along with the earlier
(14) diamagnetic inequality" places strong restrictions on
the partition function of a bosonic system in the presence of
a magnetic field. We find a curious and immediate conse-
quence of these restrictions: if the zero-field susceptibility of
the system vanishes, then Eqs. (14) and (17) imply that Z(B)
=Z(0), i.e., the system is nonmagnetic at all fields.

The key result of this paper is a connection between two
apparently distinct classes of problems —Brownian motion
and magnetism. This allows us to compute the distribution of
solid angles enclosed in Brownian motion on a sphere. As
mentioned earlier, this problem comes up when computing

the distribution of Berry phases in a random magnetic field.
A more classical context is depolarized light scattering. As is
well known, a light ray following a space curve picks up a
geometric phase, ' ' equal to the solid angle swept out by
the direction vector. If a light ray inelastically scatters off a
random medium, its direction vector does a random walk on
the unit sphere of directions. The distribution P(Q) com-
puted here is relevant to the extent of depolarization in such
an experiment. '

In the domain of magnetism we find an independent way
of arriving at the diamagnetic inequality ' which states that
the free energy of a system of spinless bosons always in-
creases in the presence of a magnetic field. Spinless charged
bosonic systems occur in the context of superconductors
(which are perfect diamagnets) and neutron stars. ' We be-
lieve that the community of physicists working in these areas
may not be aware of the general results available in the
mathematical literature. For instance, the diamagnetism of
bosons may be relevant' to the interpretation of recent
experiments' on high-T, superconductivity.

Throughout this paper we have only discussed homoge-
neous magnetic fields. It is easy to generalize our discussion
to take into account arbitrary inhomogeneous fields: all one
does is consider the distribution of weighted areas. An obvi-
ous application of this is the computation of the probability
of entanglement of a polymer with a background lattice of
polymers. We expect the new method outlined here to shed
light on open problems in polymer entanglement involving
more complicated configurations of polymers than the sim-
plest one solved so far. One can also use the relation (7) to
compute the distribution of winding numbers in diffusion in
a multiply connected space.

It is a pleasure to thank N. Kumar for bringing up the
problem of diffusion on a sphere and several discussions on
this work; Barry Simon for his help in finding Ref. 11; Dip-
timan Sen for discussions and for giving us Ref. 8, and R.
Nityananda for discussions and drawing our attention to Ref.
10.
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