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The vortex mechanism, leading to very high-frequency random telegraph voltage noise signals switch-
ing with MHz frequencies, is discussed. The mechanism assumes that vortices do not flow freely across
dc-current-biased superconducting films but undergo subsequent processes of trapping and releasing
from pinning centers. Random transitions of vortices between pinned and flow states result in the ap-
pearance of a Lorentzian component in a fluctuating-voltage power spectrum. It is shown that fluctua-
tions of randomly distributed Abrikosov vortex density, rigidly moving across the strip, contribute an os-
cillating component to the noise spectrum. The distance between oscillating peaks corresponds to the

time of flight of vortices across the strip.

I. INTRODUCTION

One of the most characteristic features of high-
temperature superconductors (HTSC’s) is the strong
manifestation of various flux processes. In fact, the ex-
istence of many flux phases and the possibilities of transi-
tions between them are the major features distinguishing
HTSC materials from “classical” superconductors. Al-
though the physics of vortex states and processes in oxide
superconductors attracts the attention of many research
groups, we are still far from having definite answers to
many fundamental questions concerning the dynamics of
vortex movements and, in particular, we are still unable
to identify proper physical mechanisms leading to pro-
nounced noise voltages showing in current-biased HTSC
thin films. !

In general, movement of flux vortices leads to voltages
across current-biased superconducting samples, voltages
possessing a dc voltage and a fluctuating component.
Fluctuating voltages in HTSC’s typically manifest them-
selves as current-, temperature-, and magnetic-field-
dependent strong 1/f-like noise and/or pronounced ran-
dom telegraph noise signals (RTS’s). RTS noise and 1/f
noise fluctuations are closely related. According to the
widely accepted Dutta-Horn-Dimon model,? 1/f noise in
solid-state systems originates from actions of many ele-
mentary two-level fluctuators (ETLF’s) undergoing
thermally activated or tunnel transitions between their
energy wells, thus generating elementary RTS contribu-
tions to 1/f noise. The time-domain wave form of a ran-
dom telegraph signal demonstrates random transitions
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between two different values of the fluctuating physical
quantity, usually referred to as up and down levels,
whereas RTS power spectra in the frequency domain
have a Lorentzian shape. Incoherent superposition of
many RTS’s possessing a proper distribution of cutoff fre-
quencies of their Lorentzian spectra leads to 1/f noise.
There are several reports on experimental observations
of low-frequency RTS noise in HTSC materials. "3 Tele-
graph signals were detected as a straightforward RTS
flux noise in free-standing HTSC samples at temperatures
close to the superconducting transition,*® as well as RTS
voltage wave forms superimposed on a constant voltage
developing across dc current-biased HTSC macro-
bridges,* superconducting quantum interference devices
(SQUID?’s),” and thin film strips.®~!! In general, high
levels of 1/f and low-frequency RTS noise that are ob-
served in HTSC’s can be ascribed to pronounced random
movements of flux lines and high concentration of de-
fects, frequently acting as intrinsic Josephson junctions.
High temperature of operation, strong anisotropy, and
relatively low flux-pinning energies of HTSC’s result in
easy random movements of flux vortices. Spontaneous
flux noise converts into observable voltages by means of
an intrinsic flux-to-voltage conversion mechanism. The
generation of low-frequency voltage noise in HTSC’s
seems therefore to be a complex and indirect process
most likely involving two separate mechanisms, the fluc-
tuator and the detector mechanisms. The fluctuator ac-
tion is responsible for the kinetics of random movements
of flux lines between TLF wells, while the detector action
couples these fluctuations to observable quantities.® !
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On the basis of our experimental observations we have
tentatively associated origins of macroscopic low-
frequency RTS’s to mechanisms depending on the sample
crystalline microstructure. In oriented and epitaxial
HTSC films TLF fluctuators cause random changes of a
number of vortices participating in flux-flow or flux-creep
dissipation processes, thus causing fluctuations in sample
resistance. Under a constant current flow resistance fluc-
tuations convert into fluctuating voltages.!! Generation
of telegraph voltages in granular films possibly involves
another fluctuator and detector mechanism. The fluctua-
tor mechanism relays activated jumps of flux lines be-
tween distinct pinning sites, while the detector action
consists in direct detection of flux changes by intrinsic
Josephson quantum interferometers. *°

Apart from the low-frequency telegraph signals,
switching with frequencies from mHz up to the kHz
range, one of us has reported on exotic manifestations of
very high-frequency (VHF) RTS’s, switching with rates
well in the MHz range.!? In a marked difference to the
usual low-frequency RTS’s, the Lorentzian shape of the
VHF telegraph noise power spectrum is modified by an
additional oscillating component. !* This is a feature that
is not observed in the low-frequency RTS spectra.'® Very
high switching frequencies, to say nothing about the ex-
cess components in the voltage spectra, cannot be ex-
plained in the framework of any mechanism previously
invoked to explain the nature of low-frequency RTS volt-
ages.

