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Magnetic properties of infinitely long and wide slablike Josephson-junction arrays (JJA s) con-

sisting of 2N + 1 rows of grains are calculated from the dc Josephson effect with gauge-invariant

phase differences. When N is large, the intergranular magnetization curve, Mq(H), of the JJA s in

low fields approaches that of uniform Josephson junctions with lengths equal to the thicknesses of
the JJA s, but in a larger field interval, its amplitude is dually modulated with periods determined

by the junction and void areas. Mz(H) curves for small N are more complicated. The concept of
Josephson vortices and the application of the results to high-T, superconductors are discussed.

I. INTRODUCTION

It is well known that sintered high-T, superconduc-
tors (HTSC's) are granular in nature. Their intergran-
ular matrix can be considered as a Josephson-junction
(JJ) network. The properties of the entire network
agree well with the critical-state model, which was pro-
posed to explain magnetic properties of conventional
hard superconductors. z Since the coupling strengths be-
tween the grains have a large distribution, many HTSC's
contain clusters, within which grains are more tightly
linked by JJ's. ~ s s Inside grains, there may be subgrains
which are even more tightly linked by JJ's.s Thus, precise
knowledge of the magnetic properties of JJ's in different
forms becomes very useful for understanding the mag-
netic properties of HTSC's.

We have calculated magnetic properties of uniform
Josephson junctions (UJJ's) from both the sine-Gordon
equation and a model array consisting of 41 short JJ's. r s

The results showed some interesting features: UJJ's can
be magnetically reversible or irreversible, depending on
the ratio of junction length to penetration depth to be
less or greater than 4. The hysteresis loop of very long
UJJ's is of surface-barrier type with quantitative differ-
ence from that of type-II superconductors (SC2's). The
field-cooled magnetization can be diamagnetic, like the
Meissner effect in SC2's, or paramagnetic at different
6elds. UJJ's may be an acceptable simulation to the JJ's
between the subgrains or the weQ-matched large grains in
the clusters, but they are quite different &om the actual
JJ assemblies in the network and most clusters, where
the effect of voids is important.

In this work, we extend our calculation to Joseph-
son junction arrays (JJA's). The magnetic properties
of JJA's are not only determined by the JJ's linking
the grains, but also inQuenced by the voids among the

grains. Thus, they are closer to the situation of the in-

tergranular network and clusters. Actually, as will be
discussed later, JJA's still have different properties from
the network, which is a disordered three-dimensional en-

tity. They may be a good simulation to the clusters,
whose sizes are smaller so that the effect of disorder is
weak in each of them. For the sake of simplicity, we con-
sider infinitely long and wide slablike JJA s, which are
mathematically equivalent to real one-dimensional (1D)
JJA's. Therefore, the results can be directly used for
the latter, which are sometimes indeed the experimental
arrangement. 9

II. JJA MODEL AND MATHEMATICS

We consider a slablike JJA consisting of identical
cylindrical superconducting grains parallel to the z axis,
whose cross-sectional centers form a two-dimensional
square lattice on the zy plane (Fig. 1). The lattice con-
stant is ao. The JJA is infinitely wide in the y direction,

FIG. 1. Josephson-junction array schematic. From the infi-
nite columns of grains only two are shown, each contains nine
grains (N = 4). The difference between the radii of concentric
circles is AL, .
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and contains 2N + 1 rows (layers) along the x axis; thus
the thickness of the array is defined as a = (2N + 1)ao.
Magnetic Geld H is applied along the infinite length in
the z direction, so that demagnetizing field is zero. We
further assume that the 33's between all the adjacent
grains are short, with a maximum critical current I
per unit length at zero field.

