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Unconventional superconducting order parameters without nodes:
The density of states and impurity scattering
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We compute the density of states X,(E) for a superconductor having an order parameter A(k) with
the following two properties: (i) ~b, (k)

~
is a constant, independent of k; (li) the average of b(k) over the

Fermi surface vanishes: ( b, (k) ) =0. We particularly stress the efFect of impurity scattering. We can do
the calculation for an arbitrary Fermi surface, and any order parameter with the above two properties.
Since our family of order parameters has no nodes, our results pinpoint the effects due to the vanishing
Fermi surface average, (A(k) ) =0.

I. INTRODUCTION

The properties of superconductors with unconvention-
al order parameters have received much theoretical at-
tention recently, ' in the context of heavy-fermion and
high-T, materials. An unconventional order parameter,
b(k), is one with less rotational symmetry than the
normal-state lattice. Such an order parameter has a non-
trivial k dependence, which can lead to interesting prop-
erties. These novel effects are generally due to two relat-
ed factors: (a) the average of b, (k) over the Fermi surface
vanishes —(b,(k)) =0 and (b) in many cases b, (k) van-
ishes at points or lines on the Fermi surface.

Superconductors with such order parameters are sensi-
tive in many ways to scattering by ordinary, nonmagnetic
impurities. ' However, it is difficult to disentangle what
role is played by each of the two factors listed above.
Thus, in this paper we consider a wide family of order pa-
rameters in which (a) is present but not (b). To be pre-
cise, we consider a class of order parameters satisfying
the following two conditions.

(i) The magnitude of b, (k) is independent of k:
~
b (k) ~

=b„ for all k. Thus there are no nodes.
(ii) The Fermi surface average vanishes: ( b (k) ) =0.
Then, the effects that separate our class of order pa-

rameters from conventional ones are strictly due to factor
(a); the order parameters we consider have no nodes.

We consider systems with an arbitrary Fermi surface,
which may have several disconnected pieces. For this
general case, we are able to compute N, (E), for all order
parameters satisfying conditions (i) and (ii) listed above
Some examples of b, (k)'s within our family are: we can
consider a Fermi surface made up of several disconnected
pieces, such that A(k)=+6, on some pieces and
b,(k)= b, on others, giving (—b,(k)) =0, and we may
consider a circular Fermi surface, parametrized by the
polar angle $(k)[0~2m. ] with b,(k) =b,e'"&'" .

It should be stressed that, in the absence of impurity
scattering, the density of states for our family of uncon-
ventional order parameters is exactly the same as for a
conventional order parameter with b,(k)=b, for all k.
Impurity scattering drastically changes the density of

states for the unconventional case. The interesting struc-
ture we find at low energies has nothing to do with the
gap nodes.

Conditions (i) and (ii) are appropriate for a spin-singlet
order parameter of the form b, &(k) =itrsttb, (k) Our .re-
sults also apply to triplet order parameters, b, @(k),
which satisfy the following conditions: A,(k)ht't, (k )

=6 5a&, ( b &(k) ) =0, where 6 is independent of k.
Buchholtz and Zwicknagl, in a pioneering paper, con-

sidered a particular triplet order parameter satisfying the
above conditions. They discovered much interesting
structure in the density of states resulting from impurity
scattering. Hirschfeld et al. treated the optical conduc-
tivity and density of states for our family of order param-
eters. Our work generalizes and extends these results.

It is also of interest to point out that the problem con-
sidered in our paper has an exact mathematical parallel
to a quite different physical situation, namely, the prob-
lem of classical-spin impurities in a conventional s-wave
superconductor. This problem has been treated by Shi-
ba, by Rusinov, ' and by Chaba and Nagi", the Born
limit has been treated by Abrikosov and Gor'kov, ' and
by Skalski, Betbeder-Matibet, and

gneiss.