In the present paper we propose an intrinsic mecha-
nism which accounts for the generation of VHF tele-
graph signals in superconducting films, and simultaneous-
ly predicts the appearance of additional periodic com-
ponents in the frequency spectra. The mechanism relays
on an assumption that vortices do not flow freely across
dc current-biased superconducting films but undergo sub-
sequent acts of trapping and releasing from pinning
centers. Random transitions of vortices between pinned
and flow states lead directly to the appearance of
Lorentzian components in the voltage power spectrum.

I1. BASIC EQUATIONS FOR FLUX MOTION

The total voltage due to vortex motion can be
represented as a superposition of contributions from indi-
vidual vortices. The relation between voltage V; pro-
duced by the ith vortex and its velocity is determined by
a resolution function g (p; ),

V.=g(p,)v, , (1a)

where p; stands for the ith vortex radius vector in the lab-
oratory reference frame. '* The detailed form of g (p;) de-
pends on the sample geometry and on the layout of the
voltage measuring circuit, '*
o
g(p) ———[bm,(p)—bmb(p)] . (1b)
Here v, is the vortex velocity, and b,,, and b,,, are the

values of magnetic induction due to the current flow 7,
in the measuring circuit on the top and on the bottom of
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the superconducting slab, respectively. Let us define the
time-dependent vortex-flow density J(p,?) that contains
all the information about the vortex dynamics, '°

J(p,t) Ev )8,p—pi ()], 2)

and express the total voltage due to the vortex motion us-
ing this quantity,

= [d%g(p)(p,0) . (3)

Obviously, voltage (3) possesses also a fluctuating com-
ponent,

SV(=V () —(V(T),= [dg(p)lp,), 4
where

8J (p,t)=J (p,t) —{J (p,1)),
and ( - - - ), stand for time averages. We can now write

the voltage autocorrelation function as

W, (r)=(8V()8V (¢t +71)),

—fdzpfdnga 850 K aglpop' T, (5)

where the vortex-flux correlation function

K plp,p',7)={8J ,(p,1)8] g(p’,t + 7)), (6)

is expressed in Cartesian coordinates a and 3.

III. VORTEX STATES IN CURRENT-BIASED FILM

In the following we shall consider a superconducting
slab in a current-induced dissipative state. In real sam-
ples possessing a certain distribution of pinning energies
and for typical current flow levels used in experiments,
i.e., for currents not exceeding the sample critical current
by more than 2-3 times, it is physically reasonable to as-
sume that we deal with two subsystems of vortices in the
sample. Part of the vortices, with an average concentra-
tion n,, will be pinned, while another part, with an aver-
age concentration n, will be in the flow state due to the
Lorentz force of the bias current. Let us assume that on
average vortices are uniformly distributed in the sample
and that the probabilities of transitions of vortices be-
tween the two subsystems obey the Poisson law. This
means that the probabilities of finding a vortex in a trap,
Popin> and the probability of vortex depinning, Py, during
a time interval ¢ are given by

Pon(t)=1—exp(—t/7/),

Pdep(t)z

(7N
l—exp(—t/7,),

where 7, and 7, are the average lifetimes in the flow and
pinned state, respectively. The average concentrations of
vortices in both states, n, and ng, are related to the
relevant average lifetimes, 7 f and Tps

e _B W _N_B T )
PS¢y, TS g T,

where N, and N, are the numbers of pinned and flowing
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vortices, W and L stand for film width and length, respec-
tively, and B is the value of the magnetic induction vector
applied perpendicular to the film surface S =WL. Ac-
cording to Eq. (5) voltage noise can be expressed in terms
of a vortex-flux correlation function. If the dimensions of
the measuring circuit are large with respect to the inter-
vortex spacing, we can treat both vortex subsystems as a
continuum. In the following we assume that bias-current
fluctuations are negligible; therefore, consequently, we
neglect velocity fluctuations of the flowing vortices. Un-
der these assumptions we obtain, within the first-order
approximation, the change in the vortex-flow density
8J f( pst ):

SJf(p,t)zvoanf(p,t) 5 9

where v, is the average flow velocity of the vortices.

Let us define the geometry of the problem as illustrated
in Fig. 1. The assumed geometry is close to the typical
experimental configuration.'? The thin-film supercon-
ducting strip possesses length L in the x direction, width
W in the y direction, and thickness D in the z direction,
such that L >>W >>D. Measuring leads are attached at
points [0,0] and [L,0], and kept far away from the sur-
face elsewhere. Current flow is directed along the strip
length; consequently vortices flow perpendicularly to the
strip, in the y direction. Neglecting the effects of the
edges of a strip, we assume for the geometrical factor
g (p) the form appropriate for a thin-film sample:'>-!¢

_ &
g(p)= W (10)

where y is the unit vector in the y direction.

