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Transitions from conventional metals and insulators to Kondo metals and insulators
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This paper reports calculations of the spectral weight for the lattice Anderson model, defined on a
square (four-site) cluster, by exact diagonalization. The calculations emphasize the change in the density

of states as the interaction strength U varies between weak and strong limits. We consider system pa-
rameters and occupancies such that the model resembles either a conventional insulator or a convention-

al metal for weak interactions. Then increasing interaction strength leads in the first case to a Kondo in-

sulator in which there is a gap at the chemical potential between hole and electron states. In the metallic

case, several features of the Kondo effect in bulk systems are observed. We also observe the splitting of
the fband, leading to the formation of an upper Hubbard band at high energy with some double-site oc-
cupancy, while states with two fholes on a site are also separated to form a satellite.

I. INTRODUCTION

In many solids, one finds both nearly free electrons in
wide bands and nearly localized electrons in narrow
bands associated with unfilled atomic shells. Examples
include transition-metal oxides, rare-earth and actinide
metals, and heavy-fermion systems. A wide range of
physical properties are found: antiferromagnetism
occurs, frequently with large atomic moments, but oc-
casionally with small ordered moments. One may find
also, mixed-valence, ferromagnetism, low- and high-
temperature superconductivity and so on. The lattice
Anderson model is probably the simplest theoretical pic-
ture which incorporates the essential physics of these sys-
tems. '

This paper is concerned with the description of the
electronic structure of materials of this type through nu-
merica1 studies of the spectral weight function. We inves-
tigate the nondegenerate lattice Anderson model through
exact diagonalization calculations on small clusters. The
model is defined by the Hamiltonian

H= t gc; c—+Ef gnf;

+Up nf;&nf;&+V+(c; f; +f; c; ) .

The notation is standard. We note that we include only
nearest-neighbor e electron hopping and single-site hy-
bridization. If the interaction of the f electrons with
each other is neglected, we have a conventional energy-
band problem in a very simple form. Usually, one wishes
to consider a parameter regime

~ V( ( ~t ~, in which a "c"
band centered at t =0 of a standard tight-binding form
hybridizes with localized "f" levels. The latter are
grouped at Ef if V=0, but acquire some width through
interaction with the "e" states. We will set t =1 in all
numerical calculations.

In this paper, we shall principally be concerned with
numerical studies of the periodic Anderson Model using

the exact diagonalization technique on small clusters.
Much of the previous work has focused on a description
of spin correlations in the ground state. We cite here
several calculations of this type. Work prior to 1990
has been reviewed by Parlebas.

If the parameters of the Hamiltonian are varied, one
encounter difFerent regimes of behavior, which we de-
scribed in a previous paper. These include doubly occu-
pied f states, mixed-valence (there are two regions), Kon-
do, and empty f states. In the Kondo region, the f states
are singly occupied, although their single-particle ener-
gies are lower than those of some of the c states which are
doubly occupied. Then one finds correlations between
the c and f electron spins. In the limit that there is ex-
actly by one f electron per site, one can treat the f elec-
trons as localized spins which are coupled by an exchange
integral J to the c electron spins. In this way, one arrives
at the Kondo lattice model, which is related to the
periodic Anderson model in much the same way as the t-
Jmodel is related to the Hubbard model.

The Hilbert space of the Kondo lattice model on a
given cluster is considerably smaller than that of the
periodic Anderson model. This permits one to consider
systems of larger size. Numerical calculations by several
methods have been reported: exact diagonalization,
quantum Monte Carlo, and renormalization-group
methods have been applied. Some references are also cit-
ed below. ' However, the Kondo lattice model can be
used only to describe the ground-state and low-energy ex-
citations. The upper part of the Hubbard split f band is
omitted. Moreover, it does not have a simple connection
to the small U limit of the periodic Anderson model.