Under a uniform Geld 0 below the lower-critical Geld
H, q of the grains, two kinds of currents, circulating in
the grains and through the JJA, appear. If we use an
efFective grain volume fraction f~, by which the partial
susceptibility of the grains themselves is adjusted to —1,
only the currents circulating through the JJA need to
be considered, which gives a partial magnetization M~
for the matrix. The matrix is defined as all the effective
voids (including the space among grains and the grain
shells of thickness AL„ the London penetration depth)
whose properties result from JJA-circulating currents.
Owing to the infinite length and width, the currents fiow-

ing through the junction layers are uniform along the z
axis and the fields produced by the currents have a z

component only, which is also uniform along the same
axis. Thus, the problem becomes one dimensional; only
one column of junctions on the y = 0 plane and the cor-
responding grains on its both sides have to be treated.
We have

Mg = ) I,i, (N —k + 1)/(N + 1/2),

Or, = —27rpoHvi, &v/@o+ 4+i,

where Av is the area (1—fg)ao of the effective void, which
is bordered by the central lines of four nearest junctions
around the void and includes the areas of depth AI. in
the four surrounding grains; 0~I, is the average Geld in
the void between the kth and (k+ l)th junctions.

HJk and Hvh. , for k = 1, 2, . . . , X are calculated by

A: —1

Hgi, ——H+ ) I„+I i, /2,
j=o

k

Hvi, —H+) I„, (7)

where I,o
——0. Also, there is a zero induced current in

the central (N + l)th layer, so that Oiv+i ——0.
After substituting Eqs. (3), (6), and (7) in Eqs. (4)

and (5), a set of 2N simultaneous equations for k

1, 2, . . . , N is formed. It is solved numerically by com-
puter with a routine based on a modified Powell-hybrid
method. Since the solution is generally multivalued, each
calculation is performed starting &om a first point and
following a continuous curve. It is often needed to have
several "first points" to complete an entire curve. Thus,
all the I,i, and Hi, are obtained, from which MJ is calcu-
lated using Eq. (1).

where I,i, is the tunneling current per meter length across
the junction for the kth (counted from the surface) layer.

To obtain N values of I,i„a set of 2N nonlinear si-
multaneous equations has to be solved, since there are N
phase differences for the layers being also unknown. To
build up the equations we start from the dc Josephson
equation for weakly linked superconductors, expressed by

I, = I „sin0,

where I, is the supercurrent when the gauge-invariant
phase (simplified as "phase" hereafter) difference across
the junction is 8. Since each junction is short, Eq. (2)
leads to a Fraunhofer difFraction pattern for the field de-
pendence of critical current I,I, of the kth junction:

sin(ir poli, AJ/4'o)

&poli &J/@'o

where H~I, is the average Geld acting on the kth junc-
tion, AJ is the efFective junction area, equal to the junc-
tion length times thickness d = 2%1. + t, where t is the
barrier thickness, and 4o is the flux quantum. The real
supercurrent flowing through the kth junction will be

I,I,
——I I, sin0~,

where Hy is the average phase difFerence across the kth
junction. Similar to a short or long junction, considering
the gauge invariance, the phase relation between the kth
and (k+ 1)th junctions is

III. MAGNETIC PROPERTIES OF JJA'S

A. Amplitude-modulated Mq(H) curves

In the computation of M~ vs H curves, we assume

Av = 102~ ——10 ii m and use different values of
I „and N. The obtained H and Mg are normalized
to @o/2NpoAv', 2NAv' being the total area of one col-
umn of voids. The normalized quantities are written as
h and fAJ.'

h = 2N p,oAvH/4o, .

mg = 2NIJoAv Mg/4o.

Some calculated mg (Ii) curves are plot ted in
Figs. 2(a)—2(j). The same as for UJJ's, the curves for
JJA s shown in Fig. 2 are oscillatory, which is a direct
consequence of the sinusoidal function in Eq. (4). How-

ever, for JJA's, not only does m~ oscillate itself, but the
amplitude of m~ also oscillates with greater periods. In
other words, the m~(k) curves are amplitude modulated.
There are two reasons for the modulation, the Fraunhofer
diffraction pattern of short JJ's, Eq. (3), and the forma-
tion of multi-Co vortices or antivortices. This will be
discussed below.

