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Phase roughening transition in Josephson-junction ladders in random magnetic fields
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The dynamics of one-dimensional arrays of parallel coupled Josephson-junction ladder arrays in
a random magnetic field is described. The nuctuation of superconducting phase difference becomes
constant above the roughening transition current I&2, and grows linearly in time for I&& & I ( I&&,
where I~q is the usual critical current separating zero voltage and finite voltage regimes. The
characteristic time t'(I) diverges as (Ic2 I) ~—when I approaches I&& from below. The discontinuity
of dV/dI at I&& and the absence of hysteresis above I&& in I Vcur-ve are also discussed.

Josephson-junction arraysi (JJA's) have long been a
subject of theoretical and experimental study for both
interesting equilibrium properties as realizations of un-
frustrated and frustrated XY models (under a mag-
netic field), 2's and dynamic properties including coher-
ent mode locking, 4 hysteresis, and chaos. 5 Also inhomo-
geneous superconductors are often modeled by a network
of Josephson junctions. In these systems where random-
ness can appear in coupling strengths between supercon-
ducting grains, grain positions, and sizes of grains, the
disorder play an important role. Recently, Josephson-
junction arrays were fabricated and studied in such a
way that disorder could be deliberately introduced.

Here, we consider the dynamics of one-dimensional
(1D) arrays of parallel coupled Josephson ladder junc-
tions under a random magnetic 6eld as shown in Fig.
1, where parallel couplings are also Josephson couplings.
A random magnetic 6eld will generate random magnetic
fiux (hence, random frustration) through each plaquette.
In experimental situations, an equivalent model could be
realized by introducing random plaquette areas with a
uniform external magnetic 6eld. Since there is a grow-
ing interest in the surface fluctuations of driven growth
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FIG. 1. Schematic picture of a ladder array of Josephson
junctions. X represents a Josephson coupling.

models, as an analogy, we concentrate on the fluctuation
of 8; which is the phase difference of the superconducting
order parameter across the ladder junction. By measur-
ing a standard deviation of 8;, we show a roughening
transition due to a random magnetic field. We also dis-
cuss the effect of the randomness on the I-V characteris-
tic curve and the relation between JJA's and the sliding
charge density wave.

The ladder array dynamics under a random magnetic
field (Fig. 1) is modeled by the coupled resistively
shunted junction (RSJ) model with random gauges as-
signed to horizontal junctions. External dc current I
is uniformly injected at each node on one side and ex-
tracted on the other side. Due to the random magnetic
6eld which gives a sort of random pinning potential, we
can think of the whole array as a combination of strongly
pinned regions and weakly pinned regions, i.e., regions
with large local effective critical currents and regions
with small effective critical currents. From an analogy
between the dynamics of a single Josephson junction and
that of a rigid rotor (pendulum) with an applied torque, io

one can interpret a JJ ladder array as N rotors coupled in
parallel. The randomness of the external magnetic field
destroys the translational invariance along the direction
of the ladder (y direction in Fig. 1), and hence produces a
time-dependent fluctuation of 8,. We 6nd a phase rough-
ening transition at the point I~2 in addition to the known
transition at I~q which separates the zero voltage and 6-
nite voltage regimes. Above the critical current I~2, the
randomness becomes irrelevant in the sense that all the
rotors rotate with constant average speed ("fiat phase").
Below I~2, clusters of rotors move with different aver-
age speed where the fluctuations of 0; increase linearly in
time due to phase-slip processes ("rough phase"). This
roughening transition is not a Kosterlitz-Thouless-type
roughening transition, but a kind of pinning-depinning
transition.

Figure 1 shows a ladderlike array of superconducting
islands where nearest-neighboring islands are connected
by Josephson junctions. Uniform dc external currents are
injected through the right-hand-side nodes (islands) and
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extracted through left-hand-side nodes. For each junc-
tion, we use the RSJ model neglecting both capacitance
and inductance. Finite inductance will produce an in-
duced magnetic field. In our system, however, we are also
assuming that the array is under a random external mag-
netic field. Therefore, the small induced time-dependent
field will simply be added to the already present random
magnetic Geld and generate another random Geld config-
uration. Hence, we expect that no qualitative change will
occur to the dynamic charateristics of the array even if
we include the inductance e8'ect.