Our work here attempts to describe some important
characteristics of single-particle states in the periodic An-
derson model. This is done through calculations of the
spectral weight function and the closely related density of
states, which are performed by exact diagonalization
methods on a small cluster. Previously, ' we have con-
sidered the model under conditions of strong interactions.
We varied Ef for fixed values of U, V, and t and calculat-
ed the spectral weight function in the diferent regimes of
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behavior mentioned above. Here we consider the spectral
weight function as U is varied for fixed Ef, V, and t so
that the system passes from weak- to strong-interaction
limits. We made two choices of the f level energy, Ef,
one of which implies that the system will go with increas-
ing U to the Kondo region in which f levels are singly oc-
cupied. The other leads into a mixed-valence region.

The model has the property that if the number of elec-
trons is exactly equal to the product of the number of
sites times the number of orbitals ("half filled" ), there is a
gap at the Fermi energy. The simulation then refers to
an insulator, and as U increases, we study the develop-
ment of the system from a conventional insulator into an
unconventional one (a Kondo insulator if we go into the
Kondo region}. To simulate a metallic case, we add an
additional electron, so that there is no gap in the U =0
limit. Then increasing U leads from a conventional metal
to an unconventional Kondo or mixed-valence metal.

Our simulations are, of course, restricted to quite small
systems. We consider four sites arranged as a square.
Since there are two orbitals per site, the dimension of the
Hilbert space of the model is the same as that of an eight
site one band Hubbard model. We could work with a
larger system (six or eight sites) were we to restrict the f
levels to exactly single occupancy, as in the Kondo lattice
model mentioned above, or if we were only interested in
the ground state. In that case, one could use the Lanczos
algorithm which makes calculations for systems with up
to eight sites possible using the full periodic Anderson
model. ' However, the investigations we report here re-
quire results over a large range of energies, and we have
found that the usual Lanczos method often becomes inac-
curate. The present calculations are based on complete
diagonalization of the Hamiltonian. Because the system
is so small, we emphasize what we believe to be generic
properties of the model which are qualitatively indepen-
dent of system size.

The remainder of this paper is organized as follows.
Our notation, and some (known) properties of the spec-
tral weight function are summarized in Sec. II. Our re-
sults are described in Sec. III. Finally, the work is sum-
marized in Sec. IV.

II. SINGLE-PARTICLE STATES
AND THE SPECTRAL WEIGHT FUNCTION

In this paper, we consider, as mentioned above, a ring
(square) of four sites. Only single-site hybridization is
considered. The calculation begins by diagonalizing the
Hamiltonian of Eq. (1}with U =0, which is done analyti-
cally. We obtain the single-particle eigenstates

Iq, &=&(~;,Ifi&+P; I(ci &) .

Here
~ fi ) ( ~ci ) ) is a single-particle state in which there is

a single f (c) electron on site i, and y is a composite index
which combines band number and wave vector. Note
that, in contrast with the more familiar case of the Hub-
band model it is not adequate to use the wave vector k
alone: there are two states for each k. The states

~ y~ )

are used to define the creation and annihilation operators
cr) cr.

The energies of the single-particle states are

k=(0, 0); E= ,' {E—f 2—t+[(Ef+2t) +4V ]'~ ],
k=(m, 0) and (O, m) (doubly degenerate),

(3a)

E = & [E +[E2+4V2](~~] (3b)

k=(m, m), E. = ,'tEf—+2t+[(Ef 2—t) +4V ]'~ ] . (3c)

The spectral weight function is given by

Ar (E) g [Zr ' 5[E Es(N}+E (N 1}+p]

+Z'" o[E E(N—+1)+Et(N)+p]] .

(4)

In this equation, g designates the ground state of the N
particle system, m designates an arbitrary state of the
N —1 or N +1 particle system, and p is the chemical po-
tential. The quantities Z are the squares of matrix ele-
ments,

z(h) = /( @~ '/c,

z( )
/ ( qN+1/ t /@N) f2

(Sa)

(sb)

The superscripts (i't ) and (e) denote holes and electrons,
respectively. For an added electron, the energy E of a
peak in the spectral weight function is the energy above
the Fermi energy at which an extra electron can propa-
gate. For holes, —E is the energy which must be added
to the system to remove an electron or propagate a hole.
The Z's are residues of the single-particle Green's func-
tion, and each is a positive quantity 1. The limiting
case, Z =1 corresponds to the concentration of the
entire spectral weight on one (many body) state m, which
is characteristic of noninteracting particles. The density
of states is defined by

n(E)=g A (E).

