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Transverse ac susceptibility ef strips and disks with complex linear resistivity
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The linear ac susceptibility in a transverse magnetic ac 6eld is calculated for thin strips and disks
with arbitrary complex resistivity p, (sr). The exact result is approximated with high precision by
a finite sum. This analytic expression allows one to extract p, (cu) from contact-free magnetic
measurements on high-T, superconductors in search for scaling laws and phase transitions. As an
example the susceptibility of a superconducting disk with pinning and thermally assisted Bux Bow
is given.

The linear ac resistivity p, of high-T, superconduc-
tors (HTSC's) observed in a certain range of applied
fields H and temperatures T may be used to investi-
gate pinning and viscous motion of Abrikosov vortices
and to search for predicted phase transitions and scal-
ing properties. i Preferably, p, (io) should be measured
by a contact-&ee method via the magnetic response of a
HTSC platelet or 61m to a small perpendicular ac 6eld
Hpe' . This transverse geometry yields much larger sig-
nals than the demagnetization-kee longitudinal geome-
try. However, as yet no theory has been given which
would allow to extract p, (ur) from the transverse ac sus-
ceptibility g(ai) = p(ur) —1 of realistic specimens with
6nite size and constant thickness, ' 3 which in general
divers &om the ac susceptibility of ellipsoids considered
recent. '~ The present paper fills this gap, presenting
the transverse susceptibility of long strips and circular
disks as a function of the complex ac resistivity p, (io).
With this result, extraction of p, (io) from the measured
complex p(or) is readily performed by inverting this rela-
tionship.

In longitudinal geometry, the linear response is known.
For slabs of thickness 2a and cylinders of radius a in a
parallel ac field one has the permeabilities

Formulas (1)—(4) are obtained from the difFusion equa-
tion Bj /Bt = (p/pp) V' j for the current density j (r, t) us-

ing appropriate boundary conditions and the de6nition

p(~) = 1+y((u) = 1 —M(~o)/M(o~ m oo),

1

J(y, ai) = tp 2n.y+ It(y, u) J(u, io) du
p

(6)

where m(or) = —
2 fj(r, ur) x r d r = VHpM(u) is the

magnetic moment of the specimen of volume V.
To determine the magnetic moment of thin specimens

of thickness d in a perpendicular ac Geld Hpe' we have
to solve an integral equation which describes nonlocal
diffusion of the sheet current J(y, z) = j(y, z)d; here
complete penetration ]b] ) d will be assumed, equiva-
lent to u ( 2]p, ~/ppd2. This integral equation follows

by inserting the nonlocal relation between J(y, z) and the
perpendicular field H (y, z) it generates (Ampere's law)
into the induction law V x E = —B using the material
laws E = p J and B = ppH (for nonmagnetic materi-
als). For disks of radius a (r ( a) and strips of half width
a (~y~ ( a) this integral equation is one dimensiona-l, i2'

p,.i b(ai) = tanh(u)/u,

,r)(~) = 2Ii(u)/uIp(u), (2)

1

J(r, oi) = tp 7rr+ Q(r, u) J(u, (u) du
p

where Ip(u) and Ii(u) = Ip(u) are modified Bessel func-
tions and

ad
2vrA2

xldadpp
2n.p, (~)

(8)

64 b2gg 2 + d2p
prect(iL ) =

vr4 ~ ~ b2p2 + d2v2 +is)m2pp/p, (4)

(p, v = 1, 3, 5, ...), yielding (1) in the limit b )) d = 2a.

u = a/A, = [i~a pp/p, (io)] ~

The complex ac penetration depth A, = (p, /iupp) ~

is related to the skin depth b = (2p/ppai) ~, which
is real for real (Ohmic) p, by A, = (1 —i)b/2 or

= (1+ i)b . In terms of the relaxation time Tp ——

4a pp/n2p, (ur) of the slab one has u = (m2/4)iiorp.
p, i~b(oi) [Eq. (1)] is a special case of the longitudinal per-
meability of a bar with rectangular cross section b x d,

Here the length unit a and field unit Hp are chosen to
obtain a dimensionless prefactor tp [Eq. (8)], which is the
only parameter of our theory. In the Ohmic case, p, = p
is real; thus m is purely imaginary even as the longitu-
dinal parameter u [Eq. (3)], and r(oi) = adpp/2xp is
a real relaxation time. In the Meissner state or for rigid
pinning, A, = A is real (magnetic penetration depth),
and thus m and u are real and &equency indepen-
dent. The integral kernels in (6) and (7) are K(y, u) =
ln](y —u)/(y+ u)[ for the strip and Q(r, u) = —q(r/u)
for the disk, with

~(~) =
(1 —2x cos P + x2) i&2
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Disk

1

f (y) = —A J Ic(y, u) a du, (io)

ne gets J(y, u)) = g„a„(cu)f„(y) withone gets J y, u tm(w)

b- = f-(y)ydy,-( ) = I+./~.

