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The critical properties of the diluted Potts model on diamond-type hierarchical lattices of different
fractal dimensions were studied recently by Wu et al. [Phys. Rev. B 4$, 3171 (1993)j. Although
the aim of the paper is very interesting, we show in this comment that the Sxed bimodal bond-
probability distribution used in their renormalization-group work is not appropriate to deal with
this disordered model. Such treatment violates the Harris criterion and may lead to spurious results.
We point out that the correct way to deal with randomness is to rescale the full distribution and
take its second xnoment as an additional parameter. We use this method and 6nd that the critical
properties are different from those which Wu et al. predicted.

An important question in the 6eld of critical phenom-
ena is how the properties of a system near its critical
points and its critical exponents are affected by quenched
bond disorder. A fundamental advance in the study
of criticality under randomness was achieved with the
physical arguxnent due to Harris. The Harris criterion
predicts that when the speci6c-heat exponent o. of the
pure systexn is positive, the disorder will change the crit-
ical regime of the pure systexn; if o. is negative the ran-
doxnness does not affect the critical behavior. A simple
way of expressing this criterion, in the language of the
renormalization-group theory, is that when n & 0 the
pure fixed point becomes unstable, causing the How along
the critical boundary be in the direction of a new ran-
doxn 6xed point. The new critical point will control the
critical behavior of the system.

The use of the Migdal-Kadanoff renormalization-group
method to study pure and disordered systems is not
new. 2 4 It is a very simple method and contains several
important features, which are comxnon to all real-space
renormalization-group (RSRG) approaches. For the pure
systems it gives approximate results for Bravais lattices,
but it was realized5 that one can construct some scale-
invariant lattices (called hierarchical lattices), on which
the Migdal-KadanofF method gives exact results. For this
reason hierarchical lattices have received much attention
in the field of phase transition and critical phenomena.

The RSRG method is particulary suitable for critical
properties of systems with quenched randomness, since
the position space formulation can deal directly with lo-
cal bond disorder. The simplest model of a disordered
system is de6ned by a probability distribution of the
nearest-neighbor interaction. With the Migdal-Kadanoff
method, one can write the recursion relations, which

the probability distributions of the Hamiltonian param-
eters evolve along the renormalization proccess. How-
ever, the space, of a probability distribution is an in6nite-
dimensional space and it is a very difficult mathematical
problem to obtain a fixed (scale-invariant) distribution.
This problem had ixnportant advances ten years ago by
the work of Andelman and Berker, who derived a true
fixed-point distribution using numerical methods and by
Derrida and Gardner, who used a weak-disorder expan-
sion to calculate analytically the random fixed points
and their associated critical exponents. Both works were
performed on the Potts model on diaxnond hierarchi-
cal (Berker) lattices with random exchange interaction.
Later da Cruz and Stinchcombeo elucidated the violation
of the Harris criterion~ on the bond-diluted Potts model
on the Berker lattice: they also argued that it is neces-
sary to allow the bond probability distribution to evolve,
under length scaling, even if one starts with a binary
form.

Very recently, Wu, Xin, and Yang, studied the phase
diagram of the bond-diluted Potts model on a fractal
family of diamond-type hierarchical lattices. The paper
has a very interesting purpose, namely, whether the &ac-
tal dixnension and other geometrical features of the dif-
ferent lattices and, in particular, for Df ) 2 and Df & 2
has some efFect on the disordered Potts xnodel critical-
ity. However, they used a two-delta function for the ini-
tial distribution (bimodal distribution), which are not
allowed to evolve, and replace the renormalized distribu-
tion by another two-delta function, which has only the
saxne first moment. As discussed in Refs. 8 and 9, it is
not easy to estimate the accuracy of this approximation
and, which is more serious, whether some efFects are gain
or lost.
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TABLE I. The RG numerical results of the 6xed points and critical exponents for the M = 2
and L = 3 (Dy = 1.63) lattice. The critical value u* is the position of the random fixed point.
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(2)

which is defined in the range 0 & uz & l.
On the other hand, for p )p„where p is the concentra-

tion of present bond and p, the geometrical percolation
critical value, starting the RSRG iteration with a bimodal
distribution, the weight of the delta function of the miss-
ing bonds (K;~ = 0 or u~ = 0) will always decrease and
eventually go to zero. Therefore, the properties of the
diluted system for p ) p, cannot be appropriately de-
scribed by a diluted fixed point as in Ref. 10. Since the
random fixed point is located in the p = 1 (no missing
bonds) region, it is suflicient to use any continuous dis-
tribution with zero weight in K,~