The spectral weight functions are normalized to unity if
integrated over all energies, i.e., including both hole and
electron energies.

f Ar (E)dE=1 . (7)

If we consider electron (E)0) and hole (E &0) energy
ranges separately, we have

g f A (E)=g (P ~c c ~f )=n (8b)

Not only are Eqs. (8a) and (8b) useful for checking nu-
merical calculations, they tell us something about the

g f ™A„(E)dE=Q(Q(1cc (y—)=2' n-
r r

(8a)

where n is the number of electrons of spin o. in the sys-
tem) and Nz is the number of sites. Also,
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(M(N)= —,'[E s(N+ I) Eg(N——I)] . (9)

This result follows from consideration of a limited
"grand" cannonical ensemble in which only states with
N —1, N, and N + 1 particles are included.

Note that if N =2' (half filling, singlet ground state),
the spectral weight functions for t and l spins are the
same and the spin index on A is unnecessary and may be
dropped. This is not the case for N=2Ns+1. Let, in

this case, nt =n i+1. If we add another electron of 1

spin, only triplet states are contributed to A; but if we
add one of l spin, both singlet and triplet states contrib-
ute. Similar considerations apply if N =2' —1.

III. RESULTS

In our calculations, the hopping parameter t was fixed
at 1.0. Most of the calculations employed a hybridization
parameter of 0.50. Two values of the f electron energy,

Ef = —3.0 and 0.0 were considered. The single-particle
level structure from Eqs. (3) is shown in Fig. 1. In the
case of Ef = —3.0, the f levels lie below the c levels; for

30-

2.0-

1.0-

effects of "doping". At half filling (assuming Nz is even)

the ground state is a singlet (this is known from previous
calculations } and n =n =Ns. Now let us add one
electron with spin up (0 = 1'}. Then the integrated weight
for electrons of spin 1' is Ns —1, and that for holes is

Nz+1. In other words, the spectral weight is increased
in the hole region of the spectruin and decreased in the
electron region. Obviously, the opposite occurs if an
electron is removed from the system.

We determine the chemical potential by

Ef =0.0, the f levels are in the middle of the c distribu-
tion and the levels with k =(n, O), and (O, m ) show strong
f-c hybridization. We made calculations for values of the
interaction parameter ranging from U=0. 1 (weak in-
teraction) to 8.0 (strong interaction), and for electron
numbers N =8 (half filling) and N =9. The half-filled

case simulates an insulator for all U; the other resembles
a metal. The strong interaction limit in the case of
Ef = —3.0 leads to (roughly) singly occupied f levels

when U is large (Kondo region); while Ef =0.0 leads to
mixed valence.

A. insulating case

For the geometry considered, the half-filled condition
corresponds, in the weak-interaction limit, to an insulat-
ing situation. However, there are significant differences
in the two cases considered. For Ef = —3.0, we see from
Fig. 1 that there is a rather large gap separating a narrow

f band from a broad c band. For Ef =0.0, however, the
U =0 gap is fairly small; separating an occupied f level
with k =(n, m)from. an unoccupied one with k =(0,0}.
This structure with strongly hybridized c-f levels above
and below the gap, occurs in the middle of widely spaced
c levels. In this case, there would not be a gap in the ab-
sence of hybridization.

One way to characterize the effect of interaction in
these systems is through the f state occupation. Table I
lists the number of f electrons per site, nf, for several
different values of U. It will be seen that for Ef = —3,
there are nearly 2f electrons per site when U is small.
The small difference from 2 is due to hybridization. It is
interesting that nf remains significantly larger than 1

even for U =2. This is discussed below. As U continues
to increase nf becomes close to 1, the Kondo situation.
However, for Ef =0.0, nf is close to 1 at U =0, and de-

creases, remaining smaller than 1 as U increases, corre-
sponding to mixed valence.