M(~) = 2 J(y, (u)y y =M ~ = d =2 a„(~)b„.
0

(12) Im( p)

a„(ur) f„(r) withI f the disk J(r, ~) = P„a„uSimilarly, or

1

f-(r) = —-= —A Q(r, u) f„(u) du, (i3)
1

b„= f„(r)r dr,
0

-"= 1+./~.

dr = x) a„(oi)b„.M((u) = ir J(r, ur)r r = oi b
0

(14)

rmalities old for the strip andnd disk,

1,
' () -()

one obtains p and y = p —1 in

~( ) =)-~.+.
. c„/A„

(i6)

2 2p = 1 —(4/3)io+ 2'
p = (2/vr w) in(16.2') (strip,

37r /32)io+ (7r /10)ur
—(3/ ) In(11.3') is

e w = ix (x = ~r = ua poew=ix x= = d 2mp) thisIn the Ohmic case w = ix x =
means p x

( . *)]/*( pi an(ip x
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+VXFF + ~
Pac(~) = PFF

OFF + Nd
(23)

grid and the diagonal terms K~& [Eq. (21)] and Q~z [Eq.
(22)], are chosen to maximize the accuracy of the sums

1
which approximate integrals like J f(y) dy = Pf;m; or

j K(y;, u) f(u) du = gK;~ f~ with an error N even
when f'(y = 1) ln(1 —y) diverges at the edge.

The matrices K,.~ and Q;i have exactly N eigenvalues
A„and N eigenfunctions f„In.serting these into (11)
and (14) one gets the coefficients b„and the N ampli-
tudes c„entering the sums (16) for p, and y; see Table
I. The finite sums obtained in this way present the ex-
act solution of the discretized problem and are very good
approximations to the original problem, the magnetic re-
sponse of strips and disks. For example, in the Ohmic
case p, (ur) = p the choice N = 4 (6, 10, 16, 20) yields

p = p' —ip" with relative deviation of less than 2%
up to high frequencies x = [tv[ = [~[a = 30 (60, 100,
300, 1000), except near the poles to = A„. This may be
checked &om the asymptotic expressions (17) and (18).
Notice that the condition for full transverse penetration
([b[ ) d) means z = [~[7 ( ajd7r; thus, large z values
apply only to thin films.

To illustrate how the permeability of a strip or disk
may look like when a frequency-dependent resistivity is
inserted, I consider the model resistivity

0
0.00 '. 0.01 0. 1 10 100 1000

which has been derived for HTSC's in three di6'erent

FIG. 2. The transverse permeability p(u) = p,
' —iy," of

a superconducting disk with complex resistivity [Eq. (23)]
which models thermally assisted Bux How, pinning, and free
fiux fiow, yielding ts = iu(p+iu)/(q+iu) [Eq. (24)]. Param-
eters of this example are p = 1, 2, 4, 8, 16,32, 64, 128, 256 and

q = 0.1. Also shown is p(u) for an Ohmic disk with m = iu
(bold solid line) and its approximation [Eqs. (19), (20)] (bold
dashed line). Time unit is r~ = addio/2s'pFF.

Strip Disk

TABLE I. Positions of the poles A„and amplitudes c„
entering the transverse susceptibility [Eq. (16)] of strips and
circular disks for N = 20. With these numbers inserted, the
finite sum (16) approximates the complex functions p and y of
the complex argument w = i~7 [Eq. (8)] with high precision
up to ]m] —1000. Notice the close similarity of the numbers
for strips and disks.