B. Penetration depth

Before further describing magnetic properties quanti-
tatively it is necessary to introduce the Josephson pen-
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etration depth A~. AJ is a characteristic parameter ap-
pearing in the sine-Gordon equation for U33's:

AJ = (4p /27rpp J „d)'~', (10)

Jmax ~ . Imax /&0 q

d.::-~v/no

For small N, the meaning of A~ is not straightforward.
In spite of this, we still use, like in the case of UJJ's, A~

as a reference length scale for choosing calculation con-
ditions and discussing the results. One of the calculation
conditions for the curves given in Fig. 2 is the value of a,
which is defined as the ratio of the effective JJA thickness
to Ag.

a—:2Nao/&J.

C. Initial susceptibility

The initial susceptibility y;„, is a characteristic quan-

tity for all JJA's. The same as for UJJ's, if N is large, it
can be calculated by

2 0.'
g;„;= —tanh ——1.

A 2

With decreasing N, —y;„; becomes smaller. —y;„; as a
function of N for a = 10 is given in Fig. 3.

D. Reversible and irreversible JJA's

The same as for UJJ's, the mg(h) function for a
JJA can be either singlevalued [Fig. 2(g)] or multivalued

2

04

0.2—

0.0
0 20

FIG. 3. Initial susceptibility as a function of N when
n = 10. The line is a guide for the eye.

where J „is the maximum critical-current density and
d = 2%1.+ t, the same as given earlier for the JJA. When
the UJJ is very long the internal 6eld and current den-
sity at low applied fields will decay exponentially from
its edges. AJ is the depth at which they decrease to e
times their values on the surface. Similar decay also oc-
curs in 3JA's with large N and I „at small H. The
penetration depth Ag is found to be

&z = uo(@o/27r @pl a.&v)'~'. (»)
By comparison of Eq. (10) with Eq. (11), we find the
correspondence between J „and d in a UJJ and I
and A~ in a JJA to be

0
0 12 16 20

FIG. 4. The critical n, a*, at which magnetic irreversibility
sets in, as a function of N (open circles). h' is the h for the
mz jump when a = a' (open squares). Lines are guides for
the eye.

o, &o;*=4. (14)

The critical o.* at which magnetic irreversibility sets in

decreases to 2 with decreasing X to 1, as shown in Fig. 4.
In Figs. 2(h) and 2(a) are plotted the curves for N = 20
and o. = 4, and N = 1 and e = 2, representing two
extreme critical cases.

E. Hysteresis loops

For irreversible JJA's, we can de6ne a characteristic
quantity hi as the h at which the first mg jump takes
place when increasing h from zero. This hi is the border
of the low-field reversible h range for irreversible JJA's.
With increasing a &om 4 to oo, hi for large N decreases
from 1.16a/m to a/7r, equivalent to the change of the hi
de6ned for UJJ's in Ref. 7 &om 2.319 to 2. hq increases
with decreasing N. Corresponding to h&, there is hq,
the h at which the last mz jump takes place during de-

creasing h. For N ) 4, h2 is positive, and it changes to
negative at smaller ¹ hi and h2 as functions of % are
plotted in Fig. 5 for the case of a = 10.

The number of the pairs of mJ jumps increases with
increasing a. If o. is very large, many small mz jumps re-
sult in a big loop in a low-6eld region, beyond which there
are several separated small loops. Further increasing h
leads to a reversible 6eld interval, after which irreversibil-

ity may arise again in the second modulation period [see

Figs. 2(i) and 2(j)].
If N and o, are very large, the big loop for the first

modulation period can be well expressed by the vortex
entry and exit curves calculated for very long UJJ's.

[Figs. 2(b)—2(f), 2(i), and 2(j)]. Therefore, if sweeping
H forward and then backward, the resultant m~ vs h

curve can be reversible or irreversible. The mg(h) curve
of irreversible JJA's contains several pairs of mJ jumps
if the maximum h is large enough. The starting and

ending states for each jump are superconducting, but a
"normal" state is in between, which gives rise to energy
dissipation.