In the presence of interaction, the gap h(N) in an N
electron system, may be defined by

0.0-
U)I

-1.0-c

-2.0-

--dj--- (a, 0), (0, m)

,Q)

x x x x x x(&, o), (Q &)

(0 0)
Yi/Y/Yi (g 7[)

X X X X X X(g Q) (Q g)

(0,0)

5(N)=Eg(N+ I ) 2'(N)+Ex(N——1) . (10)

We tabulate 6 in Table II for several values of U.
In the case of Ef —3.0, we see that the gap decreases

with U, but not monotonically. The gap is larger for
U =4 than for 2, but is smaller for U =8 than 4. For
Ef =0.0, the gap is initially much smaller, increases with

-3.0— z,z)
g, P), (Q, K)
0,0)

TABLE I. Number of f electrons per site, nf, for insulating
(N =8) and metallic (N =9) cases.

-4.0—

FIG. 1. Single-particle energies (a) Ef = —3.0, (b) Ef =0.0.
Solid lines, f levels; dashed lines, c levels; crosses strongly hybri-
dized cf levels. The k's are ind-icated in parentheses. The de-
generate levels (m.,0) and (O, m) are represented by heavier lines.
The gap in the half-filled case is indicated by hatching. The ar-
rows show the motion of the chemical potential, p in the metal-
lic case, N =9. The foot of the arrow shows p for U =0.1, the
head indicates p for U =8.0.

0.1

0.5
1.0
2.0
4.0
8.0

1.886
1.827
1.714
1.472
1.077
0.978

)if
Ef = —3.0

1.926
1.891
1.821
1.659
1.112
0.995

0.975
0.886
0.821
0.767
0.739
0.727

lip

Ef =0.0

1.204
1.087
0.978
0.896
0.865
0.855
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TABLE II. Gap at the chemical potential for the half-filled
band. Note that all energies are ratios with respect to the hop-

ping parameter t, which has been set to unity.

40—

U

0
0.1

0.5
1.0
2.0
4.0
8.0

EI= —3.0

1.257
1.178
0.886
0.596
0.314
0.399
0.239

Eg =0.0

0.236
0.238
0.274
0.336
0.346
0.333
0.255

32—

24-
O

Chc 16-
Cl

U, reaches a maximum in the neighborhood of U =2, and
for larger U, approaches values similar to those for
E~ = —3.0.

It is interesting to consider the role of hybridization in
establishing a gap. First, consider the occupancy of lev-

els in the absence of any hybridization. Then the f levels
will be fully doubly occupied for

Ef & —U+E,"', (1 la)

where b,E,' ' is the lowest level in the c "band" (
—2 in the

present case}. If EI is larger than this, some electrons
will transfer from f to c states. If EI rises to the point
where

E) = —U+bE, , (1 lb)

where b,E, is the energy required to add one more elec-
tron to the c band if N/2 —1 are already present, all the f
states are singly occupied. In a bulk system, b,E, is the
Fermi energy of the c electrons. In the model we use
here, hE,"'=0 in the absence of hybridization. Thus, in

this model, when U )3, we expect to have two electrons
in the degenerate c states of k =(O, m. ) and (n.,0), which
can accommodate four. Thus, there is no gap in the
Kondo region in the absence of hybridization. In the
case EI=0.O, leading to mixed valence, the f states are
degenerate with the c levels with k =(m, 0) and (O, n ), and
there is again no gap (for any U) in the absence of hybrid-
ization.

Since hybridization is required to produce a gap in the
Kondo region (as well as in the case of mixed valence), it
is natural to refer to the gap as a hybridization gap. Ear-
ly numerical calculations (and ours are in agreement)
showed that the gap was proportional to V for small V,

as would be expected. It may then seem confusing to find

that a gap is present in the Kondo lattice model, which
apparently contains no hybridization. Hybridization has
simply been hidden by including it in the exchange cou-
pling of c spins and localized f spins through the cannon-
ical transformation leading from the Anderson lattice to
the Kondo lattice. '

Figure 2 shows the density of states for EI= —3.0 and
U =0.5. This illustrates the weak interaction limit. The
diagram shows the high density of states associated with
the f levels, separated by a significant gap from the c lev-

els, which are represented by the three well separated
peaks for E & 0. The figure is drawn with the zero of en-

ergy being the chemical potential, p. In fact, the f levels

(), . I j,gk Jj.
-8 -6 -4 -2 0 2 4 6 8

Energy

FIG. 2. Density of states for the conventional insulator
F. = —3.0, V=0.5, U =0.5. An artificial, Lorentzian broaden-

ing of 0.10 has been included.

have moved up in energy by about 0.4 with respect to
their position in Fig. 1.