All horizontal junctions (we call these the "main" junc-
tions) are assumed to have uniform values of critical cur-

rent I, junction resistance Bi, and also all vertical junc-
tions (y direction) are assumed to have critical current
I,y and resistance R2. Icy controls the coupling between
neighboring main juctions. The random external mag-
netic Geld is modeled by simply assigning a random gauge
2,. uniformly distributed between —vr and m to each hor-
izontal bond i.

Applying current conservation at each node, we get the
following equations for superconducting phases Pq „P2,
(r', = 1, . . . , N; N is the number of parallel junctions or
ladder size) where Pq;, and Pz; refer to the phases of
the ith island. on the left-side and the right-side columns,
respectively:

~ ~

, „(~.„ ~. .) —+ , „(~. . ~,„)+ , „(~,„ . ~ ,.)
2t Ri ' ' 2eB2 2t-R2

+I, sin($2; —Pg; —4, ) + I,„si n(Pg; +g
—Pg, ) + I,„ is n((bg, , —P, , )

6 h

2eBg ' ' 2eB2 2eB2
+I, sin(Pz; —Pq, —A, ) + I,& sin(Pz, ; —Pz, +q) + I,„isn(P ,2,

—P2, q).

There are 2N equations for 2N phases Pq, and P2, (i =
1, . . . , N). Among them, one equation is redundant due
to the overall U(1) phase rotation symmetry. So one of
the phases can be fixed arbitrarily and we can solve 2N—
1 remaining equations. A periodic boundary condition
is imposed along the y direction (perpendicular to the
external current).

We have carried out a direct integration of Eqs. (1)
and (2) in order to understand the effect of a random

magnetic field in Josephson-junction (JJ) ladders. A
fourth-order Runge-Kutta algorithm was employed for
this purpose with a time interval of bt = O. lip, where

to = 2eRq/h. Most simulations were performed start-
ing from an initially Hat phase Pq;(0) = Pz, (0) = 0 for
i = 1)2). . . , N, Bg ——R2 ——1) and I,& Izy 1. To fa-

cilitate the analogy with the surface roughening of driven
growth models, we have monitored the dynamic process
by calculating a new quantity, the phase fluctuation of
0, ,

a8(~) = —) 8,' — —) 8;
(1 "
& .=') '

where 8; = Pz; —Pz;. The discrete transform 8;
8; + 2m does not change the dynamic equations (1) and

(2). However, the quantity 48 is a good parameter to
investigate the phase roughening transition as described
below.

In zero magnetic field, the 0; are synchronized with AO

being constant and the JJ ladder behaves as N identical
single Josephson junctions. The I-V characteristics show
a known result V (I —I~q) ~ for I ) I~& where Icq
is equal to the critical current I, for a single horizontal
junction.

In a random magnetic field, the quenched vector poten-
tial A; shifts the 0; and electively reduces I~&. Starting
with all 0; = 0, the fluctuation 68 increases with time.
Depending on the extent of the phase fluctuations, we

can divide the dynamics into three diferent regimes.
(I) For I ( Icq, A8 grows with time for the initial

transient period and then becomes saturated without any
oscillation where the voltage is zero.

(II) For I~ ~ ( I ( I&z, 48 grows linearly in
time with additional small oscillations (Josephson oscil-
lations). The external current I is big enough to produce
nonzero voltage but (8;), the average time derivative of
0, , depends on the position i.

(III) For I ) Ic2, 68 grows with time initially
and then becomes saturated with Josephson oscillations.
Even though the 0, varies with position i, the average
velocity (8,) is uniform. In this regime, there is no hys-
teresis in the I-V curves.