'

Our general problem can be mapped into Shiba's, for
example, by identifying our parameters 0. and ~ with
Shiba's parameters y and v; in the following way:

Then, Shiba's equation (3.9) is exactly the same as our
(28). In the Born litnit, our parameter r, with o =0, is
identified with the parameter I of Skalski et al. in the
following way:

Equation (2.13) of Skalski et al. is then equivalent to our
(23). The interested reader can find points of contact be-
tween our work and the work presented in these five pa-
pers.
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II. CALCULATION OF N, (E)

Here, N(0) is the density of states at the Fermi surface in
the normal state, e is a Matsubara frequency, and n(k) is
the density of states at k, normalized to one:

1=f d kn(k) .
Fs

The Fermi surface integral of any quantity, such as h(k),
is denoted by (b,(k)). Then, for our class of order pa-
rameters we have

(4(k))= f d kn(k)h(k)=0. (4)

For our class of order parameters, the propagator
g3(e, k} is in fact independent of k; it is given by the fol-
lowing formula:

in(s—+ia3 }
g3(e, k) =g3(e) =

[(6+ia ) +b, ]'

Thus,

N, (E)= Im[g3(iE~E irt)]—.N(0)
(6)

The impurity self-energy a (s) is given by tt =ct(e), where
c is the density of impurities and the t matrix is given by

t(e)=v+v fd kg(e, k)t(e)n(k) . (7)

In this section we explain how to calculate the density
of states for a singlet gap b,(k) satisfying conditions (I)
and (II) given in the previous section. N, (E) is given in
terms of the r3 component of the quasiclassical propaga-
tor, g(E, k)

N, (E)= Im f d k n(k)g3(ie~E —iri, k) (1)
N(0) 2A.

7T Fs

Im(g3(is~E ir—i, k)) .N(0)

1 N (0}m'cv

1+[N(0}n.u ]

[N(0)77v ]
1+[N(0)n v ]

(10)

Here, ~ is the normal-state impurity scattering time, and
cr is proportional to the cross section for an electron at
the Fermi surface scattering off a single impurity.

We note here that the magnitude 6 will in general be a
function of the impurity scattering. Thus the reader
should bear in mind that whenever 6 appears in our
equations, it should be interpreted as the actual value of
the order parameter at the particular value of cr and ~ in
question.

In Fig. 1 we show a plot of N, (E ), computed for a par-

Here v is the strength of the impurity potential, assumed
to be an s wave. Since ( b(k) ) =0, t, , and t2 are zero; a3
is determined from the following equation:

cN(0)v g3

1 —[N(0)ug3 ]

Since g3 is given in terms of a3 by Eq. (&), Eq. (8) «nsti-
tutes a nonlinear, self-consistent equation, which should
be solved for a3.

We note that the fact that t, and t2 (and so a, and a2)
are zero leads to the particularly simple solution for g3
given by (5). We also note that if the impurity potential
were not taken to be s wave, then t, and t2 would not, in

general, vanish.
So, we must solve (8} for a3, and then compute N, (E)

from (6}. In general, this requires numerical work, but
analytic progress is possible in several ways, as will be ex-
plained in future sections.

Instead of using c and v, it is sometimes useful to cali-
brate impurity effects in terms of two parameters, given

by

I

Pure Case

C)
Z

3';

C)

Z

0
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FIG. 1. Plot of the density of states as a
function of energy for a =0.7 and 1/2~6=0. 1.
We use this picture to define the three ener-

gies, Q0, 0&, and 0&, which are functions of the
parameters 0. and ~. For some parameter
ranges, there are no Q& and 02 points, while
for some parameter values there is no 00 point.
The inset shows the density of states with no
impurities.

p 0,
E/6
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III. UNITARITY LIMIT

This limit corresponds to U~~, cr~1, with ~ held
6xed The equation for a3 becomes

c
N(0)g,

[(s+ia, } +b j'~

i2r(e+ia3)

By combining (11)with (6), we can see that N, (E) is given
in terms of a3(s) by

N, (E)=— Im
N(0) 1

2r a3(i e~E i')— (12)

Note that (11) and (12) are exact in the unitarity limit.
We first study N, (E=0). Equation (11) can be solved

for a, (0), yielding

1 1 1
ia3(0) = +— (13)

2 2v 2

4 1/2 ' 1/2
1~' 2.

ticular choice of o and v.. We use this picture to define
the three energies Qo, 01, and Q2, which separate regions
of E in which N, (E) is zero from regions of E in which
N, (E) is not zero. As we shall see, these energies are
functions of o. and ~. Furthermore, for some choices of o
and ~, there are no fl1 and 02 points, while for some
choices there is no Qo point.

at which the values of 0, and 02 are

Q1 Q2 —4 2
3 3

0,
3

=2y —y' 0-y-V'-' (19)

0,2
2y y V ——y —1.

