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Transverse ac susceptibility of strips and disks with complex linear resistivity
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The linear ac susceptibility in a transverse magnetic ac field is calculated for thin strips and disks
with arbitrary complex resistivity pac(w). The exact result is approximated with high precision by
a finite sum. This analytic expression allows one to extract pac(w) from contact-free magnetic
measurements on high-T. superconductors in search for scaling laws and phase transitions. As an
example the susceptibility of a superconducting disk with pinning and thermally assisted flux flow

is given.

The linear ac resistivity p,. of high-T. superconduc-
tors (HTSC’s) observed in a certain range of applied
fields H, and temperatures 7' may be used to investi-
gate pinning and viscous motion of Abrikosov vortices!™®
and to search for predicted phase transitions and scal-
ing properties.6 11 Preferably, p,.(w) should be measured
by a contact-free method via the magnetic response of a
HTSC platelet or film to a small perpendicular ac field
Hoe™t. This transverse geometry yields much larger sig-
nals than the demagnetization-free longitudinal geome-
try. However, as yet no theory has been given which
would allow to extract p,c(w) from the transverse ac sus-
ceptibility x(w) = p(w) — 1 of realistic specimens with
finite size and constant thickness,'>'3 which in general
differs from the ac susceptibility of ellipsoids considered
recent.'®15 The present paper fills this gap, presenting
the transverse susceptibility of long strips and circular
disks as a function of the complex ac resistivity pac(w).
With this result, extraction of p,c(w) from the measured
complex p(w) is readily performed by inverting this rela-
tionship.

In longitudinal geometry, the linear response is known.
For slabs of thickness 2a and cylinders of radius a in a

parallel ac field one has the permeabilities3™
Uslab(w) = tanh(u)/u, (1)
Hcyl (UJ) = 211 (’U,)/’U.Io(’u) , (2)

where Io(u) and I;(u) = Ij(u) are modified Bessel func-
tions and

u = a/ M = [waHo/pac()]/?. (3)

The complex ac penetration depth A, = (pac/iwpo)/?
is related to the skin depth § = (2p/pow)/?, which
is real for real (Ohmic) p, by Aac = (1 — 4)§/2 or
Azt = (1 +14)671. In terms of the relaxation time 7o =
4a®po/m%pac(w) of the slab one has u? = (72/4)iwT.
tstab(w) [Eq. (1)] is a special case of the longitudinal per-
meability of a bar with rectangular cross section b x d,3

64 B2y=2 4 d2pu—?
/-l'rect(w) =2 3 4
m zu: g b2p? + d?v? 4 iwn? o/ pac )

(, v =1, 3,5, ..), yielding (1) in the limit b > d = 2a.
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Formulas (1)—(4) are obtained from the diffusion equa-
tion 8j/8t = (p/po)V?j for the current density j(r,t) us-
ing appropriate boundary conditions and the definition

) = 1+ x() =1~ M(w)/M(w = ),  (5)

where m(w) = —3 [j(r,w) x rd®* = VHoM(w) is the
magnetic moment of the specimen of volume V.

To determine the magnetic moment of thin specimens
of thickness d in a perpendicular ac field Hype'? we have
to solve an integral equation which describes nonlocal
diffusion of the sheet current J(y,z) = j(y, z)d; here
complete penetration |§| > d will be assumed, equiva-
lent to w < 2|pac|/pod?. This integral equation follows
by inserting the nonlocal relation between J(y, z) and the
perpendicular field H,(y, z) it generates (Ampere’s law)
into the induction law V x E = —B using the material
laws E = p,.j and B = poH (for nonmagnetic materi-
als). For disks of radius a (r < a) and strips of half width

a (Jy| < a) this integral equation is one-dimensional,'%13
1

J(y,w) =w [27ry +/ K(y,u) J(u,w) du] , (6)

0

1
J(r,w) =w [7r7' +/ Q(r,u) J(u,w) du] , (7

0

w ad twadiio = wT(w). (8)

= 2w A2, - 27 pac(w)