The critical currents Ic;i and Ic;2 depend on the system
size I,„and the randomness of the magnetic fields. Here,
we Gnd that there is a phase roughening transition at
IC;2. Above I~2, 0,. and the instantaneous velocity of 0;
vary with position, but all the (8;) are the same where

( ) denotes the time average. We call this regime a "flat
phase, " because the (A8) remains constant. For Ic2 )
I ) I&q, the fluctuation (b,8) increases linearly in time
showing a " rough phase. "

In regime (II), we propose a scaling form

&8(I t) -8(tit*)&( (I)t) .

where f(y) is an oscillating function with Josephson fre-

quency ~(I) and g(x) is an increasing function as shown
in Fig. 2. There are two time scales: One is the Joseph-
son frequency depending linearly on the average voltage
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FIG. 2. The Suctuation E8 as a function of time for
regime (II). I = 0.565 —0.576 from the top to the bottom
with increment of current 0.001 for a given random configu-
ration with N = 40 and I~g 0.575 526.
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FIG. 4. I-V characteristics for N = 40 with the same
random configuration of A; as in Fig. 2. Inset: the I-V curve
very near I~g.

[ur(I) = (2e/h)(V)] and the other is the characteristic
time t'(I) which diverges as the external current I ap-
proaches I~2 &om below. In Fig. 2, since the 68 is aver-
aged over an interval larger than the Josephson periods,
the (68) remains constant up to the time interval t' If.
we take an average of 48 over the time interval larger
than both t* and the Josephson period, the phase fluc-
tuation grows linearly in time,

where S(I) 1/t'(I) is the average slope of the curve in
Fig. 2. We may define a domain as a cluster of junctions
whose (8;) are the same. Then, N parallel junctions can
be divided into domains. The reason that 48 grows lin-
early in time is due to the different (8;) of the different
domains.

Since t' diverges at I~2, one can assume

t'(I) - (Ic2 —I)
We measure the slope S as a function of I. From the
plot of ln(Ic2 —I) versus lnt' as shown in Fig. 3, a nice
straight line is obtained with p = 0.65 6 0.15 being con-
sistent with the above scaling conjecture.

Figure 4 shows typical I-V characteristics for N = 40
with a random magnetic field. The nonsmooth I-V curve
is due to the randomness of A;. We find that a jump in
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FIG. 3. t'(I) as a function of Io2 Iin a log-log plot near-

I~q with the same random configuration A; as in Fig. 2.

the I-V curve is closely related to a change of the slope
S. Since b,8 is the fluctuation of 8;, S = d(b, 8)/dt has in-

forxnation on the 8; fluctuation, which is proportional to
the voltage fluctuation in space. As shown in the inset of
Fig. 4, the voltage decreases slightly as the external cur-
rent I approaches I~2 very closely &om below. However,
just above I~2, the I-V characteristics show good linear
behavior V(I) —V(Ic2) I Ic2. Als—o there is a discon-
tinuity of dV/dI at the transition current Ic2 as shown in
the inset of Fig. 4. One may find this roughening tran-
sition experimentally by measuring the I-V character-
istics, dV/dI, and spatial auctuations of time-averaged
local voltages V; (8;). There is a somewhat diferent
experiment with positional shape disorder in supercon-
ducting wire networks and Josephson-junction arrays.
In the experiment, positional disorder was qualitatively
introduced by displaying the centers of the islands, ef-
fectively changing the area of the cells. If we apply a
constant external magnetic field, it will generate a ran-
dom magnetic lux depending on the random area for the
plaquette. Then we will expect smooth and linear I-V
curves just above I~2. A sixnilar transition can be real-
ized in the dynamics of a disordered flux line lattice as a
transition between a plastic phase and a solid phase.