Fluctuations of vortex concentration around the mean
value n,(p,t) at a given point of the sample may result
from the randomness in the distribution of flowing vor-
tices in space and from fluctuations in the ratio of the
number of pinned to the number of flowing vortices, as
determined by Eq. (8). Taking this into account we write

FIG. 1. Geometry of the problem.
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for the vortex-flow correlation function
K o5(p,p's)=038,,85,(8n,(p,20)8n,(p",1o+1)) ,  (11)

where 8, and 84, are Kronecker symbols.

Calculations of the density correlator
(8n(p,10)8n,(p’,15+1)) for an arbitrary vortex concen-
tration and for an arbitrary relation between the lifetimes
7, and 7, and the time of flight of vortices across the
sample, 7=W /vy, is a complicated and difficult
mathematical task. However, the problem may be
significantly simplified by neglecting interactions between
the vortices. We adopt the approximation of noninterac-
tion throughout the paper. Representing the average
concentration of flowing vortices as

nf(P,t)zzs(p—p,(t)) s (12)

where index i counts all flowing vortices, we obtain for
the density correlator

(8n;(p,t0)8ns(p',t+1))
={n;(p,tg)n (p’,tg+1)) —ns(p,1))*
=N;[{8(p—p;(1:))8(p’' —p;(ty+1)))
—{(8(p—p;(t5)))?] . (13)

Neglecting the nonsignificant constant term we write for
the density correlator

(8(p—p;(tx))8(p" —p;(to+1)))
=pslp,te,p'stote) . (14)

Prpstg,p’sto+1) is a two-coordinate distribution func-
tion for a flowing vortex. Since we deal with a spatially
homogeneous one-dimensional problem, where vortices
move only in the y direction, the function
Pr(pstg,p’sto+1) can be represented as follows:

pf(p,to,p’,to+t)=pf(p—p',t)
=§;8(x —xp =y, (15)

where p,(Y,¢) is a one-coordinate probability distribution
function for a flowing vortex, located at the moment t=0
at the coordinate Y=0. In order to find this function one
has to derive and solve a set of differential equations for
probability distribution functions for flowing, p,(Y,?),
and pinned, p,(Y,t), vortices. We approach this problem
by using the well-known method of a two-state random

walk model'”!® and obtain the following set of
differential equations for p; and p,:
p; 9p; P1 P>
— =—vyo ——+t—,
at aY Tf TP
(16)
%, _pi_ P2
at T T

The initial conditions are set by the definitions of both
functions, namely,

p1(Y,0)=8(Y) and p,(¥,0)=0. 17
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At this point, to simplify the calculations, we assume that
the vortex system behaves in a symmetric way. That is,
average lifetimes in the pinned and in the flowing states
are equal, 7,=7,. In this approximation we may obtain
an analytical solution for p,(Y,¢) from Egs. (16):

Y II (a )

L 8(Y —vyt)

(Y,t)=exp(—t/7;)
P exp Tf (vors)? @

18
XH(Y)H (vyt —Y) , 18
2Y —vyt ¢ 1AV
a= —— - | y
Uon Tf

where I,(a) is the Bessel function of the first order of an
imaginary argument and H(Y) is the Heaviside step
function.

Let us evaluate the form of the spectral density of volt-
age fluctuations due to the vortices that during their life-
time in the film undergo several subsequent acts of trap-
ping and releasing from pinning centers. In order to ob-

ASHKENAZY, JUNG, KHALFIN, AND SHAPIRO 50

easily shown that in this limit the function p,(Y,¢) has a
sharp peak in the vicinity of the point ¥ =v,t/2. The
characteristic width of this peak is much smaller than the
sample width W. Observe that the geometrical factor
g(p)=g(y) varies slowly, with respect to the variations
of p,(Y,t), at distances of the order of W. Therefore the
spatial dependence of the distribution function p,(Y,t)
can be approximated by a & function 8(Y —vyt /2) while
integrating Eq. (5) over y. Within this approximation one
obtains

vy (=n,Lv} [ p,(Y,|t)dY

w/2 .
x [ o, &y WIg,y vl /2)dy , (19)

where the quantity [p,(Y,[¢[)dY denotes the total prob-
ability of finding a vortex in the state of flow. This proba-
bility can be directly calculated by integrating Eq. (18)
over Y,

) 1+exp(—2t/7;)
tain the equation for the spectral density in these condi- f (Y, [thdY = 5 . (20)
tions we proceed with the calculation of the voltage auto-
correlation function (5) at the limit vy7, <<W. It can be  Putting Eq. (20) into Eq. (19) we have
B N B w2
W, (1)=1n Lo [f_ 7 8,018, (v +oltl /22y +exp(—2ltl /) [ (g, (v +uglel /20dy | @D

Since the exponential prefactor of the second integral
term in (21) decays at times of the order of 7, in the limit
of 7, <<7 we are entitled to substitute g,(y +u,lt 72) by
g,(y). Putting in the geometrical factor for a thin-film
narrow strip configuration from Eq. (10) we arrive at the
final equation for the voltage autocorrelation function:

_ BoovsL
AWc?