Here the length unit ¢ and field unit Hy are chosen to
obtain a dimensionless prefactor w [Eq. (8)], which is the
only parameter of our theory. In the Ohmic case, p,. = p
is real; thus w is purely imaginary even as the longitu-
dinal parameter u? [Eq. (3)], and 7(w) = aduo/27p is
a real relaxation time. In the Meissner state or for rigid
pinning, A,c = A is real (magnetic penetration depth),
and thus w and u? are real and frequency indepen-
dent. The integral kernels in (6) and (7) are K (y,u) =
In|(y — w)/(y + u)| for the strip and Q(r,u) = —q(r/u)
for the disk, with

cos ¢

9(@) = /0 (1 —2zcos¢ + z2)1/2 d¢. (9)
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The integral (9) may be computed and tabulated, or ex-
pressed by complete elliptic integrals.!3

Expanding J(y,w) in terms of the eigenfunctions f,(y)
of the eigenvalue problem for the strip,

fal) = —An / K(y,u) fa(u) du, (10)

one gets J(y,w) = Y, an(w)fna(y) with

Similarly, for the disk J(r,w) = Y, an(w)fn(r) with

fulr) = —An, /0 Q(r,u) fu(u) du, (13)

() = Twb,
Gl —1+w/An’

M(w) = W/; J(rw)rtdr =) an(w)bs . (15)

b, =A fn(r)r2dr, (14)

Different orthonormalities hold for the strip and disk,

S @) fm@) dy = [} fa(r) fm(r)rdr = Smp. Finally,
one obtains p and x = g — 1 in the form (Fig. 1)

Cpn Cn An
u(w)zzA ot Cn/An

— An +w ’
with ¢, = 4b2AZ for the strip and c, = (37%/8)b2A2
for the disk. From p(0) = 1 and u(co) = 0 follow
sum rules for the strip (disk), Y62 = 1/3 (1/4) and
S"b2A, = 1/4 (8/3w?). From the asymptotics below we
further find Y b2 /A, = 1/2 (4/15). For n >> 1 one has
b2 ~ 1/2n2%n3 (8/7*n3) and c, ~ 2/7%n (3/n%n) since
for alln = 1,2,... the eigenvalues are A,, ~ A; +n — 1.
Here A; = 0.63857 (0.876 87) is the lowest eigenvalue,
which also determines the transverse relaxation time of
an Ohmic strip or disk, 7o = adpo/(2mpA,).1213
Using physical arguments related to the dissipation at
low and high frequencies,'® one obtains the asymptotic
behavior of the complex p(w) at jw| < 1 and |w| > 1:

x(w) = —w (16)

p1—(4/3)w+ 2w?,

p =~ (2/m*w) In(16.2w)  (strip), (17)
p=1—(3r2/32)w + (v?/10)w?,

p =~ (3/m*w) In(11.3w)  (disk). (18)

In the Ohmic case w = iz (z = wT = wadpo/27p) this
means p(z € 1) = 1 —2z? — Jiz, pu(z > 1) = [1 -
2{1n(16.2z)] /7 (strip) and p(z< 1) = 1— 11'%:1:2 -3,
p(x>1) = [1 — 24In(11.3z))3/2nz (disk). Using this
asymptotic behavior one may construct an excellent ap-
proximation for all z, with an error less than 1.6% (Fig.

2)’
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FIG. 1. Real (top) and imaginary (bottom) parts of the
permeability 4 = p’ — ip” [Eq. (16)] of a circular disk in
transverse magnetic field as functions of the complex variable
w = twTt(w) [Eq. (8)] from w = —4.6 — 2.17 (right corner)
to w = 0.6 + 2.7z (left corner). The line spacing is 0.1. The
scale may also be seen from the positions of the poles in Eq.
(16). The peaks are cut off at heights +2. The cross sections
yielding the Ohmic case w = iw are marked by crosses.

pl—c + (cf + c27r2m2)1/2]_1 , (19)
2 -1
" C3 C4TT"T ]
~|2 4y . 20
H [m+ln(l+z2)+cs (20)

where for the strip (disk) ¢; = 72/4 (20/9), co = 1 (4/9),
c3 = 3/4 (32/37%), ¢4 = 1 (2/3), and cs = 5.57 =
2In16.2 (4.85 = 2In11.3). Notice that these approx-
imations contain no fit parameter except for c¢s, which
was fitted at w — oco. The Ohmic dissipation has a peak
p” = 0.4488 at z = 1.108 (strip) and p” = 0.4411 at
z=1.169 (disk).