If N is large, the condition for the onset of irreversibil-

ity is
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remain zero. The calculated results should be the same
as those for a real 1D-JJA, which consists of 2N+ 1 short
JJ's between two superconductors. This is because to cal-
culate magnetic properties of 1D-JJA, only the phase dif-
ferences between both superconductors need to be taken
into account, which is mathematically equivalent to our
slablike JJA. If N is large the current distribution in the
1D-JJA will approach a continuous one, similar to that
in a UJJ. Therefore, our results for large N should be
close to those of UJJ's.

FIG. 5. The first field hi (open circles) for vortex entry dur-
ing increasing h and the last field h2 (open squares) for vortex
exit during decreasing h as functions of N when a = 10. Lines
are guides for the eye.

Translating the formulas in Ref. 7 to the present case, we
have the vortex entry and exit fields and magnetizations
to be

h,„=a/zk,

m,„=a/2kK(k) —ft,„,

ft,„=aQk-2 —1/z, (17)

m,„=a/2kK(k) —h,„. (»)
In these formulas, K is complete elliptic integral and its
argument k changes &om 1 to 0. The calculated m, „(h, )
and m,„(h,„) curves are plotted in Figs. 2(i) and 2(j).

For N = 1 and very large a, the big loop follows a tilted
Fraiinhofer diflraction pattern with the maximum width
at h = 0, not of a surface-barrier type [see Fig. 2(b)]. For
2 & N & 5, mq(h) curves do not have a regular shape
[see Fig. 2(c) and 2(d)].

F. Field-cooled magnetisation

IV. DISCUSSION

A. JJA's and UJJ's

In the modeled in6nitely wide slablike JJA there are
no currents Bowing along the x direction, or, the phase
differences between the adjacent grains in each column

The same as in the case of UJJ's, ~ the field-cooled mag-
netization of JJA's can be either diamagnetic or para-
magnetic. With increasing h, the first transition &om
diamagnetic to paramagnetic occurs at h = h', where h'
is the h at which the m~ jump occurs when a = a'. h'
as a function of N is given in Fig. 4.

Qwing to the modulation of m~(h) curves field-cooled
magnetization at higher 6elds has a series of maxima
around h = 2¹(i = 1, 2, . . .). Paramagnetic and dia-
magnetic magnetizations occur at lower and higher 6eld
sides of h = 2¹i.

B. Oscillatory and modulated mq(h) curves

However, there are still some important difFerences be-
tween our JJA's and UJJ's even if N is very large. An
obvious one is the amplitude modulation of the magne-
tization curves.

Both oscillation and modulation in magnetization
curves are the consequence of the sinusoidal function in
Eq. (2). A period of oscillation or modulation signifies a
2x change in 8 across a certain characteristic length along
the z direction. Each length should be connected to an
area where Hux passes through. There are three such ar-
eas in the JJA's being, &om large to small: NAv, Av,
and Aq. The It change that gives rise to a Co of Hux

change in these three areas is 2, 2N, and 2NAv /Aq, re-
spectively. The first one is the period of the oscillation
related to the entire JJA, so that it is common for JJA's
and UJJ's. The other two are periods of two kinds of
modulations related to Av and Az, therefore only for
JJA's.

The trivial solution at ft = 0 is I,s = 0 and Hi, = 0
for k = 1,2, . . .,N. In this case, the Hux produced by
h is zero everywhere. When fi = 2Ni (i = 1, 2, 3, . . .),
I,i, = 0 should also be a solution. This is because such a
current profile is consistent with a situation in which each
void contains i@o Hux. Therefore, mg = 0 at ft = 2Ni,
as seen &om Fig. 2. Under our calculation condition of
Av = 10A~ when each void contains 10iCo flux each
JJ contains i@o so that I,i, = 0 holds for all short JJ's,
which is realized &om Eqs. (3) and (4). Thus, the entire
behavior of the mg(h) curve for large N will be as follows.