(d7 =CA~ ~A
I show now how the amplitudes c„and eigenvalues A„

may be calculated and how the infinite sum (16) can
be approximated with high precision by a finite sum of
N terms (n = 1, . . . , N). After discretizing the contin-
uous variables y, r, and u as described in Ref. 13, the
eigenvalue problems (10) and (13) are equivalent to the
diagonalization of an N x N matrix K;~ or Q;~ defined
by

, K~~ = m~ ln
4xu&

0.923 63toi
Q~, =to~ ln '. 22

2Ã'B~

Here the u; = u(z;) span a nonequidistant grid obtained
by inserting equidistant x; = (i —z)/N (i = 1, . . . , N)
into an appropriate substitution function, e.g. , u(x)
(35x —35x + 21zs —5x )/16, which yields a weight
function tv(x) = u'(x) = (35/16)(1 —x ) and weights
to; = vu(x;)/N vanishing at the edge x = u = 1. This

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A„
0.638523
1.629850
2.618692
3.589607
4.523368
5.391483
6.142144
6.623936
7.199416
8.238317
9.799197
12.14073
15.76635
21.68446
32.10710
52.56298
99.72189
240.8422
937.0992
16278.65

cn

0.509196
0.158763
0.090685
0.061974
0.045581
O.Q34153
0.023513
0.012743
0.024916
0.033578
0.041631
0.050459
0.060820
0.073688
O.OS0618
0.114443
0.151083
D.21551D
0.3604S3
1.024858

A

0.876827
1.874281
2.866420
3.841950
4.783496
5.664069
6.446688
7.207646
8.099109
8.251990
9.809897
12.15068
15.77640
21.69528
32.11S42
52.57783
99.74098
240.8689
S37.1396
16278.61

Cn

0.635477
0.232998
0.137091
0.094590
0.070120
0.052806
0.040108
0.041054
O.Q00342
0.052417
0.065132
O.Q78494
0.094003
0.113146
0.138270
0.173639
0.228158
0.324328
Q.541420
1.539020
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'TFF + NcJ
lO = ZCd7~

TAFF +
@+i'

or m=i~
g+ t(d

(24)

where in the second version w~ —— adpo/(2mpFF) is
the time unit, yielding two dimensionless parameters
p = w~/~F = ad/(2vrA&) and q = 7~/rTgFF
p exp( —U/kT) « p. Figure 2 shows the resulting per-
rneabilities p, (u) = p' —ip" of a disk for the examples

ways ' ' and which means that the Qux-line lattice in
a periodic or random3 5 pinning potential behaves vis-
coelastically: At high frequencies ur )) OFF ——a1, /tI (o.l,
= Labusch parameter and g are the pinning-caused
elastic and the viscous restoring forces per unit volume
of the Hux-line lattice, respectively), and p, equals the
Ohinic resistivity pFF = B /tl of free Hux How. At low

~ &«T„'» ——~FF'exp( —U/kT) && ~FF', thermally»-
sisted Hux How (TAFF) Ref. (4) again leads to Ohmic re-
sistivity p, (u) = pT~FF = pFF exp( —U/kT) && pFF. At
intermediate frequencies, the imaginary part of p, dom-
inates due to elastic pinning, and A, (u) becomes real
and frequency independent, equal to Campbell's pene-
tration depth A~ = (B2/aL, po)i~2. is A difFerent model
p, (ur) follows from vortex-glass scaling. e i With (23)
inserted, the complex variable m (8) becomes

q = 0.1 and p = 1, 2, 4, 8, . . . , 256. Note the two peaks in
the dissipative part p" (u), which are caused by thermally
activated and normal Aux How.

In conclusion, the linear susceptibilities g(u) or per-
meabilities y, (w) = 1 + y were calculated for strips and
disks in perpendicular ac magnetic field as functions of
the complex resistivity p, (u). The asymptotic behavior
at high frequencies is p(w) (p, /ice) ln(iu/p, ) [(16)—
(18)] while longitudinal permeabilities exhibit p, (u)
(p, /ice) ~ [(1)—(4)]. The exact infinite sums (16) are
approximated with high precision by finite sums. An ex-
ample demonstrates the nontrivial frequency dependence
of p, (ur) in HTSC's with pinning and thermally assisted
Hux flow. The coefficients [Eqs. (11)and (14)] (which fol-
low from Table I) and the general p(u) [Eq. (16)] allow
one to calculate the current distribution and the linear
response for arbitrary time-dependent applied field H (t)
by Fourier transformation. This linear response should
be compared with the nonlinear magnetic response of su-
perconducting disks and strips with strong pinning
in a perpendicular field, for which analytical solutions
were obtained recently.

I am grateful to 3. Kotzler and A. Gurevich for inspir-
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