Other evidence for the transition is that there is no
hysteresis above Ic2 where the voltage is independent of
the initial condition 8;(0). Above Ic2 all (8;) are the
same, making one big doxnain, and the phase fluctuation
68 becomes constant as in Fig. 2. For constant mag-
netic fields, we could not find phase roughening regixne.
(b,8) remains constant above Icq. This may be expected
&om the fact that a uniformly &ustrated system does
not generate a kind of random pinning potential as in
the case of randomly frustrated arrays.

We have also measured the phase fluctuation with a
&ee boundary condition. The change of the boundary
condition is efFectively equivalent to the change of gauge,
resistance, and critical current for the boundary junc-
tion. Since we consider a random gauge, we expect that
the boundary condition is irrelevant for the phase tran-
sition. We have found no qualitative changes for the free
boundary condition numerically.

With a given randoxn configuration of A;, I~2 is sen-
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sitive to the y-directional critical current I „. It is not
surprising since I „behaves like a diffusion constant in
the y direction. From Eqs. (1) and (2), the condition of
the zero net current along the vertical direction cali be
satisfied by assuming (this is a sufficient condition, but
not a necessary one)

Then we can reduce the equations of motion for 2% —l
phases in terms of only K phase differences 9, = P2, —

In order to simplify the equations further, we put
R2 ——oo. In dimensionless units (t in units of r =—h/2eBi
arid the current in units of I, ), we get a simpler set of
equations,

(8; —8,+i )
0, + sin(0, —A, ) + I,„sin

~

2

(8, —0,+I.„sin~
* '

~

= I, i =1, . . . , V. (8))
The coupling between rotors (one can interpret a main

junction as a rotor) becomes strong as the transverse
critical current I,„ increases. Therefore, I~2 decreases as
I,„increases, which was seen exactly by our simulations.
The phase roughening transition is controlled by both the
randomness of the magnetic field and the y-directional
critical current Icy.

If we approximate the two last sinusoidal terms on the
left-hand side of Eq. (8) by simple linear functions, it
becomes

0;+ sin(0, —A, )
— '"7'„0, = I, i = 1, . . . , X.

2

One can see easily some similarities between our model
and the sliding charge density wave, if we identify the su-
perconducting phase difference in a ladder 33A with the
phase of the sliding charge density wave (CDW). i2 How-
ever, there is an important difference between the two
models. The usual coupling between neighboring phases
in CDW models is Laplacian (diffusive). In the CDW
model, neighboring phases are not allowed to have an ar-
bitrarily large difference because of the elastic coupling

that produces an arbitrarily large cost in energy to such
a high-gradient configuration. On the other hand, in the
ladder 33A, the y-directional coupling is another 3oseph-
son coupling, which can be approximated by a Laplacian
only in the limit of small gradients in the phase-difference
variable 0,-, while the full equation has an invariance uii-
der 0; ~ 0, + 2m. So the 0 variables in neighboring
junctions can differ by an integer multiple of 2' with-
out any extra cost in energy. This is the reason why 60
grows linearly with time in regime (II). However, these
2m differences (winding numbers) are meariingful physi-
cally because they contain the history of time-dependent
local voltage drops across individual junctions. Above
the roughening transition point I~2, all rotors have the
same time-averaged winding numbers.

We also consider our model with random thermal noise
current and find that the weak noise does not alter the
nature of the transition. However, it is possible to de-
stroy the flat phase [regime (III)] by a strong thermal
noise. In the fIat phase, since a vortex can sweep through
from the left to the right of the sample, the phase fiuc-
tuation Ao remains constant. The vortex movement can
be measured experimentally to see the Hat phase.

We have studied the fIuctuation of 0,. in 3osephson lad-
der arrays under a random magnetic field and found a
rough to Hat phase transition. Near the transition point,
the characteristic time t,* diverges following a power law.
Since the randomness ran be realized by nonunifom sizes
of plaquettes in 33A's even for constant external mag-
netic fields, we expect to see this kind of transition by
ineasuring the I-V curves. The measurement of 60 in
a numerical simulation will provide more insight to our
understanding of 33A's.
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