Starting from the initial state (0, 0) and moving along
the curve, mq undergoes the first half oscillation with a
maximum negative amplitude. The following N —1 os-
cillations have progressively decreasing and then increas-
ing amplitudes, ending with a half oscillation of maxi-
mum positive amplitude terminated at the state (2N, 0).
This can be seen &om Figs. 2(e)—2(j). This process is
repeated in the following each N oscillations, the 6rst
of which can be seen &om Fig. 2(e) completely. The
maximum amplitudes in these modulated periods de-
crease monotonically until the state (20N, 0), after which
they increase and decrease again. We have not shown
such a high-h behavior for large N, but it is similar
to that shown in Fig. 2(a) for N = 1. Considering an
entire h range from 0 to oo, the maximum amplitudes
of Ai modulation occurring around h = (2Ni, 0) (i =
0,1,2,. . .) change their values by Ag modulation. The rule
follows the Fraunhofer difFraction pattern; i.e., they are



13 740 D.-X. CHEN, A. SANCHEZ, AND A. HERNANDO

the largest at i = 0, close to zero at i = 10, 20, 30, . . ., and
take progressively reduced maxima at i = 15, 25, 35, . . . .

C. Josephson vortices

It has been shown in Ref. 7 that the magnetic proper-
ties of U33's can be entirely explained in terms of Joseph-
son vortices (JV's) if the fractional JV's at both edges are
also considered. There, JV is defined as a current vortex
associated with a field peak whose total Hux equals Cp.
The similarity between JJA's and UJJ's suggests that
the concepts of JV's can also be used for interpreting the
properties of JJA's. In fact, within the first half of modu-
lation period for JJA's of large N, i.e., for ~h~ & N, most
statements given in Ref. 7 are valid with some changes.

In order to use the above definition of JV for JJA's,
two modifications are needed.

(1) Only one column of JJ's is considered. In our
JJA's, the net currents across JJ's along the z direction
are all zero, and the currents along the y direction form
closed paths through the infinity point. Therefore, each
current vortex will enclose an infinite number of 4p's. To
have its Hux equal to 4p, one has to consider one column
only, and to regard the zero current along the x direc-
tion as a cancellation of two equal currents with opposite
directions. In fact, a current vortex associated with in-
finite @p s is a consequence of our simplified model with
an infinite width, and for JJA's with a finite width each
JV should always contain one @p since the currents along
the z direction do not remain zero but oscillate like those
along the y direction. For the sake of simplicity, we will
hereafter consider the JV's within one column only.

(2) Current vortices are associated with field peaks in
a collective way. One can always divide the entire field
pro61e into several peaks, each of which contains one 4p,
since the field profile is continuous. The same division
is often impossible for currents since they flow through
discrete JJ s. In some cases, it is impossible to 6nd a
complete current vortex within a 6eld peak. However, in
the entire JJA one can find an integral number of current
vortices associated with the same number of C p s, w}llcll
is a conceptual consequence of the dc Josephson equation
and gauge invariance expressed by Eqs. (4) and (5).

Let us illustrate the above statements for the second
modification by calculating field and current profiles for
X = 10 and o, = 10. The results are given in Fig. 6. The
magnetic states are chosen to be very close to Oi ——27ri,
i = 1, 2, 3, . . . , 10. Their corresponding field profiles are
shown in Fig. 6(a). In this 6gure, the internal field h,
in the kth void is h~g, and its change over JJ s is made
sudden, since Ag is much smaller than A~. Note that
we have used a continuous variable k to stand for the x
coordinate, k = 11 and 1 corresponding to x = 0 and
x = 10ap ——10a/21, respectively. We observe that when
i = 0, 5, and 10 the profiles are Hat, which correspond
to currents I, (k) = 0. [The discrete expression I,i, has
been changed into I, (k).] The cases i = 1, 2, 3, and 4
correspond to i field peaks. Although the peaks do not
have the same shape for i = 3 and 4, each can always be
defined containing a 4p. The solid circles in Figs. 6(b)—