The general result (16) expresses u(w) as an infinite
sum (n = 1,...,00) of terms which have first order poles
at real positions A,, in the complex w plane, or at com-
plex positions in the w plane since w = iwt(w) [Eq. (8)],
(Fig. 1). Similarly, the above longitudinal permeabili-
ties may be expressed as sums of the form (16), namely,
Hslab [Eq (1)] by putting ¢, = 2 and A, = 7T2(7‘L - %)2’
and pey1 [Eq. (2)] by putting ¢, = 4 and A, = z2,
where z, &~ m(n— 3) 4 [87(n — })] 7! are the zeros of the
Bessel function Jo(z); in both cases w = u? [Eq. (3)].
This means that, in contrast to the transverse perme-
abilities of the strip and disk [Eq. (16)], which in the wr
plane have nearly equidistant poles at wr = iA,, = ni,
the longitudinal permeabilities of the slab [Eq. (1)] and
cylinder [Eq. (2)] have poles at nonequidistant points
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FIG. 2. The transverse permeability u(w) = u' — iu” of
a superconducting disk with complex resistivity [Eq. (23)]
which models thermally assisted flux flow, pinning, and free
flux flow, yielding w = iw(p+iw)/(¢+iw) [Eq. (24)]. Param-
eters of this example are p = 1, 2,4, 8,16, 32,64, 128,256 and
g = 0.1. Also shown is p(w) for an Ohmic disk with w = iw
(bold solid line) and its approximation [Egs. (19), (20)] (bold
dashed line). Time unit is 7. = adpo/27prF.

wT = A, =~ n?i.

I show now how the amplitudes ¢, and eigenvalues A,
may be calculated and how the infinite sum (16) can
be approximated with high precision by a finite sum of
N terms (n = 1,...,N). After discretizing the contin-
uous variables y, r, and u as described in Ref. 13, the
eigenvalue problems (10) and (13) are equivalent to the
diagonalization of an N x N matrix K;; or Q;; defined
by

Ui — Uz
Ui + uj

Ki;éj = 'wj ln

ws
K;; =w;1 J 21
), ji = Wj n41mj1 (21)

Uu; 0.923 63w,
Qizj = —wjg (u—) ) Qjj = wj 1112—]

7

. (22)
Here the u; = u(x;) span a nonequidistant grid obtained
by inserting equidistant x; = (: — )/N (i = 1,...,N)
into an appropriate substitution function, e.g., u(z) =
(35 — 35z® + 21z® — 527)/16, which yields a weight
function w(z) = v'(z) = (35/16)(1 — z2)3 and weights
w; = w(z;)/N vanishing at the edge z = v = 1. This
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grid and the diagonal terms Kj;; [Eq. (21)] and Q;; [Eq.
(22)], are chosen to maximize the accuracy of the sums
which approximate integrals like fol fly)dy = 3 fiw; or
folK(yi,u)f(u) du =~ Y K;; f; with an error ~ N~2 even
when f'(y = 1) ~ In(1 — y) diverges at the edge.

The matrices K;; and Q;; have exactly IV eigenvalues
A, and N eigenfunctions f,. Inserting these into (11)
and (14) one gets the coefficients b, and the N ampli-
tudes c, entering the sums (16) for 1 and x; see Table
I. The finite sums obtained in this way present the ex-
act solution of the discretized problem and are very good
approximations to the original problem, the magnetic re-
sponse of strips and disks. For example, in the Ohmic
case pac(w) = p the choice N = 4 (6, 10, 16, 20) yields
uw = p' — iy” with relative deviation of less than 2%
up to high frequencies z = |w| = |w|r = 30 (60, 100,
300, 1000), except near the poles w = A,,. This may be
checked from the asymptotic expressions (17) and (18).
Notice that the condition for full transverse penetration
(I6] > d) means ¢ = |w|T < a/dm; thus, large z values
apply only to thin films.