= 0. ' We choose to
start with a Gaussian probability distribution

1 (u, —u)'
exp

/2mu'

where u = (u&) is the mean value and u = (u2) —(uz) 2

is the width of the probability distribution.
In order to test the method, we made a calculation on

the Berker lattice (Dy = 2). In agreement with Refs. 8
and 9, we found that the critical exponent n vanishes

In order to check on the predictions of Wu, Xin, and
Yang, we perform calculations on the same lattices.
They defined diamond-type lattices with M branches of
I bonds per branch. Thus we study the Berker lattice
(Df = 2), the M = 2, L = 3 lattice (Df ——1.63), the
M = 3, I = 2 lattice (Df = 2.58), and the Wheatstone
bridge lattice. The model is defined by the following
Hamiltonian:

pH =—) K;~b(0;, 0, ),
(ij)

where K;~ is the exchange coupling between spins in
nearest-neighbor sites and u = 1, 2, 3, . . . , q are the pos-
sible spin values. It is common practice to introduce the
following variable

at qo
——6.8. For q & qo, n is positive and the system

exhibits crossover to a new critical region dominated by
the random fixed point. We also performed calculations
on the Wheatstone bridge lattice (Df = 2.32) and ob-
tained qo 5.8. To make comparison with the paper
of Wu, Xin, and Yang, we summarize our results for
the M = 2 and L = 3 lattice (Df = 1.63), and M = 3
and L = 2 lattice (Df = 2.58) in Table I and Table II,
respectively. We present results for just a few values of q
around qo 11.1, where the critical exponent n changes
sign. The critical value u' is the pure fixed point, and
A„and v„are the eigenvalue and correlation length ex-
ponent relevant to the variable u. We also show the po-
sition of the random fixed point u*, which is associated
with the second moment (root mean square) of the bond
probability distribution.

In the Df ——1.63 lattice, the system criticality is dom-
inated by the random fixed point, only for q ) 11.1, in
accord with the Harris criterion. For lower values of q our
results for u* and for the critical indices A„and v„agree
with the calculations of Wu, Xin, and Yang. The main
difference is that they claim that the system must cross
over to a region dominated by a diluted fixed point for

q ) 2.38 (for M = 2 and L = 3 ). However, we can use
the hyperscale relation o. = 2 —vaf to demonstrate that
their results violate the fundamental Harris criterion.

For the M = 3 and I = 2 lattice, they found also
a diluted fixed point at q = 6.34. As for the previous
lattice (Dy ——1.63), this change of critical behavior also
violates the Harris criterion. Furthermore, they found a
tricritical point with mixed behavior, which they claim
to be a particular property of the model on this type of
kactal, In our calculations we did not find any indication
of such diferent critical behavior. We found again that
for q & 11.1 the system is dominated by the pure fixed
point and for q & 11.1 by the random exchange fixed
point. These results are summarized in Table II, which
also shows that the random Potts model on both lattices
have the same critical behavior.

In summary, we demonstrated by specific comparison,
that the bimodal distribution commonly used to deal
with diluted systems must also {as an additional pa-

TABLE II. The numerical results for the M = 3 and I = 2 (D~ ——2.58) lattice.
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rameter) evolve under renormalization-group iterations.
When one forces the probability distribution to maintain
its bimodal form (as an additional approximation), as in
the paper of Wu, Xin, and Yang, some spurious crit-
ical behavior xnay be introduced, and the basic Harris
criterion is strongly violated. In this comxnent we show
the corrected way to deal with dilution and bond ran-
doxnness in a general xnanner following along the lines of

Refs. 7, 8, and 9. We also performed specific calculations
and found that the two lattices studied by Wu, Xing, and
Yang have the same critical properties if the disorder is
treated exactly as we do here and that in this case the
Harris criterion is not violated.
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cial support.
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