6(e) are the current profiles for i = 1, 2, 3, and 4.
Current vortices can be defined like in U33's for i = 4

and 2 but not for i = 3 and 4. For example, for i = 2, the
two 3V's are separated at k = 6 as realized kom the two
symmetric field peaks in Fig. 6(a), and we can easily see
from the symmetric current profile in Fig. 6(c) that the
net current is zero in each JV, i.e. , the current in each 3V
forms a vortex. For i = 3, the three JV's defined by the
field peaks in Fig. 6(a) are separated at somewhere be-
tween. k = 4 and 5 and between k = 7 and 8. In this case
as seen from Fig. 6(d), the net current within the middle
fieM peak is zero but it is positive and negative within
the left and right field peaks, respectively. Therefore, al-
though the middle field peak contains a current vortex,
the other two do not. However, three current vortices
can be found if I, (4) and I, (8) are shared by two adja-
cent 3V's. In this way, the borders for the three JV's will
be located at k = 4 and 8, different from those defined
above by the field peaks, so that the current-vortex and
field-peak association can only be collective.

Because this second modification is complicated, we
can also say that if JV is defined by a field peak contain-
ing a C 0, then JV's in JJA's are similar to those in U33's.
Such a JV is actually a Huxon. In SC2's, the Abrikosov
vortex is sometimes equivalently called the Quxon. Both
names are identical, meaning a current vortex carrying a
4p Hux. In the JJA case, however, by JV one emphasizes
the current vortex but by Huxon, the Hux 4p.

We have described in Ref. 7 that JV's in UJ3's have the
following three properties if the UJJ's are not subjected
to a transport current: (1) The field carried by JV's al-
ways points in the direction of the applied field. (2) In
uniform applied field, a JV can never form at the JJ cen-
ter, and instead, JV's enter the JJ &om both edges in
pair. (3) There are neither distance nor overlap between
two adjacent JV's even if one of them is &actional. After
the modifications to the definition of JV's stated above,
these properties are also valid for the JV's in 33A's. This
can be realized by smoothening both the field and cur-
rent profiles shown in Fig. 6. They are similar to those
given in Ref. 7 for U33's, so that the JV's in JJA's should
share most properties with JV's in UJJ's.

The state of i = 5 in Fig. 6 corresponds to h = .V,
where neither current vortices nor field peaks are present.
Therefore, the similar properties between JJA's and
UJJ's are limited to a field region of ~h~ & X, beyond
which the differences between both systems are signi6-
cant.

Prom Fig. 6(a) we see that there is a minimum JV size
2ao in 33A's occurring at 6 N —2. When 6 & N,
the vortex size increases again and equals Neo when h, =
2%—1. This kind of size variation repeats periodically for
6 & 2%, with a period of 2K. Another obvious feature
of the field profiles is the symxnetry with respect to the
line of 6, =

¹ This has significant consequences to the
definition and properties of JV's as follows.

Defining a field and current period as a JV (or more
precisely, a fluxon), each JV for X/2 & i & X will contain
a field valley instead of a field peak, and contain [(N +
i)/(,V —i)]4p instead of a 4p. Such JV's are not what are
commonly recognized. To meet the traditional concept of
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FIG. 6. (a) Internal Beld Ii, and (b)—(e) current I,/I „profiles for N = 10 and a = 10. The profiles for half JJA (z ) 0)
are presented. k = 11 corresponds to x = 0, and k = 1 is the position of the surface JJ layer. In (a) the curves from down to
up are corresponding to i = 1, 2, . . . , 10. In (b)—(e), the full circles are for i = 1 (b), 2 (c), 3 (d), and 4 (e) and the open circles
for i = 9 (b), 8 (c), 7 (d), and 6 (e), respectively. The lines in (b)—(e) are guides for the eye.

JV corresponding to a 4o, we can define JV's in another
way. If we change h; to h', with h; = 2N + h,', then
the profiles of field h,' of i = N —I, N —2, . . . , N/2+ I
will correspond to (N —i)4o. The n—umber of periods is
N —i in this case, which means that each period contains
a —40. Since the sign of Hux associated with such JV's
is opposite to that of the applied field, we can call these
JV's anti-JV's. For anti-JV's, the corresponding current
profiles are the negative of those of JV's, as given by the
open circles in Figs. 6(b)—6(e). This second definition is
consistent with the original definition of JV, but it has
only formal meaning. To calculate the energy of a JV,
the actual field h; should be used but not 6';.