To illustrate how the permeability of a strip or disk
may look like when a frequency-dependent resistivity is
inserted, I consider the model resistivity

-1 .
TrAFF T W
—1 .
Tpr + W

which has been derived for HTSC’s in three different

Pac(w) = pFF (23)

TABLE I. Positions of the poles A, and amplitudes c,
entering the transverse susceptibility [Eq. (16)] of strips and
circular disks for N = 20. With these numbers inserted, the
finite sum (16) approximates the complex functions y and x of
the complex argument w = iwr [Eq. (8)] with high precision
up to |w| ~ 1000. Notice the close similarity of the numbers
for strips and disks.

Strip Disk

n An Cn An Cn

1 0.638523 0.509196 0.876827 0.635477
2 1.629850 0.158763 1.874281 0.232998
3 2.618692 0.090685 2.866420 0.137091
4 3.589607 0.061974 3.841950 0.094590
5 4.523368 0.045581 4.783496 0.070120
6 5.391483 0.034153 5.664069 0.052806
7 6.142144 0.023513 6.446688 0.040108
8 6.623936 0.012743 7.207646 0.041054
9 7.199416 0.024916 8.099109 0.000342
10 8.238317 0.033578 8.251990 0.052417
11 9.799197 0.041631 9.809897 0.065132
12 12.14073 0.050459 12.15068 0.078494
13 15.76635 0.060820 15.77640 0.094003
14 21.68446 0.073688 21.69528 0.113146
15 32.10710 0.090618 32.11942 0.138270
16 52.56298 0.114443 52.57783 0.173639
17 99.72189 0.151083 99.74098 0.228158
18 240.8422 0.215510 240.8689 0.324328
19 937.0992 0.360493 937.1396 0.541420
20 16278.65 1.024858 16278.61 1.539020
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ways>35 and which means that the flux-line lattice in

a periodic? or random®® pinning potential behaves vis-
coelastically: At high frequencies w > Top = ar/n (ar
= Labusch parameter'® and 7 are the pinning-caused
elastic and the viscous restoring forces per unit volume
of the flux-line lattice, respectively), and pa. equals the
Ohmic resistivity ppr = B?/7 of free flux flow.!” At low
w < Toapp = Trp €xp(~U/kT) < 1pp, thermally as-
sisted flux flow (TAFF) Ref. (4) again leads to Ohmic re-
sistivity pac(w) = prarr = prrexp(—U/kT) < prr. At
intermediate frequencies, the imaginary part of p,. dom-
inates due to elastic pinning, and A,.(w) becomes real
and frequency independent, equal to Campbell’s pene-
tration depth Ac = (B%/aruo)!/2.1® A different model
pac(w) follows from vortex-glass scaling.67!! With (23)
inserted, the complex variable w (8) becomes

P+ w

_Tpp W o ()
w

W = WT) ——3 - or w=1iw
TTAFF T W

where in the second version 7, = adpo/(2mprr) is
the time unit, yielding two dimensionless parameters
p = 7./ = ad/(27A%) and ¢ = 7./TTAFF =
p exp(—U/kT) < p. Figure 2 shows the resulting per-
meabilities u(w) = p’ — ip” of a disk for the examples
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g=0.1and p=1,2,4,8,...,256. Note the two peaks in
the dissipative part u”(w), which are caused by thermally
activated and normal flux flow.

In conclusion, the linear susceptibilities x(w) or per-
meabilities p(w) = 1 + x were calculated for strips and
disks in perpendicular ac magnetic field as functions of
the complex resistivity pac(w). The asymptotic behavior
at high frequencies is p(w) ~ (pac/iw) In(iw/pac) [(16)—
(18)] while longitudinal permeabilities exhibit u(w) ~
(Pac/iw)*/? [(1)~(4)]. The exact infinite sums (16) are
approximated with high precision by finite sums. An ex-
ample demonstrates the nontrivial frequency dependence
of p(w) in HTSC’s with pinning and thermally assisted
flux flow. The coeflicients [Egs. (11) and (14)] (which fol-
low from Table I) and the general p(w) [Eq. (16)] allow
one to calculate the current distribution and the linear
response for arbitrary time-dependent applied field H, ()
by Fourier transformation. This linear response should
be compared with the nonlinear magnetic response of su-
perconducting disks'® and strips'® with strong pinning
in a perpendicular field,2° for which analytical solutions
were obtained recently.

I am grateful to J. Kotzler and A. Gurevich for inspir-
ing discussions.
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