As U increases, the f electron energies and the chemi-
cal potential rise, crossing the lowest c level and moving
toward the c levels with k =(m, 0) and (O, m. ) near E =0
(in Fig. 1}. Figure 3 shows the density of states for

EI= —3.0, U =8, which is strongly in the Kondo region.
In this case, the chemical potential is quite close to E =0
in Fig. 1, so that the energy scales of Figs. 1 and 3 have,
to graphical accuracy, a common origin. The pattern of
levels shown in Fig. 3 is quite different from that of Fig. 1

as a result of the continued rise in the f energies, showing
the pronounced Hubbard splitting of the f band, and the
appearance of satellite structure at negative energies (in

Fig. 3) in which there are two f holes on a site.
The peak at the highest energy (near E=EI+U =5)

represents the upper half of the Hubbard split f band.
This region, which in a high-resolution drawing would

show several peaks for each k, contains about 46% of the

20-

16-

O

CAc 8-
CD

C5

-8 -6 -4 -2 0 2 4 6 8

Energy

FIG. 3. Density of states for the Kondo insulator:

Eg = —3.0, V=0.5, U=8.0.
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total electron spectral weight (i.e., 46% of the spectral
weight for E)0}. Coming down in energy, we encounter
a peak at E =2 of (nearly) unit spectral weight associated
with the c states of k =(n, m. ),. little altered in position
from that shown in Fig. 1. Near E =0, we find three lev-
els one for each k, too closely spaced in energy to be
resolved in the drawing, which define the upper portion
of the gap. Most of the spectral weight here is associated
with the degenerate c states of k =(m., O), (O, m. }, which
remain close to the position in Fig. 1. However, the
weight (Z) of the members of this pair is roughly 0.5
each, instead of 1.

On the negative energy side of the gap, we encounter a
mirror image (roughly) of the states just above the gap,
again with most of the spectral weight (0.5 each) being in
the k =(m, 0), (O, m ) pair. The c state of k =(0,0), which
is accompanied by considerable subsidiary structure (in-
teraction broadening) produces the peak near E= —2.
The lowest-energy peaks in the range —3.6&E (—3.2
are associated with the states in which two f holes are on
the same site. These states would form a satellite peak in
a photoemission experiment. Here, they have about 45%
of the total hole spectral weight (spectral weight for
E &0}.

Although Eqs. (8a) and (8b) require, in the half-filled
case in which n =Ns, the total spectral weight for elec-
trons and holes is the same, this does not apply to the in-
dividual components associated with particular single-
particle states. For example, at U=8, 95% of the in-

tegrated spectral weight associated with the k =(0,0) "c"
type state is in the hole region, and 74% of that is associ-
ated with the peak near E=—2. This state has changed
from an unoccupied to an occupied state as U increased,
but it has remained essentially a noninteracting single-
particle state. Similarly, the k =(m, m ) "c"state remains
a single-particle state in the unoccupied (conduction-
band) region. The spectral weight associated with the c
states of k =(m.,0) and (O, m. ) is split into the two peaks
adjacent to the gap. We think that reduced spectral
weight in the gap region (about —,

' that expected in a con-
ventional insulator) is one of the characteristic features of
the Kondo insulator.

The spectral weight associated with the f states is quite
diffuse, with about half being associated with holes and
half with electron states. This is an obvious consequence
of the Hubbard splitting of the f levels.

Figure 4 shows the density of states for Ef =0.0 and
U=4. In this case, our simulation refers to a mixed-
valence insulator. Starting at high energy, we encounter
in the neighborhood of E =4, the upper half of the split f
band. The peak close to E =2 is associated with the c
state with k =(n, n). The gap r.egi. on shows a highly
asymmetric distribution of states. The peak on the
positive-energy side is principally associated with the
doubly degenerate strongly hybridized states of
k =(n., O), and (O, m) plus the "f"state of k =(0,0). The
spectral weight in this region has been reduced in com-
parison with that for small U by the formation of the
upper Hubbard "f"band.