As the parameter y varies between 0 and 1, these formu-
las give the exact value of 01 and 02 in terms of ~A.
Note that Qz/b, is always greater than one.

Figure 3 shows the behavior of 0& and Q2 as a function
of r. By using (19), we can derive asymptotic expres-
sions for 0, and 02 in terms of ~A, which is quite accu-
rate when 1/rA is small. These are

1/2 " 3/2
Q,

2 2.~
1 1

2 2~6

For values of 1/2~6 greater than the critical one given by
(17), N, (E) does not vanish for any value of E. This
behavior is illustrated by the numerical results shown in
Fig. 2. Analytic formulas, in terms of a parametric equa-
tion, can be derived for Q, (rb, ) and Q2(rh). We write

1 2=y +1—y, O~y~ 1,
2~5

This gives

N, (E=0)
N(0) 1/2

—'+ —,'(1+16' b, )'
(14)

2

~ 1+ +—
2 2~5 8 2~6

(20)

So, in the unitarity limit there is always a nonzero density
of states at zero energy, when c )0. If the concentration
c is small, so that 1/2rb, ((1, we may approximate (14)
as

2.0

1/27'6 = 0 1

N, (E=0)
1/2rb, . (15)

0

At small values of c, N, (E=O) is proportional to c'~ .
Note that no energy plays the role of Qo in the unitarity
limit.

We now turn to the problem of N, (E ) at general values
of E. Equation (11}can be turned into the following po-
lynomial equation for a3(E), where E = ic, —

4 —2E 3+ E2+ 1 ~ — 2E +(E
(2r) (2r) (2r)

(16)

1/Z~~ = 2&a/9

~ 0-

~ o.r—

0.0
2.0 -

'

1 5 I
1/276

0—

At values of E for which this equation has four real roots,
the density of states is zero.

For small values of 1/2~6, the density of states van-
ishes for energies between Q~(rb, ) and Q2(rh). As 1/2rh
increases, Q, and Q2 come together at a critical value of
1/2~6, given by

2&3
(17)

2~6 9

FIG. 2. Density of states in the unitarity limit (o.=1), for
three di8'erent choices of 1/2~5. At the critical value of
1/2v. 5=2&3/9, the region of E over which the density of states
is zero disappears.
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FIG. 3. Phase diagram in the E-~ plane, for the unitarity lim-

it (0 =1). The region labeled R I has N, (E)=0. The upper line

shows 0&/6, while the lower line shows QI/h.
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For small values of 1/2&6„we can derive the following
approximation for a3(s), which is valid at low energies:

1/2
E2

(21)

Using Eq. (12), we can then calculate the following ap-
proximate formula for the density of states at low energy:

' 1/2
1 2 E E + v'2b, /r

N(E) ' 2

N (0) 0, E + &2b, /r (22)

IV. BORN LIMIT

This limit corresponds to v~O, u~O, with ~ held
fixed. The equation for a3(e) becomes

(e+ia3)
a3=cN(0)v g3=-

[(E+ia }~+/~]

The density of states is then given by

N, (E)
N(0)

=2~Im[a3(ie~E ig)] . —

(23)

(24)

Figure 4 illustrates the Born limit behavior of N, (E) as
1/2~ is increased. The structure is quite difFerent from
the unitarity limit. As 1/2v. is increased, the value of
E/5 at which the density of states is nonzero decreases;
when 1/2~6, reaches the value of unity, N, (E=O) be-
comes nonzero. Thus, in the Born limit, ' ' the super-

This formula is an accurate description of the branch of
N, (E) below 0„for small values of 1/rh. Then, at small
values of c, the low-energy piece of N, (E) has a height
proportional to &c and width proportional to V c. The
total area is then proportional to c, as we expect; this
point is discussed further in Sec. VII.

