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Quantum phase transition in the frustrated Heisenberg antiferromagnet
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Using the J&-J2 model, we present a description of quantum phase transition from Neel ordered
to the spin-liquid state based on the modified spin-wave theory. The general expression for the gap
in the spectrum in the spin-liquid phase is given.

There has been recently considerable interest in mag-
netically disordered states in quantum spin models.
Much of this interest stems from the connection of this
problexn to high-T, superconductivity. The ground state
of undoped compound has long range antiferromagnetic
order. It is well described by the Heisenberg model and
has been studied by numerous methods. However, in-
troducing a small number of holes leads to destruction
of long range order. The resulting state is still not fully
understood.

Destruction of long range order can be studied by intro-
ducing some &ustration into the Heisenberg xnodel. We
will focus on the simplest possible model of such kind
which is the Jq- J2 xnodel defined by

H=Jg) S, S, +J2) S, S, .
NN NNN

In this Hamiltonian, the Jq term describes the usual
Heisenberg interaction of nearest neighbor spins (S = z)
on a square lattice, while the J2 term introduces a &us-
trating interaction between next nearest neighbor sites.
The Jq-J2 model itself is hardly applicable to any real
materials2 (although it was originally proposeds to de-
scribe high-T, superconductors). However, it is valuable
for demonstrating how long range order can be destroyed.
For convenience, we set Jq ——1 and denote n—:J2/Jq
(the notation of Ref. 1 is used whenever possible).

For small a, the ground state is Neel ordered. For
large 0; the system is decomposed into two Neel ordered
sublattices which, however, have the same quantization
axis. This is the so-called collinear state. Whether or
not the Neel and collinear states are separated in pa-
rameter space by a state without long range order has
been the subject of xnany discussions. Besides the many
spin-wave calculations, the model has been studied
by the Schwinger boson mean field theory, analysis of
small lattices, a series expansion, a mean field theory
of bond operators, and other methods. Despite the
numerous efforts, a strict answer has not been obtained.
Nevertheless, since only the mean field spin-wave theory
and the essentially equivalent Schwinger boson mean field

theory predict a first order transition from the Neel to the
collinear state, while all other methods provide support
for the existence of a different intermediate state, the lat-
ter scenario appears far more probable (this is also sup-
ported by a recent calculation of corrections to the mean
field solutions). In this work we assume that the system
undergoes a second order quantum phase transition at a
certain a = n, &om the Neel to a spin-liquid state.

For the Neel phase we will use the spin wave theory
which gives the following description. The staggered
magnetization mt = ~(O~S;~0)

~

is equal to

1 2mt = ———) sinh 81„
2 N

k
(2)

where N is the number of sites on the lattice, the summa-
tion is performed over the Brillouin zone of one sublattice
(~k

~
+ ~kv~ ( z'), and 8|, is the parameter of the Bogol-

ubov transforxnation determined in the linear spin-wave
theory (LSWT) by

tanh 28k ——
'yk

1+n(~ —1)
'

or in the mean field spin-wave theorys (MFSWT) by the
self-consistent solution of Eq. (2) together with

(mt+ g, )71,
(mt + gg) + n(mt + g2) (rl1, —1)

'

2 -1 2
gq ———) —Wsmh28~, g2 ———) ~smh 81.

k k

We have defined

1
p1, = —(cosk + cosk„) and rlI, = cosk cosk„.

2

Numerical values of m~ in LSWT, MFSWT, and other
approximations are shown in Fig. 1.

Further, the dispersion of the Goldstone spin-wave ex-
citations is

2 [1 + n(~ —1)](1 —tanh 28I, )~~2, LSWT,

4 (mt +gz) + n(mt+ g2)(alt, —1) (1 —tanh 281,) ~, MFSWT.
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and 1. However, the Hamiltonian is in fact simpli6ed
so that it connects the physical states to unphysical (see
discussion in Ref. 1). To estimate the amount of unphys-
ical states introduced to the wave function we calculated
averages of higher powers of the n, operator.

0.1

(O~n, ~O) = m—:——mt,
2

(O~n', ~0) = m+ 2m',

(O~n,'~O) = m+ 6m'+ 6m',
(6)
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FIG. 1. Staggered magnetization mt as a function of a in
the Neel and collinear states. Dotted line is the LSWT result
(Ref. 4), solid line the MFSWT result (Ref. 5), long dashed
line the improved MFSWT result (Ref. 8), and dashed line
obtained by the 1/S expansion (Ref. 7) in the first {o) and
second (~) order.

where m is defined by Eq. (2). If only n = 0 and 1 were
present, we would have n', = n, (l & 1). The problem
of unphysical states becomes serious as m increases. To
estimate the weight of the states with n, ) 1, we proceed
as follows. Expand the state obtained in the spin-wave
theory in states with a de6nite number of bosonic exci-
tations at site r,

io) = ) c„in,),
n=O

For k (( 1, it is ei, = ck. We calculate Z, = c/co
(cp = v 2 is the spin-wave velocity at n = 0 calculated
by LSWT),

LSWT,

, MFSWT.

The numerical value of Z, is given in Fig. 2. Note the
remarkable agreement of the mean Beld solution and the
I/S expansion when the latter is converging.