In terms of the concepts of JV's and anti-JV's, the
magnetization process can be interpreted as follows.

With increasing h &om the initial state, JV's enter &om
the JJA surface so that the number of JV's in the JJA
increases successively; aAer h = N, JV's change into
anti-JV's, and anti-JV's exit &om the surface so that the
number of the anti-JV's in the JJA decreases successively.
This process of JV entry and anti-JV exit will repeat in
the h intervals of 2N-4N, 4N-6N, . . . . On the contrary,
with decreasing h, the entry of anti-JV's and exit of JV's
occur in turn.

In the above we have considered N as an even number.
The situation for an odd N is similar. The difference is
that the Hat 6; profile at 6; = N will not correspond to
a 81 equal to an integral number of 2x. Also, we only
showed the profiles for integral i. If i is fractional, corn-
plexities will occur. Especially when N is small, such
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complexities will lead to completely difFerent magnetiza-
tion behaviors.

D. Case of small N

The features described in Sec. IV 8 agree in general
with most mq(h) curves given in Fig. 2. However, the
situation is different when N is small. The m~(h) for
N ) 4 is a continuously forward curve (see the precise
meaning of "forward" below), as seen &om Figs. 2(d)—
2(j). Starting &om (0, 0), the curve passes through points
(N, 0) and (2N, 0) as it should be, since at both points
each void contains 4O/2 and C'0 and provides a 8 change
of m and 2vr so that all I,i, and m~ = 0. The curves
for N = 2 and 3 are different. The calculated curves
for N = 3 are shown in Fig. 2(c). Starting &om (0, 0),
the curve goes forward until a state (3.8, 0.0), at which
it turns backward. The backward section passes through
(N, O) and terminates at (2.2, 0.0), after which the curve
becomes forward again and finishes the period at (2N, 0).
The entire curve contains rich harmonics with very sharp
extra peaks and dips. This latter feature is also shown
for N = 4 and 5 [see Fig. 2(d)]. As a consequence, h2
becomes negative when N = 2 and 3, the corresponding
points of which do not make a smooth curve when plotted
together with those for N ) 4 as seen from Fig. 5. With
further decreasing N to 1, the oscillation period equals
the lower modulation period, and we can see the A~ mod-
ulation only. 62 becomes very close to —hi (Fig. 5),
and the hysteresis loop follows tilted Fraunhofer patterns
[Fig. 2(b)]. In other words, with decreasing N, the hys-
teresis loop of irreversible JJA's changes &om a surface-
barrier type to a tilted Fraunhofer type.

In UJJ's, the m~(h) curve always goes forward, which
means that the Hux in the UJJ and the 8 at the edge are
always increasing with the continuous state evolution.
The meaning of "forward" in JJA's is similar: the total
Hux in the JJA and the Hi increase with the continu-
ous state evolution. On the contrary, "backward" means
that they decrease. Therefore, a unique feature in the
equilibrium magnetization of JJA s of N = 2 and 3 is
as follows. Starting &om the initial state (0, 0), a con-
tinuous state evolution involves periodically interchanged
flux entry and exit &om the JJA, which is distinct &om
the case of JJA's of larger N and UJJ, where only Hux

entry occurs.
The rich harmonics in the m~(h) curves for small N is

consistent with the fact that JV defined by the current
and Geld period does not exist in this case. The few

A~ s in a column forbid any de6nition of JV. Finally,
it is clear that if N = 1, the current can only circulate
in the entire column (—a/2 ( x ( a/2) and the field is
always uniform in the entire JJA, so that either JV or its
movements cannot be defined.

E. Application to HTSC's

Considering the application of our results to HTSC's,
JJA's should be related to the intergranular matrix. This

can be done through the average grain size ao and the
efFective grain volume fraction f~ .4v is calculated &om
these two parameters using Ai = (1 —fg)oo2, as men-
tioned in Sec. II. In the above computation, A.~ is chosen
as 10 ' m . Letting typically fg = 0.7, ao is calculated
to be 6 x 10 m, which is a typical average grain size
for many HTSC's.