On the hole side, we encounter first the f state of
k =(n, m ), a weak f sta. te with k =(0,0), split from the

28

24-

cn 20—
0)

cf) )6—
O

0)
8-

J.. , i~~)i J~. .&3
-8 -6 -4 -2 0 2 4 6 8

Energy

FIG. 4. Density of states for the mixed-valence insulator:

Ef =0.0, V=0.5, U=4.0.

one above E =0, and then a complex of three states
deriving from the lower hybridized states of k =(m., O),
and (O, n } (see Fig. I). The lowest-energy peak is associ-
ated with the "c" state of k =(0,0). There is no low-
energy satellite structure associated with two hole f
states (in contrast with Fig. 3). The choice of Ef has
forced these states into the energy range between E= —1

and E=0. The result is a complicated upper valence
band while the conduction band has remained simple in
comparison.

B. Metallic case

TABLE III. Combined integrated spectral weight at the
chemical potential (Z=Z"+Z'"'); E", energy of first triplet
excited state of an added hole; E', energy of first triplet state of
an extra electron. Calculations were made for Ef = —3.0,
V =0.5.

0.0
0.1

0.5
1.0
2.0
5.0
8.0

2.00
2.00
2.00
1.99
1.84
0.21
0.09

1.257
1.174
0.863
0.537
0.178
0.008
0.003

Ee

1.874
1.861
1.788
1.623
0.989
0.015
0.003

The lowest state of either an added electron or of a
hole is a spin singlet, and the first excited state is a spin
triplet. The integrated spectral weight at the chemical
potential IM (electrons and holes combined) and the excita-
tion energies of the first triplet states are given in Table
III for a value of Ef( —3.0) leading into the Kondo re-
gion for large U, and in Table IV for Ef=0.0 corre-
sponding to mixed valence. Results for some specific U
are described in more detail below.

The density of states for Ef = —3.0, U=0. 5 (but
N=2Ns+I) is shown in Fig. 5. This is quite similar
qualitatively to that of Fig. 2, except that the chemical
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0.0
0.1

0.5
1.0
2.0
4.0
8.0

2.00
1.99
1.84
1.42
0.95
0.73
0.64

0.236
0.214
0.147
0.102
0.069
0.051
0.044

0.382
0.338
0, 190
0.091
0.031
0.013
0.008

TABLE IV. Combined integrated spectral weight at the
chemical potential (Z=Z"+Z'"'); E„", energy of first triplet
excited state of an added hole; E, , energy of first triplet excited
state of an added electron. Calculations were made for
EI=O.O, V=0.5.

E

20-

16-

O

c 8-
Q)
Cl

-4 -3 -2 -1 0 1 2 3 4 5 6

32-

28-

24-0)

g) 20—
o 16-
CD

12-
C3

, a, EJL
-4 -3 -2 -1 0 1 2 3 4

Energy

FIG. 5. Density of states for the conventional metal:

Eg = —3.0, V=0.5, U=0. 5.

potential is now in the middle of the peak associated with
the c state of k =(0,0). The structure is accurately de-
scribed by the single-particle levels of Fig. 1.

However, there is one difference hidden in the
artificially broadened peaks of Fig. 5. There is a small ex-
change splitting referring to singlet and triplet states.
The outer "c"electron resides in a k =(0,0) state outside
a singlet core. Hence if an additional electron is added
leading to double occupancy of this state, a singlet must
be formed; likewise, if the outer electron is removed, the
result must be a singlet. However, if an electron is added
to or removed from other states, both singlets and triplets
may be formed. The splitting of the upper c states (E)0}
is quite small [0.002 for k =(n, O); (O, n. ), and 0.0007 for
k =(n, n)] and ferromagnetic in sign: the triplets are at
lower energy than the singlet. The splittings of the hole
states are larger, though still small [0.05 for k =(m, n. ),
(m, O), and (O, m ); 0.03 for k =(0,0)] and antiferromagnet-
ic: the singlets are at lower energy than the triplets.