FIG. 4. Density of states in the Born limit (a =0), for three
difFerent choices of 1/2~6. Note that N, (E=O) becomes
nonzero when 1/2~6 ) 1.

conductor is not gapless until 1/2rh=l. In addition,
there are no energies corresponding to 01 and 02.

We can understand this result analytically in the fol-

lowing way. We can rewrite Eq. (23) for a3 as follows,
with i c~E:

a —2Ea + E —5+ 1
3 3 27-

2E
Q3 Q3

(2r }

E2+ =0.
(2r)

(25)

00 1—
2/3 3/2

1

2zh
(26)

As this equation indicates, in the Born limit, the super-
conductor becomes gapless when 1/2mb, ) 1; the density
of states at zero energy is then given by'

N, (E=0)
=(1 4r'6, )'— (27)

V. GKNKRAL CASK

For general values of e and v, or o. and ~, the equation
for a3(E=ie) becomes

When this equation has four real roots (at a particular
value of E), then the density of states at that energy is
zero. When two of the real roots become a complex con-
jugate pair, then the density of states is nonzero.

Let us call the lowest energy for which the density of
states is nonzero Qo. Then it is straightforward to deduce
that Qo is given in terms of 1/2r by the following formu-
la. 12, 13
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[1/(1 —o )][(E—a3)/[b, —(E —a3) ]" ]a3(E)=-
2& 1 —[o/(1 —cr)]I(E —a3) /[b —(E—a, ) ]!

which can be turned into a sixth-order polynomial equation for a 3. The density of states in terms of a 3 is given by

N (E)=
27TO'

,

2
1 1 ~ 1+ +4a3o(1 —o )

a3

The above equation shows that, as in the Born and uni-
tarity limits, if a3 is real at a particular value of E, then
N, (E) is zero.

It is straightforward to examine the special case E=0,
and to see when the polynomial for a3 has complex roots.
We find that N, (E =0) is nonzero when the following
condition is satisfied:

E„=6&1—cr .

The physical explanation for this value of E~ will be
given in the final section. Point 8 has the following coor-
dinates:

N (0)m.cv

or, in terms of o. and ~,

(30)

1

27
(31)

Equation (31) reproduces our previous results for the
Born and unitarity limits: when cr =1 (unitarity) the su-
perconductor is always gapless, and when cr =0 (Born) it
is gapless when 1/2r & A.

We now consider general values of E. As o and ~ vary
there is an evolving pattern such that certain regions of E
have N, (E) vanishing, and other regions have it nonzero;
see Fig. 5. To understand the trend, we present the plots
of Figs. 6 and 7. These show, for particular values of cr,
regions in the E rplane in wh-ich N, (E) vanishes, and re-
gions in which it is nonzero. The boundary lines separat-
ing these areas can be written in parametric form as fol-
lows:

1 =0,
2~6,

Ec=
Point D has a rather complicated analytic formula:

(36)

j
1/2&3~ =- 0.05

a = 0.30

When 1/2mb, &(1/2mb, )s, we have N, (E=O) &0. Point
C is given by

E y (1+cr—y )

1 —
y

—cr(l —2y )

1 (1—o —y )+1—y
2rb, 1 —y —a(1 —2y )

where y satisfies

0(y + ]

(32)

(33)

G =- 0 /0

Note that a given value of 1/2rb, may be produced by
several values of y, each value of y then having a separate
value of E.

The general structure in the E-~ plane is as follows.
For 0(o (1 (i.e., except for the Born and the unitarity
limit) there are two separate regions in which N, (E) is
zero; these are labeled R, and R2. In the Born limit
(cr =0), region R, vanishes, and in the unitarity limit
(o =1)R2 vanishes.