Using the Wiener-Khintchine theorem we find the spec-
tral density of voltage fluctuations due to the discussed
vortex processes:

W, (t) [(1—|t|/2‘r)+exp(—Zit|/‘rf)] . (22)

_ BogoL | sinX(wr) 4 Tr 1

2

Sy ~
viw) c (@) 4T [(07,/2)+1]

(23)

The shape of the power spectrum is determined by two
contributions, oscillating and Lorentzian. The oscillating
term is due to the motion of randomly distributed vor-
tices across the strip width. The characteristic frequency
of oscillations is determined by the inverse of the average
time of flight of vortices 7. The Lorentzian term reflects
processes of random transitions of vortices between
pinned and flow states. The relative contribution of both
terms to the total power spectrum depends on the actual
frequency range. At low frequencies, o ~1/7<<1/7/,
spectrum (23) is dominated by the oscillating term, while

f

at high frequencies, o ~1/7 >>1/7, the Lorentzian term
prevails. The crossover frequency between these two re-
gimes is of the order of a)~(TTf)_“2. Figure 2 demon-
strates the evolution of the shape of the power spectrum
described by Eq. (23). Parameter a, a=71,/7=I/W,
where [ =v,7, is the mean distance between pinning
centers and W is the strip width, describes the intensity
of processes of random transition between different vor-
tex states.

o
—_
N

[Bov,2Le?]

POWER SPECTRUM

FREQUENCY [u7]

FIG. 2. Shape of the power spectrum of voltage fluctuations
across dc current-biased superconducting thin-film strips as pre-
dicted by the model for various intensities of processes of ran-
dom interruptions of vortex flow; see text.
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IV. CONCLUSIONS

We have demonstrated that processes of randomly in-
terrupted flow of vortices across dc current-biased thin-
film superconducting narrow strips lead to the appear-
ance of fluctuating voltages across the strip characterized
by a power spectrum contributed by oscillating and
Lorentzian components. As discussed by van Oojen and
van Garp and recently by us, flow of randomly distribut-
ed vortices, !¢ or flow of a vortex lattice with frozen densi-
ty fluctuations,'® results in oscillatory character of the
power spectra. The Lorentzian term may reflect a ran-
dom telegraph shape of the noise wave form in the time
domain. Indeed, random telegraph noise possesses a
Lorentzian spectrum in the frequency domain. However,
since the random telegraph noise is a strongly non-
Gaussian process, the presence of the Lorentzian term in
the power spectra does not allow one to unequivocally
claim the existence of RTS’s in the time domain. Howev-
er, if one assumes that due to the collective pinning
effects vortices move as bundles, coherently undergoing
random transitions between pinned and flow states, then
time-domain wave forms will take the form of the ran-
dom telegraph voltages seen in the experiments. Formal-
ly, this means that in Eq. (12) index i should count now
vortex bundles while the factor g (p) should be multiplied
by n,, where n, is the number of vortices in the bundle.

Let us estimate the characteristic switching frequency
of the telegraph signal corresponding to the Lorentzian
component in the power spectrum. Let us consider a typ-
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ical geometry of a strip of width W ~0.1 mm and thick-
ness D of the order of 1 um, biased with a current flow
I~1 mA. Assuming that the average distance between
effective pinning sites is of the order of / ~0.1 um and
taking for the viscosity 7~107% g/cms, we estimate
Tr=1/v4=InWDc /¢yl ~0.5 us. The cutoff frequency of
the considered Lorentzian spectrum o, =2/t falls thus
into the VHF range as was observed in the experi-
ments, 213

In conclusion, we have proposed a mechanism of vor-
tex fluctuations that may be responsible for the genera-
tion of very high-frequency random telegraph voltages
across dc current-biased superconducting strips. The
mechanism consists in random transition of collectively
pinned vortex bundles between pinned and flow states
during their time of flight across the strip. Lorentzian
power spectra for such processes are accompanied by an
oscillating component, particularly dominating the low-
frequency part of the spectra. An estimation of the tele-
graph signal switching frequency gives frequencies ex-
tending far into the MHz range. Therefore this mecha-
nism may lay behind the exotic VHF’s that show in
HTSC thin-film strips.
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FIG. 1. Geometry of the problem.