We now turn to the case EI= —3.0, U =8 for which
the density of states is shown in Fig. 6 (which may also be
compared with Fig. 3). The chemical potential has
moved into the region of the k =(~,0); (O, m. ), states in
Fig. 1. As in the case of the Kondo insulator discussed
above, f spectral weight has been significantly redistri-

Energy

FIG. 6. Density of states for the Kondo metal: EI= —3.0,
V=0.5, U=8.0.

buted to the upper Hubbard band (near E =5) and to the
low-energy satellite region below E = —3. The c states
near E=+2 are present in the form of multiple split
peaks at these energies.

There are two special features: The lowest-energy state
of an added electron or the highest state of a hole is a
singlet of k =(0,0), predominately f character, and of
rather small combined integrated spectral weight (0.09).
Most of the f spectral weight associated with k =(0,0) is
in other regions of the spectrum, but a small portion has
accompanied the chemical potential. The small spectral
weight implies that this state is a highly correlated
many-body state. The lowest excited state on the elec-
tron side is a spin triplet belonging to k =(m, O), (O, n ).
This is mostly c like with much larger integrated weight
(about 0.5). The excitation energy is quite small (only
0.003). This implies that the spin correlations of the
ground state will be broken at quite low temperatures,
leading to a Curie-Weiss magnetic susceptibility. The
features of a singlet ground state and low-temperature
breakup of spin correlations characterize Kondo
behavior, and justify our characterization of our model as
a Kondo metal, although the energy scale is not neces-
sarily that encountered in real metals.

We have made similar calculations in the mixed
valence region, E&=0.0. The densities of states are quite
similar to those shown previously, and we do not present
a separate figure. The spectral weight at the chemical po-
tential (Table IV} is much larger for large U in the mixed
valence region than in the Kondo region. The triplet
electron and hole excitation energies are small for large
U, but are bigger than in the Kondo region. At high en-
ergy, there is, first, the upper f band, then the broadened
c state of k =(m, m). Near E =0, the chemical potential
is in a complex peak involving a k =0 spin singlet state of
primarily f character and strongly hybridized spin trip-
lets belonging to k =(n, O} (O, vr). For either an added
electron or a hole, the lowest state is a spin singlet with
the first excited state being the triplets, as discussed pre-
viously. The spectral weight of the singlet is much larger
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than in the Kondo region, indicating greater single-

particle character. In the case of a hole, the lowest excit-
ed state is also a spin triplet belonging to k =(n, m

.
) with

a triplet of k =(n, O), (O, n ) close by. A major difference
between the spectra in the mixed-valence region and that
in the Kondo region is that there is no region of states at
negative energies below the lowest c states in which two
holes are on the same site. As in the insulating case,
shown in Fig. 4, this structure is spread over a range of
energies between the lowest c state and the chemical po-
tential.

IV. SUMMARY

We have carried out exact diagonalization calculations
for the lattice Anderson model defined on a four site,
square cluster. These computations emphasize the devel-

opment of the density of states as one passes from the
weak interaction (smaller) limit to strong interactions.
Parameters of the model were chosen so that in two
cases, the strong interaction limit is in the Kondo region,
and two lead into mixed valence. Occupancies were
chosen so that both insulating and metallic behavior
occur.

For a half-filled band case, the system resembles an in-

sulator for all interaction strengths U; however, the gap

can result either simply from the placement of the f lev-

els below the c levels so that they are doubly occupied, or
from removal of accidental degeneracies by hybridization
when the f levels are in the middle of the c levels. As U
increases, the f states become singly occupied, and the
existence of a gap requires hybridization.

In the metallic case, the lowest single-particle state is a
singlet. The integrated spectral weight of this state is
rather small for large U, indicating strong correlations.
The Srst excited state is a triplet, with a small excitation
energy. These features will lead to behavior analogous to
that encountered in the analysis of the Kondo effect in

bulk systems.
Increasing interaction strength leads to a splitting of

the f band. States in which there is a double occupancy
of f orbitals rise to high energies, where they form the
upper Hubbard band. This band acquires spectral weight
from lower levels, which can only be singly occupied.
There are also levels with binding energies close to the
bare f level energy in which two f holes are on the same
site.
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