Let us now examine the accuracy of the spin-wave the-
ory as the staggered magnetization mt decreases. The
spin-wave theory starts with transforming the spin oper-
ators S, to bosonic operators at and a, using the Dyson-
Maleev or Holstein-PrimakofF transformation. In either
case, 9; =

2
—n, with n, = ata, (a spin up sublattice

is considered). The physical states are those with n, = 0

I I I
)

I I I
[

I I I
i

I

1.0

where n, ~n, ) = n, ~n, ). Obviously, the correlators of
Eqs. (6) can now be expressed as

(Oin, io) = ) n'c„, l = 0, 1, 2, 3, . . .
n=0

(8)

Now we truncate the series (7) at c4 and with the trun-
cated series we solve the first four of Eqs. (8) taking the
left-hand-side &om Eq. (6). The results are presented
in Table I. Because a truncated seri.es is used, nega-
tive weights sometimes appear. However, for the pur-
pose of estimating, the method is adequate. We see that
at m = 0.5 unphysical states constitute about 20%%uo of
the wave function and we conclude that the spin-wave
approximation should be quite reasonable even at this
point. (However, we must restrict ourselves to consider-
ing only low powers of the operators a~ and a, since high
powers have large contributions &om unphysical states
and may lead to absolutely unphysical results. )

We assume that the system undergoes a second order
transition into a liquid state at ci = a, (the point when
the sublattice magnetization becomes zero). In terms of
the initial (a = 0) ground state, zero sublattice rnagne-
tization means that the ground state is a condensate of
many spin waves ag and bg. To describe the emerging
phase we must take into account their nonlinear inter-
action. We cannot do this exactly. However, there is

0.5
TABLE I. The weight of unphysical states when the series

{7) is truncated at c4.
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FIG. 2. Spin-wave velocity renormalization Z as a func-
tion of cI. Dotted line is the LSWT result {Ref. 4), solid line
the MFSWT result {Ref. 5), and dashed line obtained by the
1/S expansion {Ref. 7) in the Brst {o) and second {~ ) order.
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an approximate method using the suggestion made by
Takahashi for the Heisenberg model at nonzero tem-
perature.

Following Takahashi, we impose an additional condi-
tion that sublattice magnetization is zero,

(OiS~ —8@0)= (Oi2 —ata, + 2
—btb, [0) = 0, (9)

where A and B are the spin up and down sublattices. In
essence it means an effective cutoK of unphysical states.
In fact, Eq. (9) together with conservation of the z com-
ponent of the total spin is equivalent to

0) a&ai, 0 = 0) b&QO

The total number of single spin-wave states in the mag-
netic Brillouin zone is N/2. Therefore, after introduc-
ing Eq. (9) the effective number of allowed states in the
Hilbert space of the system is

(&/2)' &' 4 2N
& (~/4)'(&/4)')

so that with logarithmic accuracy the correct dimension-
ality (2+) is restored.

The constraint (9) is introduced into the Hamiltonian
via a Lagrange multiplier A. Now we must diagonalize

in Eq. (13) converges at small k where eg = ck. After
integration we have for o. & a,

mtic (14)

Similarly to the T = 0 case, the integration can be per-
formed exactly for T, 4 (& 1 yielding

where

T ( . b)
ln

i
2sinh

i

= —p„
21I' ( 2T )

(16)

1mtc .
4

The correlation length in this state is ( oc 1/b.
In the vicinity of the transition, 6 = zc,A(a —a,),

where c, is the spin-wave velocity at the critical point
(c, —0.71 whether LSWT or MFSWT is used; see Fig. 2)
and A = Bm—t/Ba is the slope of dependence of mt
versus n (Fig. 1). We can estimate A from LSWT or the
improved MFSWT (Ref. 8) and we obtain b, —3.3(a-
n, ).

It is easy to generalize the consideration to nonzero
temperatures. In this case the gap 6 will be determined
&om

(z& )mt+ 2 —— coth
i ~

= 0. (1&)
2z z e|, Eg (2T)

Eg = (g2 + 2)e1/2 (12)

where el, is the dispersion from Eq. (4) and b, is deter-
mined from (for clarity, we present now equations only
in the form they have in LSWT)

mt+2
(2z)2 (eg Egg

(13)

[here mt & 0 is calculated from Eq (2)]. T.he integral

The simple (linear) second term here [taken together with
Eq. (9)] takes account of nonlinear interaction of spin
waves. Diagonalizing Eq. (11) we get the spectrum of
excitations which has a gap b, oc ~A. When 6 && 1, the
spectrum is

Equation (16) has been obtained in the JV = oo limit
of the nonlinear 0 modelis (JV = 3 is the number of com-
ponents of the order parameter) which describes the long
range behavior of near-critical spin systems using several
phenomenological parameters. Solutions of Eq. (16) in
difFerent regimes have been discussedis (see also Ref. 16)
and we will not dwell on this issue.

To summarize, we have presented a description of
quantum melting of long range antiferromagnetic order
in the &ustrated Heisenberg model. The suggested ap-
proach can be used for many systems, in particular the
doped t-J model.
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