Figure 5 shows a generic E-~ plane diagram, with vari-
ous special points labeled. Analytic formulae can be de-
rived, showing how these special points move about as o
and ~ change. ' Point 3 has coordinates

v =- 09"
0 0"

FIG. 5. The density of states as a function of E, for
1/2v. 5=0.05, and three diff'erent values of cr. Note that when
o.=0.3, no energies correspond to Ql and Qz as defined in Fig.
1. %hen o =0.95, no energy corresponds to 00.
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1 cT'}/o'(3 —cr —+12—12o+o' )( —6+7cT++12—12o+o' )2' 3 ( —1+2cr) (cT+V 12—12o+o )

( —5cr++12—12cr+cT }(3—3o —cT —o+12 —12o+o. } i
E

3 (1—2cr) (cr+ V 12—12o +o }

(37)

We note that point D moves to the right of point 8 when
o )0.776631. . . . When 1/2~5) (1/2mb, )D the stateless
region between 0| and 02 disappears; N, (E ) curves then
have no Q& and 02 points.

VI. GAP EQUATION

In this section we briefly discuss the weak-coupling gap
equation for our family of order parameters. For gaps
satisfying conditions (i) and (ii) (given in Sec. I) we find
that the equations simplify remarkably. We start with
the basic self-consistent equation:

A A A A

~(k) ~~, dk, n(k') V(k, k')b, (k')
(38)

[(s+ia3 ) + b, ]'

The prime indicates that the sum on e, needs a cutoff.
Within weak-coupling theory, we take

V(k, k')=A, QP, (k)P'(k') .
J

(39)

1.. 2 I I I I I I ~ I I
(

I ~ I I ~ I I I I
i

I I I I I I I I I

(0.1, n, i~)
1.0:

0.8

Here, the [P j are the basis functions from a particular
irreducible representation of the crystalline point group.
We assume they are normalized, so that

( V, (k)V„'(k) & =~„ (40)

Then the order parameter is a linear combination of these
functions:

h(k) =gaj. 9~(k),
1

(41)

satisfying&according to our basic assumption, (b (k) ) =0
and ih(k)i =b. The self-consistent equation then
reduces to the following:

1=A, Tg
[( e+ia 3) +b, ]' (42)

Thus, 6 will be a universal function of cr, ~, and the tem-
perature T:

h=h(o, ~, T) . (43)

Any details about the Fermi surface have dropped out.

VII. DISCUSSION

12:
1.0
0.8
0.6
0.4
0.2
0.0
12:
1.0

We have seen that our basic equations for a3 and g3,
(5} and (8}, lead to a very rich spectrum of behavior as cr
and ~ are varied. To understand these results a little
better, we bring into the discussion one key fact. An iso-
lated s-wave impurity, in a host superconductor whose
order parameter satisfies (i) and (ii}, has a bound state at
the following energy: ' '

0.4

0.2

0.8
0.6
0.4
0.2
0.0
12:
1.0
0.8
0.6

cr = 0.776..

= 0.9

0.0
0.0 0. 1

1/2Tz
0.2

FIG. 6. Phase diagram in the E-v plane for o =0.7. In the
regions labeled R

&
and R2, N, (E)=0. The vertical dashed line

represents a particular choice of v; namely, 1/2vh=0. 1. The
energies Qp Qg and Q2 correspond to those in Fig. 1. The spe-
cial points A, 8, C, and D are discussed in the text.

0.4
0.2 .
00.R&

0.00 0.10 0.20 0.30 0.40 0.50
1/2~6

FIG. 7. Phase diagram in the E-~ plane, for three different
values of o.. In the regions labeled R& and R2, we have
N, (E)=0.
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=6&1—cr .
+1+% (0)m U

(44)

So, if o is close to one (i.e., near the unitarity limit) this
bound state is well below h. Thus, at small concentra-
tions we have an impurity band well separated from the
continuum starting near E =h. This band at low energy
is not due to gap nodes, since our family of order parame-
ters has no nodes.

Near the Born limit (cr close to zero) this bound state is
close to 6, and so an impurity band separated from the

upper continuum is harder to achieve. Finally we note
that the single impurity bound state at Eo =b,v'1 —cr pre-
cisely accounts for the position of the point A in the E-~
plane diagram.
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