However, in order to compare our results with same
existing works, we assume following Ref. 10 that f~ =
0.7, no ——10 6 m, and I „=100 A/m. The last two
quantities correspond to a current density J „= 108
A/m2. Substituting these values in Eq. (11) we obtain
A~ ——2.96 x 10 6 m, consistent with the result given in
Ref. 10. Applying standard Ginzburg-Landau theory for
SC2's to JJA's and defining an effective coherence length
(~ ——0.5uo, the first field for JV entry is obtained to be
89 A/m in Ref. 10. (There is a slight difFerence in Ref. 11.
where (J is assumed to be 0.4ao. ) For large N and n, this
field is calculated &om Eq. (15) by substituting k = 1 to
be

H, = 2I „Ag/Op.

In the derivation of this formula, Eqs. (8) and (11) have
been used. Substituting the above values in Eq. (19)
leads to Hi ——592 A/m, six times the result given in
Ref. 10. The discrepancy between the SC2-JJA analogy
and the direct JJA calculation suggests that there are es-
sential differences between SC2's and JJA's; similar dif-
ferences have been discussed in detail in Ref. 7 between
SC2's and U33's.

An important deduction of the SC2-JJA analogy
is that intergranular currents in JJA's containing de-
fects should obey the critical state model, due to JV
pinning. Our calculation is carried out for uniform
JJA's, but some features in the results should also be
shown in nonuniform JJA's. The calculated magnetiza-
tion curves for large N are of modulated surface bar-
rier type, which are much different &om the critical state
loops given in Refs. 13—15. Nonuniformity will make the
modulation less pronounced at high fields, but it will not
change the surface-barrierlike feature. Actually, the cur-
rent density is a function of local field in the critical state,
whereas it is mainly a function of phase in JJA's„ tak-
ing values within positive and negative maximum JJ cur-
rents. Changing the phase dominance to field dominance
is the central problem in understanding the intergranular
critical state. The JJA's we have treated are therefore
not relevant for solving this problem; more work on in-

tergranular critical state will be published elsewhere.
Grain clusters are more likely related to JJA's. Since

they are formed of not many JJ's, their properties should
be close to those of 3JA's of small N. Thus, their hys-
teresis loop should not show a pronounced surface-barrier
feature, but be close to a tilted diffraction pattern type.
There may also be an anomalous field-cooled magnetiza-
tion, even a paramagnetic Meissner effect if some m-JJ"'s

exist in them.
Surface-barrier efFects occur in many HTSC's. It

is not always easy to explain them by the surface image
force, since they are present in very small crystals and
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even powders. Such effects could be related to intragran-
ular JJA's. If this is true then modulated loops should
be expected, which are similar to the fishtail phenomenon
discovered in some HTSC's. 8 zz

V. CONCLUSION

Magnetization curves of slablike Josephson-junction
arrays, which consist of 2N + 1 layers of cylindrical
superconductors of diameter ao weakly linked by short
Josephson junctions, are calculated from simultaneous
dc Josephson equations with gauge-invariant phase dif-
ferences. When N is large, the results at low 6elds are
similar to those for single uniform Josephson junctions,
but the oscillatory magnetization is periodically modu-
lated in a large field interval. In terms of h, the applied
field normalized to 4'o/2NpoAv, there are two kinds of
modulations whose periods equal 2N and 2NAV/Ag, re-
spectively, where Av and AJ are the void and junction
areas. a, defined by Eq. (12), greater than 4 for large
N results in an irreversible magnetization; this critical a

decreases with decreasing N and equals 2 when N = 1.
If a is large, the low-field hysteresis loop is of a surface-
barrier type for large N, with a positive last field hz for
"vortex exit;" hz becomes negative when N & 3, and
the surface-barrier type changes into one following tilted
Fraunhofer difFraction patterns. In comparison with uni-
form Josephson junctions, Josephson vortices in JJA's
become complicated; each vortex may contain more than
one 40 or become some kind of antivortex. These re-
sults may be applied to the grain clusters in HTSC's and
might be related to other properties of HTSC's such as
surface-barrier and fishtail effects in magnetization.
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